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TrendyGenes, a computational 
pipeline for the detection 
of literature trends in academia 
and drug discovery
Guillermo Serrano Nájera 1, David Narganes Carlón 1,2,3 & Daniel J. Crowther 3*

Target identification and prioritisation are prominent first steps in modern drug discovery. 
Traditionally, individual scientists have used their expertise to manually interpret scientific literature 
and prioritise opportunities. However, increasing publication rates and the wider routine coverage 
of human genes by omic-scale research make it difficult to maintain meaningful overviews from 
which to identify promising new trends. Here we propose an automated yet flexible pipeline that 
identifies trends in the scientific corpus which align with the specific interests of a researcher and 
facilitate an initial prioritisation of opportunities. Using a procedure based on co-citation networks 
and machine learning, genes and diseases are first parsed from PubMed articles using a novel named 
entity recognition system together with publication date and supporting information. Then recurrent 
neural networks are trained to predict the publication dynamics of all human genes. For a user-defined 
therapeutic focus, genes generating more publications or citations are identified as high-interest 
targets. We also used topic detection routines to help understand why a gene is trendy and implement 
a system to propose the most prominent review articles for a potential target. This TrendyGenes 
pipeline detects emerging targets and pathways and provides a new way to explore the literature for 
individual researchers, pharmaceutical companies and funding agencies.

Pharmaceutical companies are actively looking for ways to reduce their attrition rates, the time taken for drug 
development, and the associated development  costs1–4. One approach being explored to address this productiv-
ity challenge is the exploitation of big biomedical data sets through machine  learning5,6. Evidence is emerging 
that machine learning can be used to speed-up and reduce the costs in all stages in drug  discovery5,6: drug 
 repurposing7,8, clinical  trials9,10, de-novo drug  design11–20, and target-disease  associations21–25. However, target 
identification and prioritisation remain the first step for the majority of drug discovery  programmes25–28. Only 
10% of drug targets progress through clinical  trials28–30 and this success rate appears lower for novel  targets30–32. 
Historically, target identification has been broadly carried out on a case-by-case basis, based on the scientific 
interpretation of the available literature. However, thousands of peer-reviewed articles are published every day 
without taking into account pre-prints, patent data, and clinical trial  reports33. PubMed alone contains more 
than 30 million publications as of 2020, and the scientific output doubles every nine  years34, creating a corpus of 
"undiscovered public knowledge"35. Thus, there is a high demand for machine learning and other computational 
methods to exploit the current knowledge and facilitate the maintenance of an overview of this overwhelming 
literature volume. The development of (i) alert systems to identify and rank emerging targets at genomic-scale 
and (ii) recommendation systems to prioritise detailed reading of scientific reviews is of importance for both 
pharmaceutical companies and the whole scientific  community25,27,36.

One of the most significant obstacles for the automatic analysis of biomedical literature is the use of non-
redundant alternative gene synonyms, symbols, and acronyms from competing sources that can have other 
meanings in different areas of  research37. Therefore, it is imperative to disambiguate biomedical entities in the 
scientific literature at the outset. There have been several attempts in this line of  research21–24,37–46. However, these 
attempts do not unambiguously map gene and disease entities in scientific literature to controlled ontologies 
nor do they define an ambiguity measure for gene and disease synonyms. Although there have been multiple 
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attempts about trend detection and burst term  detection48,49 and more concretely about the biomedical literature 
of targets and small  molecules50–52 to our knowledge this is the first attempt to analyse emerging trends about 
human protein coding genes.

Here we propose a new disambiguation algorithm based on co-citation networks and natural language pro-
cessing to obtain accurate publication dynamics for every coding-gene in the human genome. This time-series 
data was used to train recurrent neural networks (RNN) in historical data and predict the state of the literature 
in recent years. We identify which genes are being mentioned in the literature more than expected in order to 
highlight and rank potential targets. This genome scale ranking is not alone sufficient for target assessment 
since this will not include assessment of tractability, commercial opportunity or clinical translatability, but 
identification of emerging biology is a key component of novel target identification. When the actual number 
of published articles exceeds predictions, there may have been a paradigm shift for that particular gene. Finally, 
we implemented topic detection algorithms along with recommendation systems to validate trendy targets. 
Therefore, the aims of this paper are fourfold: (i) to unambiguously detect genes and diseases within articles 
with a novel named entity recogniser (ii) to generate a ranking of genes and diseases based on a novel metric 
that defines its trendiness, (iii) to generate an automatic pipeline to analyse why these biological entities may 
be trendy, and (iv) to generate a recommendation system to suggest which articles to read which maximise the 
information coverage in subnetworks.

Results
Gene annotation
We gathered the human gene synonyms from different sources (Ensembl, UniProt, HGCN, Entrez and Open-
Targets; Fig. 1B) to sample the potential publications mentioning human gene names. Human genes had around 
10 synonyms on average and many of those synonyms are ambiguous (Table 1): More than 30% of gene symbols 
had at least one promiscuous synonym, around 10% of the gene symbols are unsafe and have at least one gene 
synonym in the English dictionary, and almost 50% of gene symbols had a nested synonym. Combining these 
problems, almost 60% of the 19,082 gene symbols have one or more of these four types of ambiguity. To determine 
which synonyms are potentially ambiguous (“unsafe gene synonyms”; Fig. 1C) we did feature engineering to 
obtain variables that characterise unsafe synonyms (e.g. longer gene names are less probable to be ambiguous; 

Figure 1.  Workflow. Chart summarising the process from the downloading of the data to the detection and 
analysis of trends in the literature. (A) Creation of a graph database with the information contained in PubMed 
baseline 2020. (B) Acquisition of a comprehensive collection of human coding gene names and synonyms. 
(C) Automatic determination of potential ambiguous (unsafe) gene names. (D) Annotation of the graph 
database with unambiguous gene symbols by combining co-citation network topology and binary classifiers. 
(E) Prediction of per-gene publication trends using RNN. When a gene has significantly more publications or 
citations than expected by the model it is considered to be trendy. (F) Automatic topic detection of collections 
of publications. We used this algorithm to quantify the evolution of topics in trendy gene publications over 
time. (G) A review recommender system that uses information from the citation network and topic detection to 
recommend the most efficient set of reviews to explore the literature.
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Table 2). Next, we used a positive-unlabelled bagging (PU) strategy following Mordelet et al.  implementation55 
with a random forest classifier with the engineered features to calculate the probability of a gene synonym to be 
“unsafe” (see Methods).  

To link every human gene to a subset of publications we implemented a disambiguation pipeline based on 
co-citation networks and machine learning (Fig. 1D). We gathered the titles, abstracts and keywords of the 
publications that had a match for any of the synonyms using regex with ElasticSearch (Fig. 1D). Nevertheless, 
this original set of publications potentially contains false positives: publications that contain an ambiguous gene 
synonym in their titles or abstracts, that do not refer to the gene of interest.

We assumed that true and false positives synonyms will tend to belong to different communities of publi-
cations from different research fields. To detect these communities we used co-citation networks (Fig. 1D): a 
weighted graph where the weight of the edges represents the frequency of two publications being cited simul-
taneously (co-cited) by a third publication. When two publications are repeatedly co-cited it strongly suggests 
that both belong to the same field of  study56. We used the fast greedy modulation algorithm from iGraph to 
determine communities in the co-citation network and distinguished communities of publications focusing on 
the gene of interest by detecting the presence of “safe gene synonyms” in their titles and abstracts (Fig. 1D). The 
process is summarised in Fig. 2.

Finally, because we only used citations from open-access publications contained in PubMed Central (PMC)57, 
46% of the publications were disconnected in the PubMed co-citation graph. To tackle this problem, we used 
again the inductive bagging positive-unlabelled approach to train multiple classifiers to associate the disconnected 
publications with the previously computed co-citation network components (Fig. 1C) using the words, phrases 
and one to four n-grams, contained in titles and abstracts. All available machine classifiers in Scikit Learn were 
used but logistic regression was selected due to its speed to accuracy ratio (Table 3).

To test the performance of the disambiguation pipeline we compared the disambiguation results with the 
gene-publication annotations from  GeneRif58 (manually curated annotations),  DISEASES59 (computational 
annotations), and  UniProt60 (computational and manually curated annotations) (Table 4). On average, the 
disambiguation recovers > 85% of all publications contained in these databases. Both GeneRif and Uniprot 
annotation do not necessarily contain a gene-synonym in the title or abstract, therefore those publications are 
out of our pipeline. Disambiguation results present on average a 70% precision with UniProt, the only collection 
of disambiguated publications of a similar magnitude. Finally, we included the disambiguated gene-publication 
annotations into the graph database.

Table 1.  Gene synonyms are ambiguous. Manually discarded synonyms were labelled as unsafe during 
the unsafe gene synonym detection in an active learning fashion (see Methods). Unsafe aggregates the data 
from all the other categories. Data for 19,082 gene symbols and 185,549 gene synonyms. The total counts 
represent the number of individual synonyms when grouped by gene symbol and gene synonym. Promiscuous 
synonyms are counted as many times as they act a synonym.

Type of synonym Total counts Percentage of the total number of synonyms

Nested 18,845 10.16

Promiscuous 11,744 6.32

English 1247 0.67

Manually discarded 58 0.03

Unsafe 24,491 13.20

Table 2.  Unsafe features. Engineered features to evaluate the probability of a given gene symbol of being 
ambiguous (unsafe).

Variable Meaning

Total Number of total PubMed ID candidates retrieved in ElasticSearch when querying for all gene 
synonyms for a given gene symbol

Contribution The percentage of PubMed IDs that a given gene synonym contributes to the total for a 
particular gene symbol

Number of characters The length of the gene synonym in characters

Bits The sum of the bits of information of every character in a gene synonym based on the 
frequencies of each character in PubMed’s corpus of titles and abstracts

Number of nested The number of other gene synonyms that contain the gene synonym. For example: “Insulin” is 
part of “Insulin Receptor”

Prob. of the synonym given an alternative The conditional probability of finding the gene synonym given that an alternative synonym for 
the same gene symbol also appears in the text

Prob. of an alternative given the synonym The conditional probability of finding alternative gene synonyms given that the synonym 
synonym appears in the text

Is gene symbol Whether the synonym is also an accepted gene symbol
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Trend detection
To detect incoming trends in the literature we gathered the publication dynamics of a given human gene from 
the disambiguated graph database (Fig. 1E). These time series include the number of publications, clinical trials, 
reviews and publications from big and medium-sized pharmaceutical companies, as well as, citations of publica-
tions coming from the mentioned categories per calendar year. Specifically, if a manuscript with author affiliations 

Figure 2.  Disambiguation pipeline. (A) Citation network for a subset of PubMed IDs mentioning any of the 
gene synonyms of the gene symbol LRWD1, including ORCA. (B) Co-citation network of the same subset of 
PubMed IDs as in (A). (C) Communities for the co-citation graph obtained after using iGraphs fast greedy 
algorithm: killer whale community, orca plant cluster, LRWD1 in drosophila and LRWD1 in heterochromatin. 
(D) Number of safe synonyms per PubMed ID in title or abstract in the same co-citation network. (E) Citation 
network with reviews citing any of the PubMed IDs. (E) Review information as defined by the recommender 
system scaled from 0 to 1.

Table 3.  Classifier comparison. Performance metrics for the 8 classifiers (Extra Trees Classifier, ETC; Gaussian 
Process Classifier, GPC; K-Nearest Neighbour, KNN; Logistic Regression, LOG; MultiLayer Perceptron 
Classifier, MLC; Ridge Classifier, RDC; Random Forest Classifier, RFC; and Support Vector Machine classifier, 
SVC; in descending order) used for the disambiguation in “Topic detection” for a random sample of 2000 
genes. The metrics shown in this table were obtained by averaging the results on the validation set during the 
threefold cross validation. Subsequently, the results were averaged for a sample of 2000 genes. The logistic 
regression classifier (bold) was the fastest and second most accurate model for a random sample of 2000 genes 
and therefore it was selected as the default model to run the disambiguation on the remaining 17,082 human 
protein-coding genes. This high validation score verified that there was no over-fitting after the threefold cross-
validation.

Classifier Accuracy Average precision Brier loss F1 Log loss Precision Recall AUC Time (s)

ETC 0.95 0.93 0.05 0.95 1.71 0.95 0.95 0.95 1.35

GPC 0.88 0.85 0.12 0.87 4.25 0.89 0.88 0.88 6.12

KNC 0.86 0.84 0.14 0.86 4.74 0.89 0.86 0.86 2.22

LOG 0.93 0.91 0.07 0.93 2.36 0.94 0.93 0.93 0.54

MLP 0.92 0.89 0.08 0.92 2.85 0.91 0.92 0.92 1.27

RDC 0.86 0.83 0.14 0.86 4.74 0.87 0.86 0.86 0.22

RFC 0.95 0.93 0.05 0.95 1.81 0.95 0.95 0.95 1.26

SVC 0.94 0.92 0.06 0.94 2.14 0.94 0.93 0.94 1.96
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to big pharma cites other publications these citations are categorized as big pharma citations. Conversely publica-
tions citing this manuscript whose authors are affiliated to big pharma are not categorized as big pharma citations.

Time-series data from 1980 to 2013 was used to predict the per gene publication dynamics in each category 
between 2014 and 2019 using a Recurrent Neural Network model with an encoder-decoder architecture preceded 
by an attention layer, where both the encoder and decoder are composed of five hidden layers of Gated Recurrent 
Units (GRU). The time-series were created in a cumulative fashion, where each year contains the new publications 
and citations in addition to the previous ones.

For most genes, the model produces accurate predictions of the publication dynamics (Table 5), but for a 
small subset of genes the real number of publications or citations is significantly higher than expected (Fig. 3A). 
When the number of publications or citations exceeds the predictions, we interpret that the publication dynamics 
changed substantially in a way that cannot be explained simply by the gene’s publication history, implying that a 
meaningful discovery in the field has recently occurred (Fig. 3A; orange). Trendiness is defined as the probability 
of the fold-change between predicted and real number of publications and citations for a given gene. We used this 
metric to identify the trendiest genes in the academic community-using all publications-, or in the pharmaceuti-
cal industry-using publications coming from pharmaceutical companies-(Table S1, supplementary material). 

Finally, to identify trendy genes of pharmaceutical interest, we computed the normalised mutual information 
of genes and diseases in the titles and abstracts of publications (Fig. 3B). Disease names and their synonyms 
were obtained from the Medical Subject Headings (MeSH) ontology at the  Bioportal61. MeSH ontology contains 
4818 different disease nodes at different levels of the ontology. We created a dictionary for each disease with the 
preferred and alternative names (see Methods). The diseases were disambiguated in titles and abstract using the 
same disambiguation pipeline used with the genes.

We noticed that many trendy genes cluster forming trendy pathways when getting the gene–gene and gene-
disease association networks (Fig. 3C). We used enrichment of gene ontology (GO) terms for biological processes 
to uncover common pathways among the top 100 trendiest genes (Table S1, supplementary material). Among the 
most enriched GO terms in both academia and pharma are T cell co-stimulation, execution phase of necroptosis 
and pyroptosis. These biological processes are enriched in trendy genes which presumably reflect these fields of 
study are generating the most innovation and expectations in current biomedical research.

Topic detection
After the detection of gene trends, the next step was to understand why those genes might be trendy and 
curate possible mistakes in the disambiguation. With this aim we implemented a topic detection pipeline as an 
automatic, fast discovery tool to study groups of publications that mention the gene of interests (Fig. 1F). In 
this context, we used topic modelling algorithms. A topic is a collection of similar words, specific to a group 

Table 4.  Comparison of disambiguation methods. Average recall and precision of the disambiguation of our 
disambiguation with other databases. Low precision values for DISEASES and GeneRIFs are due to the smaller 
size of these databases.

Recall Precision Total annotations

Uniprot 0.86 0.71 10,329,240

DISEASES 0.90 0.14 1,140,129

GeneRIF 0.86 0.11 726,532

Ours - - 9,658,406

Table 5.  Performance of the predictions. Performance in the predictions of the publication dynamics. The 
model predicts the publications dynamics per gene between 2014 to 2019 using data from 1980 to 2013. 
Numbers represent the median 13,380 human genes. MASE mean accuracy scaled error, RMSE root mean 
square error, Total number of elements in the database up to 2013.

Variables MASE Percentage of error RMSE Total (2013)

CIT. BIG PHARMA 0.42 12.51 10.60 1.86.E + 06

CIT. MED. PHARMA 0.50 14.90 5.20 6.59.E + 05

CIT. REVIEWS 0.30 3.35 45.60 2.38.E + 07

CIT. TRIALS 0.45 6.82 5.60 3.70.E + 06

CITATIONS 0.26 2.66 198.20 1.27.E + 08

PUB. BIG PHARMA 0.58 21.73 0.00 4.43.E + 05

PUB. MED. PHARMA 0.63 23.64 0.00 4.31.E + 05

PUBLICATIONS 0.33 8.66 32.60 9.48.E + 06

REVIEWS 0.52 13.37 2.40 9.07.E + 05

TRIALS 0.61 13.33 0.00 5.68.E + 05
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Figure 3.  Trend detection and gene–gene-disease co-occurrence. (A) Logarithmic scatter plots showing the 
predicted number of publications, reviews, citations and citations from big pharma companies against real data 
in the year 2018. (B) Trendiness (log2(predicted/real)) for genes associated with groups of diseases (MeSH 
parent categories). Left; Average trendiness of publications, reviews, citations and citations from reviews. Right; 
Average trendiness of citations coming from big and medium sized pharmaceutical companies. (C) Gene–
Gene–Disease co-occurrence network of the first neighbours of CD274. Orange nodes are diseases, grey nodes 
are genes and the size of gene nodes represents the trendiness The grey edges are gene-disease association, the 
blue edges are gene-diseases with the width of the edges reflecting the number of co-occurrences.
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of  documents62. We used non-Negative Matrix Factorisation to generate a set of latent topics for each query 
(Fig. 4A; word clouds).

We explored the evolution of the topics associated with some trendiest genes. For the immune checkpoint 
inhibitors (CD274, PDCD1, TGIT and CTLA4) the topic timeline suggests that there was a rapid decrease in 
the likelihood of publications discussing the biological role of these immune checkpoint inhibitors since 2010 
(Fig. 4A in grey), which coincides with a notable increase in topics that discuss cancer therapies (Fig. 4A in 
orange) and monoclonal antibodies that target these four different transmembrane immunoglobulins (Fig. 4A in 
yellow).This way, the topic-detection pipeline is able to capture the evolution of the research from its biological 
description to the clinical application.

The topic timeline of the members of the necroptosis pathway (RIPK1, RIPK3 and MLKL; Fig. 4B) suggests 
that in the last decade there has been a decrease in the likelihood of publications discussing these genes in the 
context of apoptosis (Fig. 4B in grey), in favour of publications that discuss the newly discovered form of cell 
death, the necroptotic pathway (Fig. 4B in orange), as well as, the translational medicine perspective of this 
pathway as is suggested by words like mouse, treatment and activity or cancer (Fig. 4B, in blue).

Finally, the topic timeline the members of the pyroptosis pathway (CGAS, TMEM173, GSDMA and 
GSDMAD; Fig. 4C) shows a fast increase from 2013 of publications discussing the therapeutic opportunity in 
cancer immunotherapy with agonists for TMEM173 (Fig. 4B in grey), while again, the remaining topics seemed 
to contain information on the biochemistry and biological role of the genes.

Recommender system
In addition to the automatic topic detection, we designed a review recommender system to accelerate the 
screening of the publications that cover most of the information in a network (Fig. 1G). There are an average of 
2.9 reviews citing any publication that mentions at least one gene name. The aim was to minimise the time reading 
and maximising the information within a gene subnetwork. The algorithm aggregates both topic and network 
information from the citation subgraph of the publications that mention the gene of interest to obtain the most 
query-centric reviews. The topic information comes from the latent topics obtained from the topic detection 
algorithm. The network information was captured by the PageRank scores of the subgraph (see Methods). 
This approach ensures that reviews citing publications with highest PageRank scores are prioritised. To further 
minimize the number of reviews for initial human analysis we avoid repetition of information by simultaneously 
maximising the cumulative PageRank score whilst minimising the overlap of combined citations. This way, we 
expect to obtain a small set of reviews that will cover the main topics and publications in the field. We used this 
recommender system to select the optimal subset of reviews to assess why genes might be trendy (see Discussion). 
An example of the output can be found for the genes in the discussion in the supplementary data file.

Discussion and conclusions
We present TrendyGenes as a first attempt to (i) establish a systematic analysis of contemporary topics associated 
to human genes and diseases, (ii) develop an alert system for emerging targets and trends in the scientific 
literature across the human, protein-coding genome, (iii) to use topic modelling to rapidly generate timelines of 
phrases that facilitate the understanding of why these genes are trendy.

We constructed a graph database containing PubMed data where publications are connected by citations and 
authors and are annotated with disambiguated human gene-names and diseases. We expect this new resource 
to provide new ways to navigate the scientific literature, detect and visualise networks of discussion and analyse 
networks of influence from key opinion leaders. Disambiguating author names from PubMed, MedRxiv, or 
BioRxiv would further improve the quality of the database. Machine or deep learning algorithms could be trained 
on already labelled data to improve on previously published  approaches63–65 and address this issue.

Similarly further improvements in gene-name disambiguation would assist precision and recall metrics on 
our validation set suffer for different reasons GeneRIF and DISEASES include fewer publications in comparison 
to the genome wide metrics identified in our pipeline and there will be a lot of potential “false positives”. This 
makes the precision of our approach appear lower than what it may actually be. On the other hand, GeneRIF and 
Uniprot contain publications which either are not gene specific or do not mention the gene in the title or abstract.

However, the disambiguated genes and diseases can serve as labelled data for more sophisticated deep learning 
approaches to annotate biomedical entities. Gene and disease entities could be better annotated using both 
representation learning to capture the network topology and contextual information with transformer layers. 
Topic detection could be improved by using the state-of-the-art text summarisers with deep learning.

The number of publications per gene in aggregate is very  predictable66. However, occasionally genes present 
significantly more publications than expected, meaning that a recent breakthrough occurred which cannot be 
accounted for from the publication dynamics. In this study, we show that trendiness can identify emerging targets 
from the literature for rapid profiling at genome-scale. We combined trendiness with gene-disease associations 
to prioritise potential drug targets: emergent genes associated with diseases but yet included in pharmaceutical 
publications are worthy of being investigated as potential targets. We observe that TrendyGenes usually cluster 
into the same biological pathways (Fig. 3C for CD274, PDCD1, CTLA4 and TIGIT). Here, using topic modelling 
and the recommendation system, we identify the trendiest genes and pathways and discuss some case studies to 
exemplify our pipeline. We selected genes pharmacological relevance by choosing genes with high trendiness 
both in the academia and the pharmaceutical industry with high association with disease and more than 100 
publications. Reviews suggested by the recommender system for these genes are included in (whatReview2read.
zip, supplementary material).
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Figure 4.  Topic time-lines. Topic time lines. Topic timelines for publications mentioning any of the genes for the immune 
checkpoint inhibitor (A), necroptosis (B) and pyroptosis (C) pathways. The x-axis represents the time in years and the 
y-axis represents the likelihood of a given topic. Colors represent different topics defined by the keywords contained in 
the correspondent word clouds. The latent four topics were obtained using Non-Negative-Factorization all publications 
annotated with the genes after disambiguation. Word clouds were created using the phrases with highest TFIDF for groups 
of publications belonging to each topic. All timelines show at least one rising topic after 2013 that represents the reason why 
these genes became trendy, their implications in human disease: immune checkpoint inhibitors and monoclonal antibodies 
(yellow and orange in A), activation of necroptosis (orange in B), agonists of STING1 in cancer (black in C).
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Immune checkpoint inhibitors: CTLA4, CD274, PDCD1, TIGIT
CTLA4, PDCD1 (PD-1), CD274 (PD-L1) and TIGIT are among the trendiest genes in academia and 
pharma in 2019 (Fig. 3A). CTLA4, PDCD1, CD274 and TIGIT genes encode four different transmembrane 
immunoglobulins that act as co-inhibitory receptors: checkpoints or ‘breaks’ for the adaptive immune response 
that prevent T cells from exerting their  functions67,68. CTLA4 competes with its analogous CD28 for CD80 and 
CD86 to prevent a premature activation of T  cells68. PDCD1-CD274 interaction counters the positive signals 
that may have already activated T effector  cells68. TIGIT interacts with CD155 to down-regulate natural killer 
cells and T  lymphocytes69. Cancer cells attempt to impair these checkpoints and currently there are 7 FDA 
approved monoclonal antibodies that target three of proteins (CTLA4:  Ipilimumab70; PDCD1:  Nivolumab71, 
 Pembrolizumab72,  Cemiplimab73; CD274:  Atezolizumab74,  Avelumab75) and multiple candidates targeting TIGIT 
(BGB-A121776, OMP-313M3277,  MTIG7192A78,  AB15479). Moreover, James Allison and Tasuku Honjo received 
the Nobel Prize in Medicine in 2018 for its research on immune checkpoint  inhibitors47.

Neurodegeneration: TREM2 and C9orf72
C9orf72 encodes a guanine nucleotide exchange factor involved in endosomal trafficking and  autophagy80,81. 
Hexanucleotide repeat expansions in promoter or intronic regions of C9orf72 are some of the major causes of 
sporadic and familial forms of both amyotrophic lateral sclerosis and frontotemporal  dementia80. Antisense 
oligonucleotides are being used to impede the transcription of  C9orf7282–84 or CRISPR–Cas9 system to target 
the GGG GCC  repeat in the  DNA85 or  RNA85,86.

TREM2 gene encodes a transmembrane immunoglobulin receptor expressed in macrophages, osteoclasts, 
dendritic cells, and brain  microglia87,88. TREM2 variants have been associated with Nasu-Hakola  disease89,90, late-
onset Alzheimer’s  disease91–94, frontotemporal  dementia95–100, amyotrophic lateral  sclerosis101,102 and Parkinson’s 
 disease101,103. TREM2 activates a pathway—through TYROBP/DAP12—that promotes  inflammation87,88 
and promotes phagocytosis of cellular waste, remains of apoptotic cells, and  pathogens87,88. Currently, two 
independent groups have generated anti-TREM2 antibodies to stimulate microglia to remove amyloid  plaques104. 
Furthermore, the mAb generated by one of these groups, Alenco, in collaboration with Abbvie, has entered Phase 
I clinical  trials105,106.

DNA sensing by cGAS–STING: cGAS, TMEM173, GSDMD, GSDMA
The cytosolic nucleic acid-sensing pathway leads to pyroptosis, a lytic pro-inflammatory type of cell death 
involved in antiviral, antibacterial, and anticancer  response107. cGAS is a nucleotidyl-transferase that catalyzes 
production of cyclic GMP-AMP (cGAMP) upon the recognition of double-stranded  DNA107. TMEM173 (STING) 
binds to cGAMP and promotes the activation of both TBK1 and IRF3, increasing the transcription of genes 
encoding type I  interferons107. GSDMA and GSDMD are pore-forming effector proteins in the plasma membrane 
to release proinflammatory interleukins like IL-1β and IL-18108. The cGAS-STING pathway has been associated 
to multiple autoimmune and chronic inflammatory diseases like non-alcoholic fatty liver  disease109, systemic 
lupus  erythematosus110, vascular and pulmonary  syndrome111, macular  degeneration112, Bloom  syndrome113, 
Aicardi-Goutières  syndrome114,  cancer115, DNA  damage116,  neurodegeneration117 and beyond. Currently, there 
are ongoing clinical trials for  TMEM173118–120 and  GSDMD121 although there are no reported trials for GSDMA 
nor cGAS.

Necroptosis: RIPK1, RIPK3, and MLKL
RIPK1, RIPK3 and MLKL form part of the tumour necrosis factor-induced necroptosis  pathway122–124. This 
pathway has been associated with multiple pathologies: systemic inflammatory response  syndrome125,126, 
ulcerative  colitis127,128,  psoriasis128, rheumatoid  arthritis128, neurodegenerative  diseases129 and even  cancer130–132. 
TNFR1, FasL, TRAIL, and TLR can all activate RIPK1 to decide the cell’s fate: inflammation, apoptosis or 
 necrosis133. If caspase-8 is inhibited, RIPK1 and RIPK3 form the necrosome that subsequently phosphorylates 
 MLKL134. MLKL forms homo-trimers135,136, migrates to the plasma  membrane135,136, binds to highly 
phosphorylated inositol  phosphates137, creates pores in the  membrane138 and disrupts the cell integrity. The 
discovery of RIPK1 dates back to  1995139. Since then, four inhibitor programs have progressed through human 
phase II safety  trials140–143. The first publication mentioning MLKL is more  recent144 and, despite the lack of kinase 
activity, pharmaceutical companies have cited its publications by 60 times more since 2013. Although there are 
no clinical trials yet, there are at least three known different chemical  inhibitors145.

Mechanobiology: YAP1/WWTR1, PIEZO1 and PIEZO2
Cells use mechanical cues from their environment to guide behaviours such as proliferation and migration. 
Forces act as signals which are transduced to the nucleus where they control gene  expression146. Mechanical 
forces are critical regulators of organ and tissue homeostasis, morphogenesis and regeneration, and are 
important aspects of diseases like cancer, metastasis, fibrosis and cardiac hypertrophy. YAP1/WWTR1 (TAZ) 
are transcriptional co-activators and  mechanotransducers147. YAP/TAZ is hyperactivated in  cancers148, its 
inhibition reduces  atherogenesis149 and  fibrosis150, it triggers pulmonary  hypertension151 , and it is necessary 
for epithelial regeneration in the  intestine152. PIEZO1 and PIEZO2 are two mechano-sensitive cation channels 
that play a key role in cell number  regulation153,154 and  migration155,  hearing156,  neural157 and  vascular158 
development, somatosensory  functions159,  proprioception160 and beyond. Piezo channels have been recently 
associated with multiple pathologies like  arthrogryposis161,  apnea162, congenital lymphatic  dysplasia163, 
 hyperalgesia164,165,  malaria166,  pancreatitis167,  xerocytosis168, Gordon syndrome, Marden-Walker Syndrome, 
and Distal Arthrogryposis Type  5169. The discovery of mechanotransduction signalling pathways has received 
notable attention in the last years and may open the door to new therapeutic strategies to treat these  diseases147.
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Trends in scientific literature are useful for pharmaceutical and biomedical companies. Moreover, this 
approach can offer crucial information to funding agencies to prioritise projects and a new way to study the 
research impact. Finally, individual researchers may benefit from a new methodology to explore the literature 
and from algorithms to maximise the efficiency of navigating over an increasingly vast biomedical literature.

Material and methods
Terminology
Here we use the term gene symbol to mean the approved symbol for any of the 19,084 human, protein-coding 
genes accepted by the HUGO Gene Nomenclature Committee. We refer to gene synonyms as any of the possible 
gene name variations by which the scientific community has ever referred to a given gene. Approved gene 
symbols are also included in the gene synonyms. For example: ‘EGFR’ is the approved gene symbol whereas 
‘EGFR’, ‘Epidermal Growth Factor Receptor’, ‘ERBB1’, ‘ErbB-1’, ‘c-erbB1’, ‘HER1’, ‘ERBB’ are gene synonyms. 
We define promiscuous gene names as any gene synonym that is a synonym of more than one gene. This can 
include previous official gene symbols since these will not have been expunged from the literature. An example 
of this could be ‘ARP1’ which is a promiscuous gene synonym for the gene symbols ‘NR2F2’, ‘ACTR1A’, ‘ACTR1B’, 
‘ANGPTL1’, ‘APOBEC2’, ‘ARFRP1’, ‘PITX2’47. Unsafe gene synonyms are gene synonyms that may have a different 
meaning in other areas of research or in another context, for instance in standard English. The ‘STAR’ gene 
symbol is unsafe as opposed to its gene synonym ‘Steroidogenic Acute Regulatory Protein’ or CCP4 is both a 
gene synonym and the name for crystallography software. The final type of synonym we distinguish are Nested 
gene synonyms. These are gene synonyms that are part of another gene synonym. For instance ‘insulin’ is a nested 
gene synonym of ‘insulin receptor’, ‘TNF’ is nested gene synonym of ‘TNF Receptor Superfamily Member 1A’ 
(gene symbol ‘TNFRSF1A’) and ‘TNF Receptor Associated Factor 2’ (gene symbol ‘TRAF2’).

Pubmed as a graph database
PubMed baseline  202053 comprises 30,419,056 publications for biomedical literature from MEDLINE and life 
science journals and 173,572,773 citations from the full-text archive of open-source publications PubMed Central 
(PMC). PubMed was imported into a graph database (Fig. 1A) for a fast performance in the retrieval of highly 
relational data like authorship and citation networks. In a graph database information is represented as nodes and 
edges, allowing the fast retrieval of queries about relationships. We loaded PubMed 2020 base-line into  Neo4J54, 
an open source graph-database management system. We introduced four node types (publications, authors, 
human protein-coding genes, human diseases, medical subheadings), and four edge types (published, from 
authors to publications; cited by between publications, gene annotation from genes to publications; and disease 
annotation from diseases to publications). Furthermore, PUBLICATION nodes have the following attributes: 
PubMed identifier, title, abstract, affiliations, is_review, is_clinical_trial, big_pharma, med_pharma and date 
of publication. Profiling of the graph is included in Table 6, Database Profiling. Neo4J offers an interactive 
approach to navigate through PubMed (i) easily accessing references of publications, (ii) with the ability to query 
for specific genes and diseases already disambiguated, and (iii) with the aim of creating a knowledge graph for 
further exploration of gene-disease associations. The database is accessible to download at: https:// zenodo. org/ 
record/ 83626 79.

Gold standard sets
GeneRif58, UniProt, and  DISEASES59 were used as a golden-standard for validation.

Table 6.  Database profiling. We loaded PubMed 2019 base-line into Neo4J, an open source graph-database 
management system. We introduced four node types (PUBLICATION, AUTHOR, GENE, DISEASE), and 
four edge types (PUBLISHED, from AUTHOR to PUBLICATION; CITED_BY between PUBLICATION, 
GENE_PMID_ASSOCIATION from GENE to PUBLICATION; and DISEASE_PMID_ASSOCIATION from 
DISEASE to PUBLICATION). Furthermore, PUBLICATION nodes have the following attributes: PMID, 
TITLE, ABSTRACT, AFFILIATIONS, IS_REVIEW, IS_CLINICAL_TRIAL, BIG_PHARMA, MEDIUM_
PHARMA and DATE. The database is accessible at: https:// mega. nz/ file/ 4E8Qj CaQ# oqtm7 jof- lsG7y Sget8 
uakh7 m26bD Lo1Hr Pu3mt dAV8.

Graph entity Type Counts

PUBLICATION Node 30,419,056

AUTHOR Node 8,331,251

GENE Node 19,082

DISEASE Node 4818

MESH Node 29,133

CITED_BY Relationship 173,572,773

PUBLISHED Relationship 121,879,576

GENE_PMID Relationship 9,656,712

DISEASE_PMID Relationship 39,605,276

MESH_PMID Relationship 279,331,447

https://zenodo.org/record/8362679
https://zenodo.org/record/8362679
https://mega.nz/file/4E8QjCaQ#oqtm7jof-lsG7ySget8uakh7m26bDLo1HrPu3mtdAV8
https://mega.nz/file/4E8QjCaQ#oqtm7jof-lsG7ySget8uakh7m26bDLo1HrPu3mtdAV8
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Pharmaceutical companies
A list of organisation names was generated from  Cortellis170. Organisations with more than 100 patents in 
Cortellis were considered ‘big pharma’ and ‘mid pharma’ otherwise.

Gene annotation
Search for publications
A ElasticSearch API search engine was used to retrieve PubMed IDs of publications containing a gene or disease 
synonym in their title, abstract or keywords (Fig. 1D; GET PMIDs and GET corpus). These PubMed IDs were 
later used to retrieve the publications’ attributes from Neo4J using Cypher language through its python  driver171 
(Fig. 1E; GET trends). Regular expressions were used avoid nested name ambiguity with lookarounds and fuzzy 
matching to account for case and punctuation and letter case variations (e.g. ‘ErbB-1’, ‘erbB1’, ‘ERBB1’, ‘ErbB 1’).

Unsafe synonym detection
We used 19,082 protein-coding human genes annotated by HUGO Gene Nomenclature Committee (HGNC). 
Gene synonyms were obtained from Ensembl, HUGO, Entrez, UniProt and Open Targets (Fig. 1C). Gene 
synonyms which were identical to disease names contained in the Medical Subject Headings (MeSH) database 
were eliminated. This mainly occurs when genes are named after diseases that are associated with e.g. ‘Li 
Fraumeni syndrome’ as a gene synonym for gene  TP53172 or ‘Marfan syndrome’ in ‘FBN1’173.

Gene synonyms were classified into “safe” or “unsafe” categories using a modified version of the positive-
unlabelled learning with bootstrap-aggregating as implemented by Mordelet et Vert (PU-learning; Fig. 1C)55. 
PU learning is a form of semi-supervised learning which iteratively finds positive examples within a-priori 
unlabeled data. To build a binary classifier able to distinguish the unlabelled class (U) into unsafe (P, positive) and 
safe (N, Negative) we engineered a series of features (Table 2, Unsafe features) such as the combined frequency 
of the characters in a gene synonym (example: ‘ZNF’ will be safer than ‘EDA’ because ‘Z’ and ‘F’ characters 
are less frequent in PubMed corpus than ‘E’, ‘D’, and ‘A’) or the probability of a gene synonym given that other 
gene synonym appeared in the text (the probability of ‘STAR’ given ‘Steroidogenic Acute Regulatory Protein’ is 
high but the probability of ‘Steroidogenic Acute Regulatory Protein’ given ‘STAR’ is low because ‘STAR’ is more 
ambiguous).

The PU learning was run for five iterations with a random forest classifier. The pure positive class (unsafe) 
was constructed combining gene synonyms present in the Enchant English  dictionary174, gene synonyms with 
less than three characters, and promiscuous gene synonyms. In an active learning fashion, after each iteration, 
the top 1000 examples with the highest probability of being unsafe were manually relabelled if they were wrongly 
classified. For example, true positive unsafe synonyms like gene families (e.g. ‘G protein coupled receptor’), 
phenotypes (e.g. ‘Williams Beuren Syndrome’) and other biological entities (e.g. ‘Cell surface antigen’) were 
included in the true positive set for the next iteration. False positives like ‘thymopoietin’ or ‘tubulin alpha-1C 
chain’ were included into a new true negative class for the remaining iterations.

After the five iterations, a gene synonym was considered unsafe if: (i) it is included in the English dictionary 
from Enchant, (ii) it is a word with less than three characters, (iii) if the predicted score for the random forest 
classifier was higher than 0.5, and (iv) it is a promiscuous gene synonym .

Community detection
We produced weighted, undirected co-citation networks from unweighted, directed citation networks (Fig. 1D, 
GET communities). Subsequently, connected components were broken into communities using the fast greedy 
modulation algorithm implementation in  iGraph175.

Gene annotation
Communities in co-citation networks represent different areas in the scientific literature. We used this feature 
to disambiguate large groups of publications (Fig. 1D, LABEL communities). We labelled all the publications in 
a community with the gene symbol of interest if the ratio of publications mentioning at least one safe synonym 
with respect of publications that only mention unsafe synonyms was higher than 0.1%.

Nevertheless, the co-citation graph is incomplete because PMC only contains citations of open-source 
publications. Because of that, 46% of the publications were disconnected from the co-citation graph. Disconnected 
publications that mention a safe-synonym were automatically linked to the gene symbol of interest. The rest of 
disconnected publications were linked to gene of interest using PU bagging  strategy55 with a binary logistic 
regression classifier based on the words in the text corpus (keywords, titles and abstracts) of communities already 
linked to the gene of interest and discarded communities.

Each corpus was pre-processed by (i) removal of non-alphanumeric characters, (ii) tokenization or split 
by whitespace, (iii) deletion of stop words from  NLTK176, (iv) lower case conversion, (v) deletion of tokens 
whose length is less than three characters, (vi) deletion of token representing integers and (vii) stemming 
(‘disambiguated’, ‘disambiguations’, ‘disambiguating’ is converted to ‘disambiguat’). List of tokens (uni-, bi-, tri-, 
tetra-grams) with at least 2 counts and a frequency lower than 0.6 in the complete corpus were vectorised using 
TF  IDF177. When there were less than 1000 unlabeled publications in the training set for the gene of interest, 
we generated an auxiliary negative class to augment the negative examples in the training data. This auxiliary 
negative class comprised a random sample of 1000 publications that mentioned genes different from the gene 
of interest.

These vectors were fed to all available machine learning classifiers from the Python library sklearn: Extra Tree 
Classifier, Gaussian Process Classifier, K-Nearest Neighbour, Logistic Regression, Ridge Classifier, Random Forest 
Classifier, and Support Vector Machine. All classifiers were trained with hyper-parameter tuning and threefold 
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cross-validation to avoid over-fitting in each of the 50 PU-bagging iterations (Table 7). The implementation of 
this PU learning algorithm is the same as the inductive bagging positive-unlabelled learning with bootstrap-
aggregating approach described by  Mordelet55 (PU-learning; Fig. 1D) and also the same as in the section of 
“Unsafe Synonym Detection” of the Methods (PU-learning; Fig. 1C). To maximise specificity and sensitivity 
simultaneously we selected the models with highest weighted F1 score (Scikit Learn) to maximise precision 
and recall at the same time. We selected the logistic regression (LOG, Table 3) classifier for the disambiguation 
pipeline given its accuracy-speed balance (Table 3).

Disease annotation
The same procedure used for gene entity recognition was used to detect disease entities, co-citation networks and 
machine learning. The Medical Subject Headings (MeSH) ontology was downloaded by querying their Rest-API 
available at  BioOntology178. We constructed a key-value dictionary. Each disease was a node in the ontology. 
The disease synonyms were obtained from the ’Concept List Terms’ field in the ontology to gather the preferred 
and the alternative ways of denoting the disease. We generated more synonyms of the diseases by reversing the 
order of synonyms with commas: ’Insipidus, Diabetes’ to ’Diabetes Insipidus’.

Gene–gene-disease co-occurrence
Co-occurrence
Co-occurrence of genes and diseases was computed using the simultaneous occurrence of gene/disease tags in 
publications after disambiguation, normalized by the total number of publications presenting those tags. We 
also computed mutual information metrics for gene–gene and gene-disease associations.

Gene mesh-parent association
Every disease MeSH term was associated with its lowest ancestor in the MeSH ontology under the node 
 Disease179. After computing the gene-disease co-occurrence, each gene is linked with the most frequent ancestor 
disease term (Fig. 3B).

TrendyGenes
Trendiness
In this paper the trendiness for a gene is defined as the probability of observing the magnitude of fold-change 
between the predicted and the real number of publications for that given gene. The error in the predictions is 
inevitably higher with genes associated with small numbers of publications. To correct for this, we generated 
five bins based on the initial number of publications (percentiles 20, 40, 60, 80 and 100). We computed the 
distribution of the fold-changes between the predictions and observed reality in each of the five bins using a 
gaussian kernel density estimator available at Scikit Learn (bandwidth = 0.1, remaining parameters with default 
values). The area under the obtained probability density function is equal to 1. Trendiness is the area of the right 
tail of the probability density function bounded to the left by the observed fold change. This gives us an estimate 
of how extreme the fold change was for that gene in a specific bin.

RNN model
The model consists of an encoder-decoder architecture preceded by an attention layer. Both the encoder and 
decoder were composed of five hidden layers of Gated Recurrent Units (GRU). The model was implemented in 
Keras using the Tensorflow-GPU backend. Min–max normalization was used to rescale the time series before 
training. The optimizer was RMSprop and the loss was computed as the log error. 30 percent of the time series 
was reserved for validation during the training.

Model optimisation
Input data was in both forms: cumulative and differential. In the cumulative model each year contains all the 
publication and citations published until then, while the differential model only contains the publications 
published in that year. Multiple normalisations were used (’none’, ‘minmax’, ‘log’, ‘standard’, and combinations 
of them). Similar results were obtained with different normalisations and minmax was finally selected. Multiple 
Recurrent Neural Networks (RNNs) architectures were used (GRU, LSTM) in the form of encoder-decoder, with 
different numbers of neurons (1, 5, 10, 20, 50; Table 8). Models were compared with the Mean Accuracy Scaled 
Error (MASE), an unbiased method to compare time-series prediction models by comparing how much each 
model out-performs a naive model that repeats the last value. The 5-neuron-GRU with cumulative time-series 
was selected because it was the most parsimonious model with the smallest MASE.

Gene ontology terms enrichment
For the enrichment of gene ontology terms (Biological Process) associated with the 100 trendiest genes in 
academia (all publications) and the pharmaceutical industry we used the online tool GeneCodis 4.0180 with 
default parameters.

Recommender system
Topic detection
We implemented algorithms to detect topics in collections of publications. This is useful to determine in which 
areas trendy genes are relevant. Furthermore, topic detection allows the fast identification of errors during the 
disambiguation. We used two different topic detection algorithms: Latent Dirichlet  Allocation62 (LDA), and 
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Table 7.  Hyper-parameters for model selection. Hyper-parameters used during the model selection for 
Table 3. ClassifierName column contains the name of the classifier and our acronym. Some classifiers were 
grouped since they have similar hyper-parameters like ExtraTreesClassifier (ETC) and Random Forest 
Classifier (RFC); and RidgeClassifier (RDC) and LogisticRegression (LOG). HParamName contains the names 
of the hyper-parameter names in the same format as sklearn version 0.24.2 (stable). ValuesToUse column 
contains the list of potential values of those hyper-parameters to be evaluated. Some values are specific for only 
one classifier and therefore have the acronym for the model in parenthesis (e.g. ‘lsqr’ (RDC) and ‘lbfgs’ (LOG)). 
random_state and class_weight hyper-parameters were intended to have the same value across all models. The 
validation_fraction was used in MLPC to use the feature of early stopping : this created a sub-validation set 
under the training set different from the validation sets created for the cross-validation.

ClassifierName HParamName ValuesToUse

ExtraTreesClassifier (ETC) / Random Forest Classifier (RFC)

bootstrap [0, 1]

class_weight ["balanced"]

criterion ["gini","entropy"]

max_depth [10, 20, 30]

max_features [“auto”, “sqrt”, “log2”, 0.5]

max_samples [None, 0.6]

min_impurity_decrease [1e−5, 1e−4, 1e−3]

min_samples_leaf [2, 6, 10, 20]

n_estimators [100, 200]

oob_score [0, 1]

random_state [321]

GaussianProcessClassifier (GPC)

kernel [RationalQuadratic, RBF]

n_restarts_optimizer [0, 1, 2]

random_state [321]

KNeighborsClassifier (KNC)

algorithm ["ball_tree", "kd_tree"]

leaf_size [10, 20, 30, 40, 50]

metric ["euclidean","minkowski","mahalanobis","chebyshev"]

n_neighbors [2, 5, 10, 15]

random_state [321]

MLPClassifier (MLC)

activation ["sigmoid","relu","tanh"]

alpha [1e−3, 1e−4, 1e−5]

early_stopping [True]

epsilon [1e−6, 1e−8]

hidden_layer_sizes [(10,),(50,),(100,),(10,10,),(50,50,),(100,100,),(10,10,10,),(50,50,50,),(100,100,100,)]

learning_rate ["adaptative"]

learning_rate_init [1e−3, 1e−2, 2e−2]

n_iter_no_change [2]

random_state [321]

solver ["adam"]

validation_fraction [0.1]

RidgeClassifier. (RDC)/LogisticRegression (LOG)

alpha [321]

class_weight ["balanced"]

fit_intercept [True]

max_iter [2000]

random_state [321]

solver [‘lsqr’ (RDG), ‘sparse_cg’ (RDC), ‘sag’, ‘saga’, ‘lbfgs’ (LOG), ‘liblinear’(LOG), ‘newton-
cg’(LOG)]

tol [1e−3, 1e−4, 1e−5, 1e−6]

SVC

class_weight ["balanced"]

fit_intercept [True]

C [0.1, 1, 10]

degree [1, 2, 3, 4]

kernel [‘linear’, ‘poly’, ‘rbf ’, ‘sigmoid’]

random_state [321]
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Non-Negative Matrix  Factorisation181 (NMF). Both algorithms factor a nonnegative matrix ‘A’ with size NxM, 
where N is the number of publications and M is the dimension of the TF IDF vector obtained for Named Entity 
Recognition (see above), into non-negative factors matrix W of size NxK and matrix H with size KxM where 
WxH is an approximation of matrix A. The matrix W contains the strength of the association of a given publica-
tion to belong to a latent topic while H contains the strength of the association between a latent topic and a given 
n-gram. Scikit Learn implementations for both algorithms were used to generate ’K’ number of topics defined 
by the user with the default parameters until convergence (tolerance of 1e−12). We previously used  perplexity182 
to select the optimal number of topics but we disagreed with the output: the number of topics that model the 
corpus better was not necessarily the most human interpretable. Topic timelines were obtained by calculating 
the mean and standard deviations of the topic probabilities for all publications mentioning the gene of interest 
per calendar year (Fig. 4).

Recommendation algorithm
We implemented an automatic pipeline to guide users about which reviews to read for a specific query in 
PubMed. To do that, we used the topic probability of the publications and an aggregated PageRank score of the 
citation networks. The user can select an interval number of reviews (R) that is willing to read: between 2–3 or 
3–50. Then, three matrices are defined for each group of publications: (i) a binary, sparse matrix of size NxR 
with N publications and R reviews that comprised the citation adjacency network; (ii) a Nx1 weight matrix that 
comprise a PageRank scores; and (iii) a NxK matrix with the topic probabilities for N publications and K user-
defined topics.

The score for each review was defined as the sum of the PageRank scores of its references while the score for 
a combination of reviews is defined as the row sum of the indexed NxR matrix multiplied by the Nx1 PageRank 
vector and the sum of the obtained vector. Results were later normalized by the total maximum score, defined 
as a hypothetical review citing all gene publications. Finally, every combination of R reviews is presented to 
the user with the score, the average of the cited publication dates and the probability to belong to one of the K 
previously defined topics.
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