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Osmosis—solution (solvent) flow through non-perfectly (perfectly) semipermeable membranes—is a funda-
mental classical phenomenon of major practical importance. One of its potentially useful technological appli-
cations is the Pressure Retarded Osmosis (PRO) employed for energy harvesting from salinity  variations1. In 
this process the flow resulting from the osmotic pressure drop between fresh and saline water is used to drive a 
turbine. Unfortunately, at the current stage, in spite of its extreme simplicity and conceptual beauty, this process 
does not appear to be practically viable due to insufficient power  efficiency2. This assessment could be radically 
changed by the recently theoretically predicted “Breakthrough” operation mode of  PRO3. In this mode, the solute 
concentration at the interface between the porous support and the dense selective barrier layer of a non-perfect 
(‘leaky’) asymmetric membrane employed in PRO decreases with the increase of draw concentration, and, 
thus, the impeding effect of internal concentration polarization is eliminated, Fig. 1. The existence of this mode 
was predicted by Yaroshchuk based on the accurate analysis of the system of classical local Spiegler-Kedem-
Katchalsky (SKK) equations of membrane transport with three constant coefficients for the barrier layer: solute 
permeability (diffusivity), solute reflection coefficient and hydraulic  permeability4. In a still more recent study 
Wu and  Field5, contested the physical feasibility of “Breakthrough mode” and casted doubt upon the suitability 
of SKK equations with constant coefficients to PRO. In this note we re-derive the SKK equations based on a very 
simple capillary friction model of membrane transport in the dense barrier layer and identify the problem with 
the constant coefficients’ assumption resulting in the occurrence of “Breakthrough mode”. Our derivation results 
in recovering the SKK equations in the dilute solution limit, albeit with hydraulic permeability dependent on 
the local solute concentration in the barrier layer (modified SKK equations, MSKK). Taking into account this 
dependence, necessary for preserving the detailed force balance in the barrier layer, eliminates the existence of 
the “Breakthrough mode”.

Results and conclusions
In Fig. 2a,b we present the dependence of the interface concentration and solute flux on the draw concentration 
in classical SKK and MSKK model.

We observe that in MSKK setup the “Breakthrough” mode, typified by the non-monotonic dependence of 
the interface solute concentration on the draw concentration and the accompanying possible reversal of the 
sign of the solute flux, disappears. As shown in the methods section, interface concentration is a monotonically 
increasing function of draw concentration independently of the specific parameters’ values chosen for estimates, 
Table 1. This follows from the dependence of the hydraulic permeability in the MSKK model on the local solute 
concentration in the barrier layer in accord with the capillary friction model. This dependence is necessary for 
preserving the detailed local overall force balance in the barrier layer. Violation of this balance in the classical 
local SKK model with constant coefficients results in the artifact of “Breakthrough” mode. This mode has been 
predicted  in3 based on accurate analysis of the SKK model with constant coefficients for a particular narrow 
range of operation parameters (a very low feed concentration , c̃f < 1− σ, and a very high draw concentra-
tion, c̃d ). Finally, we note that the difference between MSKK and SKK manifests itself only for exceedingly high 
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Figure 1.  Solute concentration profiles in the breakthrough mode following from SKK with constant 
coefficients (blue) and MSKK (red): c—solute concentration, cf—feed concentration, cd —draw concentration, 
Pd—draw pressure; Capillary friction model: u—solute velocity, v—volume (solvent) velocity, α,β,γ—friction 
coefficients.
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Figure 2.  The dependence of the interface concentration c̃in (a) and solute flux J̃c (b) on the draw concentration 
c̃d for classical SKK (blue line) and modified MSKK (red line) equations, (1) σ = 0.8 , (2) σ = 0.9.

Table 1.  Values of parameters employed in computations.

D 10
−5

cm
2/s

ω 10−8 cm2

s

σ 0.9 (1), 0.8 (2)

γ = RT
ω 2.5 · 1015

kg
mol·s

w 0.05 mol
cm3

c 10−5 mol
cm3

δ 5 · 10−4cm

l 2 · 10−2cm

χ
δ 9.2 · 10−8 cm2 ·s

kg

χ 4.6 · 10−13 cm3 ·s
kg

α 2.2 · 1014
kg

mol·s
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concentrations for which the very usage of the high dilution limit is questionable. For low/moderate concentra-
tions the local SKK model with constant coefficients appears to be a valid approximation.

Methods
Capillary friction model. Following the common pattern of friction  models6,7, we neglect inertia and 
assume linear friction of solute with water and each of them with the immobile capillary wall. Here, the term 
capillary is just a figure of speech standing for the solid matrix of the dense barrier layer. With these assumptions, 
assuming in addition ideal solution and using the ideal gas mixture equation as the simplest model for it, the 
local force balance in the capillary for each solution component per unit volume reads, Fig. 1:

here, x is a longitudinal coordinate along the capillary, u and v are the velocities of solute and water (this latter 
is equivalent for a dilute solution assumed heron to the volume flux of solution), α, γ ,β—friction coefficients 
of a water molecule with the wall, solute molecule with the wall, and mutual friction between both molecules; 
c(x), and w(x) are the solute and water number densities and P(x) is hydrostatic pressure; �w and �c are constant 
molecular volumes of water and solute. The following equality holds:

Summation of (1) and (2), taking into account (3), yields the overall detailed momentum balance in the form:

Here, the identity

has been used. This identity is a particular trivial version of the Gibbs–Duhem equation.
Equation (4) implies that the pressure gradient in the capillary is balanced by the friction of the solution 

components with the capillary walls.
Defining the spatially constant water and solute molecular fluxes as Jw = wv , and Jc = cu, and referring to 

high dilution (c ≪ w,w = 1/�w) Eqs. (1), (4) assume their final form:

Equations (6), (7) may be rewritten as:

here,

is solute diffusivity,

is the Staverman’s solute reflection coefficient, and

is hydraulic permeability of the barrier layer.
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For α�c ≪ γ�w Eqs. (8) is reduced to

Equations (9), (13) are the SKK equations (adhering to the notations  in3), albeit with hydraulic permeability 
dependent on the solute concentration in the capillary (barrier layer) in accord with (12). So modified SKK 
equations preserve the overall detailed momentum balance in the capillary (4), as opposed to SKK model with 
constant coefficients. These modified SKK equations (MSKK) are employed in the following subsection to prove 
the non-existence of the breakthrough mode.

Integration of MSKK equations and absence of breakthrough mode. In the porous support the 
dimensionless solute flux reads

where x̃ = x
l , l  is the support layer thickness; c̃ = c

w , ṽ = v
v0
, v0 =

D
l  , D is solute diffusivity in the porous sup-

port and J̃c = Jc l
Dw.

Integrating Eq. (14), we compute the solute flux and the dimensionless solute concentration in the porous 
support in the form:

here, c̃f = c̃(−1) and c̃in = c̃(0) for the solute concentration at the interface between the porous support and 
barrier layer.

Integration of the dimensionless flux equation in the latter

where � = δ
l  is the dimensionless counterpart of the barrier layer’s thickness δ and ω̃ = ω

D , yields

To complete the formulation, we prescribe the pressure drop �P across the barrier layer, and for the case of 
non-retarded osmosis, �P = 0, obtain referring to the detailed force balance Eqs. (4), (7):

where α̃ = α
γ

 . The independence of the J̃c toQv  ratio of concentration implied by (18) stands in accord with 
the available experimental data on Forward Osmosis  (see8, Fig. 5  and9, Fig. 5 therein). Substituting (18) into 
Eqs. (15), (17) we find

and, thus, the dimensionless velocity is subject to the following algebraic equation

Since dF
d
∼
v
> 0 , the flow velocity ṽ is a monotonically increasing function of the draw concentration c̃d and, 

therefore, the interface concentration c̃in = c̃f e
ṽ + α̃(eṽ − 1) is an increasing function of c̃d too. This proves the 

non-existence of the breakthrough mode in the MSKK model as a result of preserving the detailed force balance 
in the barrier layer.

For high concentrations, c̃d ≫ 1, the solution of the Eqs. (19), (21) reads

In Fig. 2a, b we illustrate the dependence of the interface concentration and solute flux on the draw concen-
tration in both classical SKK and modified MSKK models.
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(19)c̃in − c̃f e
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α̃σ

1− σ

)

e
1−σ
ω̃
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The Modified Spiegler-Kedem-Katchalsky (MSKK) model is derived based on the capillary friction model. 
The detailed force balance in this model yields a solute concentration dependent hydraulic permeability and 
eliminates the breakthrough mode predicted by the classical local SKK equations with constant coefficients. The 
difference between the MSKK and the SKK models manifests itself only for extremely high solute concentration 
range for which the occurrence of breakthrough mode has been predicted.
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