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Low‑dose CBCT reconstruction 
via joint non‑local total variation 
denoising and cubic B‑spline 
interpolation
Ho Lee1, Jiyoung Park1, Yeonho Choi1, Kyung Ran Park2, Byung Jun Min3* & Ik Jae Lee1*

This study develops an improved Feldkamp–Davis–Kress (FDK) reconstruction algorithm using 
non-local total variation (NLTV) denoising and a cubic B-spline interpolation-based backprojector 
to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The NLTV 
objective function is minimized on all log-transformed projections using steepest gradient descent 
optimization with an adaptive control of the step size to augment the difference between a real 
structure and noise. The proposed algorithm was evaluated using a phantom data set acquired from a 
low-dose protocol with lower milliampere-seconds (mAs).The combination of NLTV minimization and 
cubic B-spline interpolation rendered the enhanced reconstruction images with significantly reduced 
noise compared to conventional FDK and local total variation with anisotropic penalty. The artifacts 
were remarkably suppressed in the reconstructed images. Quantitative analysis of reconstruction 
images using low-dose projections acquired from low mAs showed a contrast-to-noise ratio with 
spatial resolution comparable to images reconstructed using projections acquired from high mAs. The 
proposed approach produced the lowest RMSE and the highest correlation. These results indicate that 
the proposed algorithm enables application of the conventional FDK algorithm for low mAs image 
reconstruction in low-dose CBCT imaging, thereby eliminating the need for more computationally 
demanding algorithms. The substantial reductions in radiation exposure associated with the low mAs 
projection acquisition may facilitate wider practical applications of daily online CBCT imaging.

Volumetric imaging, such as cone-beam computed tomography (CBCT) or megavoltage CT, is being rapidly 
adopted as a common modality in image guided radiation therapy (IGRT)1–4. In particular, CBCT mounted on 
the gantry of a linear accelerator is scanned to improve the target accuracy and precision by minimizing anatomic 
deviations prior to the beginning of each fraction5. The reduction of these setup uncertainties permits the safe 
implementation of a noticeable dose falloff between the boundaries of the planned treatment volume and the 
surrounding organs at risk. Moreover, several studies have utilized CBCT images on every treatment day for 
dose calculation to verify if the actual delivered dose deviates from the planned dose distributions6,7. In current 
protocols, the dose amount from each CBCT scan is approximately 3 cGy for parts of the skin and as high as 
5 cGy for inside the body. When a patient is imaged daily during the course of radiotherapy that lasts four to 
six weeks8, the accumulated dose exceeds 100 cGy at the region inside the field of view (FOV). Although this 
amount may seem adequate in the context of radiotherapy, it cannot be ignored. If a judicious image quality can 
be obtained with a low dose, it is clear to comply the directions. Consequently, it is vital to develop an efficient 
reconstruction algorithm for daily CBCT imaging with dose reduction.

The most straightforward way to reduce dose of a CBCT system is to use either a lower mAs of the projec-
tion data or a shorter exposure time per projection9. Utilization of these approaches leads to excessive noise in 
the reconstructed images. The iterative and analytical reconstruction algorithms can be considered via these 
strategies. Compressed sensing (CS) theory in iterative reconstruction methods has been commonly utilized 
to generate a reconstructed image with satisfactory quality from a highly undersampled number of projections 
below the Nyquist rate. The CS method involves minimizing a total variation objective function subject to data 
fidelity and physical constraints through constrained or unconstrained optimization methods. Its efficacy has 
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been improved by incorporating prior images into an objective function10,11. However, the use of such approaches 
is primarily limited by their high computational demands in practical applications, because the reprojection 
and backprojection steps are iteratively performed to calculate the fidelity between measured and estimated 
projections. Meanwhile, analytical reconstruction algorithms such as Feldkamp–Davis–Kress (FDK)12 enable 
high speed performance by using only one filtering process and one backprojection process. These approaches 
are required when the projection data are complete (with the number of projections fully available) because its 
performance is greatly influenced by the filtering process. However, the excess noise caused by the low mAs 
protocol leads to significantly degraded CBCT image qualities when they are attempted using FDK with con-
ventional filtering. An efficient denoising technique13,14 is thus required to enhance the difference in the signals 
between real structures and unwanted noise for better CBCT image quality. Recently, several deep learning-based 
reconstruction approaches have been reported. Deep learning is a new concept with respect to image quality 
optimization without hand-engineering mapping functions. One way to use deep learning methods for image-
to-image conversion is supervised training based on paired images15–18. These approaches employ deep neural 
networks in the image or projection domain19. Another way is unsupervised training using unpaired images, 
such as cycle-generative adversarial networks20. For supervised learning, it is difficult to obtain anatomically 
exact matching paired images. Even for unsupervised learning, sufficient training data are required to achieve 
good results. However, the lack of injectivity and stability of deep learning approaches for image reconstruction 
poses potential issues21. Therefore this type of deep learning algorithm should be further explored.

In this study, an improved FDK-based CBCT reconstruction algorithm is proposed based on non-local 
total variation (NLTV) filtration and cubic B-spline interpolation for low mAs of projection data. The proposed 
approach employs the framework of the standard FDK algorithm. The NLTV denoising process is applied on the 
log-transformed projection data. Minimizing the NLTV objective function using the steepest gradient descent 
optimization with an adaptive control of the step size indicates that edges having high contrast relative to the 
surroundings are preserved and noisy pixels having a low contrast are smoothed. With filtered projections that 
apply a ramp filtering on NLTV minimized projections, a voxel-driven backprojector based on a cubic B-spline 
interpolation is utilized to generate the reconstructed images. The effectiveness of the proposed method is dem-
onstrated using phantom studies.

Methods
Figure 1 shows a flowchart of the proposed algorithm using joint NLTV denoising-based filtration and a cubic 
B-spline interpolation-based backprojector to enhance the image quality of low-dose CBCT from projection 
data acquired from a low-dose protocol with lower mAs. The NLTV denoising is used to increase the difference 
between the actual structure and the noise of the projection data. The cubic B-spline interpolation is applied to 
update the voxels in the reconstructed image by resampling 16 adjacent pixels in the projection domain during 
backprojection.

Filtration using non‑local total variation.  A total variation22 denoising process on log-transformed 
projections is applied to enhance the difference in the signals between striking features and unwanted noise by 
similarities between non-local patches23–25. Minimizing the NLTV objective function indicates that edges having 
high contrast relative to the surroundings are preserved and noisy voxels having a low contrast are smoothed. 
The non-local penalty with different weights for neighbors of the same distance in the TV object function is 
written as follows:

where index j identifies the index of the pixel element in the projection and P(u,v) is the pixel element at the 2D 
position (u, v). The search set for the non-local areas is defined as i ∈ Ω and wj represents the weights between 
the current voxel j and the voxels in Ω. G(k) is the Gaussian kernel with a patch size of ((2a + 1) × (2a + 1)), and 
k identifies the index of the patch. In this work, the patch of the Gaussian kernel is defined to be 5 × 5 with unit 
variance; the non-local search area is 21 × 21 with unit variance, and the filtering parameter h0 is set to 90% of 
the cumulative distribution function (CDF) histogram created by accumulating the gradient magnitude at each 
pixel of the log-transformed projection data. 
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the parameter τ was set to 90% of the CDF histogram created by accumulating the intensity at each pixel of 
the log-transformed projection data. The parameter ε (in this study, we used ε = 3) is the scaling factor to make 
smaller weights for higher intensities, thereby reducing the blurring effect in high intensity regions.

The NLTV objective function of Eq. (2) is minimized by the steepest gradient descent method with an adap-
tive step size, which is expressed as follows:

where λ is an adaptive parameter that controls the step size so that the smoothing degree is decreased according 
to an advancement in the iteration steps. By using the square root of all pixel elements updated in each steepest 
gradient descent step, this parameter is forced to progressively smaller values with an increase in the number 
of iterations. To avoid a local minimization due to an abrupt change, we use a scaling parameter γ and set it to 
an initial value of 1.0. If R(P) calculated at the current iteration step is larger than that at the previous one, this 
value is linearly decreased by multiplying a constant value ( rred = 0.8) . ∇R
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 is the gradient of the objective 
function R(P) at the j-th indexed pixel. The root-sum-square of the gradient calculated at all pixels, |∇R(P)| , is 
required for the normalized gradient calculation. For clarity, we provide the following expression:
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Figure 1.   Overview of the proposed method for low-dose CBCT imaging.
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The optimal number of iterations for the steepest gradient descent step was fine-tuned so that the noisy pixels 
were minimized while preserving the striking features. In this study, the number of iterations for the steepest 
gradient descent step was set to ten. In considering all the components mentioned above, we present the pseudo-
code of NLTV-based filtration as in Algorithm 1.

A circular pre-weighting factor was then applied on each NLTV denoised projection data to avoid the intensity 
drop due to the cone angle effect. A 1D ramp filter was then applied to suppress the highest spatial frequency. 
For the ramp filter, we used the product of the SL filter and raised the cosine window function in the frequency 
domain. Each line parallel to the u-direction of the preweighted projection data was converted into the frequency 
domain via 1D Fourier transformation. The Fourier transformed values were multiplied by the ramp filter. 
By applying an inverse Fourier transformation, we could obtain the filtered projection data with the reduced 
impulse noise. Figure 2 depicts the differences between filtered projections before and after applying the NLTV 
denoising algorithm.

(6)∇R
�

Pj
�

=
∂R(P)

∂Pj
=

∂R(P)

∂P(u,v)
=

























w(u,v)
2P(u,v) − P(u−1,v) − P(u,v−1)

�

�

P(u,v) − P(u−1,v)

�2
+

�

P(u,v) − P(u,v−1)

�2

+w(u+1,v)
P(u,v) − P(u+1,v)

�

�

P(u+1,v) − P(u,v)
�2

+
�

P(u+1,v) − P(u+1,v−1)

�2

+w(u,v+1)

P(u,v) − P(u,v+1)
�

�

P(u,v+1) − P(u−1,v+1)

�2
+

�

P(u,v+1) − P(u,v)
�2

























,

(7)|∇R(P)| =

√

∑

j

(

∇R
(

Pj
))2

,

Figure 2.   Comparison of filtered projection without (left) and with (right) the NLTV denoising algorithm.

Figure 3.   Geometry of the projection data and notations for the voxel-driven backprojection step.
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Voxel‑driven backprojector based on cubic B‑spline interpolation.  Figure 3 shows the geometric 
information of the projection data and notations for voxel-driven backprojection calculation using the filtered 
projection data.

Given a position vector r (or rx, ry, rz) of any voxel, corresponding positions (u(r) and v(r)) in the n-th projec-
tion data at a given angle θ are obtained as follows:

where
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Here, d is the source-to-axis distance, and the rotation vectors 
[

rxθ , ryθ , rzθ
]T are calculated by applying the 

rotation matrix through a given angle θ from the origin of the reconstruction images in the following manner:

The final attenuation coefficient value, μ(r), at a position vector r is weighted and accumulated as 

where w(r) is the depth weighting and N is the total number of projection data. Every voxel has measurements 
in all filtered projection data and is normalized by a uniform factor N in the backprojection step. As shown in 
Fig. 4, Pn(θ , u(r), v(r)) is represented as the 2D tensor product of a 1D cubic B-spline:

where up = u+ p− 1 , vq = v + q− 1 , and [·] is the floor function that maps a real number to the largest previous 
integer. Bp and Bq correspond to the following cubic B-spline basis functions centered at X = 0:

In considering all the components mentioned above, we present the pseudo-code of cubic B-spline interpo-
lation-based backprojector as in Algorithm 2.
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Figure 4.   Resampling process using 2D tensor product of 1D cubic B-spline interpolation from n-th filtered 
projection.
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Algorithm 2 

Calculate rotation matrix M which maps voxel coordinate to projection coordinate 
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Experimental studies.  The Catphan503 (Phantom Laboratory, Salem, NY) was scanned using an Infinity™ 
linear accelerator system with XVI R5.0 (Elekta Limited, Stockholm, Sweden). The phantom includes various 
modules for assessing the quality of 3D images. As the gantry rotates around the phantom, a series of CBCT 
projections were acquired with 360° rotation under a small FOV protocol using a S20 collimator and an F0 filter. 

Figure 5.   Comparison between the same views of the high resolution reconstruction image generated by 
applying FDK with (a) SL, (b) ATV, (c) NLTV, (d) SL + cubic B-spline, (e) ATV + cubic B-spline, and (f) 
NLTV + cubic B-spline using the Catphan503 phantom. These images are displayed at window (width and level) 
settings of (975, 0) HU.
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The number of full scan projections was approximately 665. The size of each projection acquired on the image 
receptor was 409.6 × 409.6 mm2, containing 1024 × 1024 pixels. The distance from the source to the detector and 
the distance from the source to the axis were 1536 mm and 1000 mm, respectively. The low-dose acquisition 
protocol had 100kVp with 0.1 mAs during each projection. Projections with different mAs settings were also 
acquired for comparison. The reconstructed image of the phantom was generated with two resolution settings: 
high resolution CBCT (512 × 512 × 200 voxels as well as 0.5 × 0.5 × 0.5 mm3 per each voxel) and low resolution 
CBCT (256 × 256 × 100 voxels as well as 1.0 × 1.0 × 1.0 mm3 per each voxel). For comparison, a high-dose CBCT 
was created as a benchmark image by applying a conventional FDK algorithm with projections acquired using 
increased mAs setting (100 kVp and 1.6 mAs). The Hounsfield unit (HU) conversion was performed for all 

Figure 6.   Comparison between the same views of the low resolution reconstruction image generated by 
applying FDK with (a) SL, (b) ATV, (c) NLTV, (d) SL + cubic B-spline, (e) ATV + cubic B-spline, and (f) 
NLTV + cubic B-spline using the Catphan503 phantom. These images are displayed at window (width and level) 
settings of (975, 0) HU.

Table 1.   Comparison of CNRs at seven ROIs in the high resolution reconstructed image generated by six FDK 
algorithms with low-dose projection data of the Catphan503 phantom.

ROI Material of insert SL ATV NLTV SL + cubic B-spline ATV + cubic B-spline NLTV + cubic B-spline

1 Delrin™ 2.0 8.7 14.4 3.5 11.6 16.4

2 Teflon 4.2 14.3 23.6 7.0 18.2 25.9

3 Air 4.2 20.5 34.8 8.0 28.1 39.8

4 PMP 0.4 1.8 3.2 0.7 2.5 3.8

5 LDPE 0.1 0.2 0.4 0.1 0.3 0.5

6 Polystyrene 0.1 0.8 1.4 0.3 1.1 1.6

7 Air 4.3 21.0 35.9 8.3 29.1 41.9
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reconstructed images. The CBCT image quality was quantified using three metrics (CNR, HU accuracy, and 
correlation).

The accuracy of the HU number was assessed using the entire area of the CTP404 module of the phantom. 
It has seven sensitometry inserts and the RMSE is calculated. The correlation and the CNR were also measured 
using the same module. The correlation was calculated to evaluate the overall differences of the reconstructed 
CBCT image versus benchmark CBCT images. For the RMSE and correlation measurement, a circular area 
was selected to be measured only inside the phantom excluding the air area outside the phantom. For the CNR 
measurement, the mean HU value and standard deviation were recorded by selecting seven ROIs within the 
density insert and a central ROI.

Results
The performance of the NLTV denoised FDK reconstruction algorithm was evaluated with the Catphan503 
phantom and compared with the Shepp–Logan (SL)-filtered FDK and anisotropic total variation (ATV)- denoised 
FDK26. The ATV combines the edge stopping function used locally in an anisotropic diffusion filter27 for both 
image enhancement and noise reduction. Figures 5 and 6 show a representative slice of the high resolution CBCT 
(512 × 512 × 200 voxels) and low resolution CBCT (256 × 256 × 100 voxels) reconstructed from FDKs with SL, 
ATV, and NLTV, as well as when adding the voxel-driven backprojector based on cubic B-spline interpolation on 
filtered projections with SL, ATV, and NLTV, respectively. The artifacts were significantly suppressed in images 
reconstructed by the proposed NLTV denoising compared to the other two algorithms. The CBCT images resa-
mpled with the cubic B-spline interpolation using 16 pixels (4 × 4) were smoother and had fewer interpolation 
artifacts, resulting in slightly improved reconstruction accuracy for SL, ATV, and NLTV. The effect of this image 

Table 2.   Comparison of CNRs at seven ROIs in the low resolution reconstructed image generated by six FDK 
algorithms with low-dose projection data of the Catphan503 phantom.

ROI Material of insert SL ATV NLTV SL + cubic B-spline ATV + cubic B-spline NLTV + cubic B-spline

1 Delrin™ 1.7 7.6 11.3 3.4 10.1 13.7

2 Teflon 4.2 13.2 20.6 6.5 17.8 24.2

3 Air 4.7 19.3 29.9 8.3 25.5 33.7

4 PMP 0.5 2.1 3.4 1.0 2.9 4.1

5 LDPE 0.1 0.3 0.4 0.1 0.3 0.5

6 Polystyrene 0.1 0.4 0.9 0.2 0.6 1.0

7 Air 4.0 19.7 31.6 7.8 27.3 37.1

Table 3.   Quantitative comparisons using two metrics in the high resolution reconstruction image generated 
by six FDK algorithms with low-dose projection data of the Catphan503 phantom.

SL ATV NLTV SL + cubic B-spline ATV + cubic B-spline NLTV + cubic B-spline

RMSE 181.0 69.0 62.4 112.6 64.3 61.4

Correlation 0.38 0.76 0.82 0.57 0.80 0.83

Table 4.   Quantitative comparisons using two metrics in the low resolution reconstruction image generated by 
six FDK algorithms with low-dose projection data of the Catphan503 phantom.

SL ATV NLTV SL + cubic B-spline ATV + cubic B-spline NLTV + cubic B-spline

RMSE 207.0 136.8 133.1 155.9 135.3 132.2

Correlation 0.43 0.77 0.82 0.57 0.80 0.82

Table 5.   Computation time (seconds) of six FDK algorithms when creating high resolution and low resolution 
CBCTs of the Catphan503 phantom.

SL ATV NLTV SL + cubic B-spline ATV + cubic B-spline NLTV + cubic B-spline

High resolution CBCT 95.8 269.4 1398.6 192.0 355.2 1485.8

Low resolution CBCT 79.7 251.4 1379.4 91.1 261.9 1390.0
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quality improvement was the same for low resolution CBCT. In particular, the cubic B-spline interpolation still 
visibly achieved substantial gains on all SL, ATV, and NLTV.

In addition, we calculated the contrast-to-noise ratio (CNR) at a selected region of interest (ROI) in the 
reconstructed image. It was possible to conduct a comparison of the relative image contrast between the cor-
responding regions. Tables 1 and 2 provide a comparison of CNRs at seven ROIs in the high resolution and low 
resolution reconstructed CBCT images obtained by six FDK algorithms. The proposed NLTV denoising shows 
a better CNR in all ROIs compared to other two algorithms. Adding the cubic B-spline interpolation process 
slightly improved the CNR to higher values for SL, ATV, and NLTV. Tables 3 and 4 list two quantitative meas-
ures (root-mean-square error (RMSE) and correlation) obtained from the high resolution and low resolution 
reconstructed images based on the six FDK methods. The errors were computed against full projections with 
a high mAs acquisition protocol (40 mA and 40 ms). The NLTV elicited a lower RMSE and a higher correla-
tion compared to the other algorithms. Adding the cubic B-spline interpolation produced the best results for 
the Catphan503 phantom with a low noise scenario. Even in the SL and ATV, the cubic B-spline interpolation 
could yield a lower RMSE and a higher correlation. Our proposed NLTV with the cubic B-spline interpolation 
produced the lowest RMSE and the highest correlation. This relative superiority of the proposed method was 
the same for the low resolution CBCT. The low resolution CBCT doubled the voxel size compared to the high 

Figure 7.   Comparison of a representative slice of the reconstruction image generated by applying FDK using 
high mAs projections and FDK with NLTV + cubic B-spline interpolation using low mAs projections. (a) high 
resolution benchmark image, (b) high resolution CBCT produced by the proposed method, (c) low resolution 
benchmark image, and (d) low resolution CBCT produced by the proposed method. These images are displayed 
at window (width and level) settings of (2000, 0) HU.
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resolution CBCT, leading to inferior feature details. This resulted in larger RMSE values and smaller CNR values 
in the quantitative analysis.

Table 5 compares the computation times between the proposed method and other methods used in Figs. 5 
and 6. Compared to SL and ATV, the computation time using the proposed NLTV denoising was approximately 
14.5 times and 5.1 times longer for the high resolution CBCT generation and 17.3 times and 5.4 times longer for 
the low resolution CBCT. It was influenced by the size and number of projections because NLTV was applied 
to the projection data. Thus, the difference in calculation time due to high and low resolutions was not large. 
On the other hand, the calculation time before and after applying the cubic B-spline interpolation required 
approximately 90 s longer for high resolution CBCT and 10 s longer for the low resolution CBCT. Since the 
cubic B-spline interpolation was applied after estimating the projection pixel for each voxel in the reconstructed 
volume, it was affected by the reconstruction volume size. This resulted in a large difference in the calculation 
time between the high and low resolution CBCTs.

Figure 7 shows the proposed method with projections acquired at low mAs levels and the conventional 
FDK algorithm with projections acquired at high mAs levels (40 mA and 40 ms). These images enable us to 
qualitatively judge the correspondence of line bars between the two reconstruction images. It was observed that 
the proposed method shows a spatial resolution comparable to that of high-dose CBCT imaging through visual 
inspection. Even with a high voxel size and low resolution, the visual effect was better than a low resolution 
benchmark image with false artificial traces.

Figure 8.   Comparison of MIP of (a) high resolution benchmark CBCT images with a high mAs and high 
resolution CBCT reconstruction images generated by applying FDK algorithms with (b) SL + cubic B-spline, (c) 
ATV + cubic B-spline, and (d) NLTV + cubic B-spline using Catphan503 phantom acquired under a low mAs. 
These images are displayed at window (width and level) settings of (1100, 500) HU.
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Figures 8 and 9 compare the maximum intensity projections (MIP) of the reconstructed images. The MIP 
image facilitates extraction of the highest value encountered along the corresponding viewing ray at each pixel 
of the reconstructed images so that one can determine whether some regions with a high contrast are preserved 
while reducing the noise. The proposed method showed that regions with remarkable features are well preserved 
while reducing artifacts in the central region corresponding to the benchmark image compared to the other 
two algorithms. After adding NLTV, the changes in the homogeneous region were smoother, whereas those in 
the inhomogeneous regions were almost preserved. For the low resolution CBCT, a thin point feature showing 
high contrast in the red ROI disappeared, even in the case of the benchmark image. However, it was found that 
this thin feature was preserved in the reconstructed image when the proposed NLTV denoising was performed.

Figure 10 shows a visual inspection of the CBCTs generated by the post-processing approach of applying 
NLTV to the FDK reconstructed image. In addition, it depicts the proposed method, i.e., the pre-processing 
approach of applying FDK to the NLTV-denoised projections. We compared the low contrast resolution proper-
ties between the two approaches, as in the magnified area. The pre-processing strategy further revealed a higher 
low contrast detection and detail-preserving effect compared to the post-processing strategy.

Figure 9.   Comparison of MIP of (a) low resolution benchmark CBCT images with a high mAs and low 
resolution CBCT reconstruction images generated by applying FDK algorithms with (b) SL + cubic B-spline, (c) 
ATV + cubic B-spline, and (d) NLTV + cubic B-spline using Catphan503 phantom acquired under a low mAs. 
These images are displayed at window (width and level) settings of (1100, 500) HU.
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Discussion
CBCT reconstruction from low mAs has been challenging. X-ray tubes produce photons via electron bombard-
ment of a metallic anode. The number of photons is determined by the current across the tube (mA) and the 
exposure time (s), which are sometimes multiplied together as mAs. Decreasing the mAs decreases the number 
of electrons hitting the anode, and consequently, the number of photons generated by the tube decreases lin-
early. This decreases the number of photons reaching the detector, reducing the signal-to-noise ratio (SNR) of 
the projection data.

The total variation (TV) transform was considered to mitigate the noise imprinted on the projection data, 
but it tended to keep the edge information too smooth by uniformly penalizing the local image gradient. To 
overcome this limitation, ATV was proposed to reduce the blurriness at edge regions by deriving the anisotropic 
edges expressed as the exponential function of the adaptively weighted local image gradient of the projection 
data. The limitation of ATV is that the capability of deriving local edge information is restricted by the quality of 
projection data. The projection data acquired at low mAs settings suffer from severe noise. Thus, it is difficult to 
develop a local edge detection operator that reliably finds features with smaller details and is noise-insensitive. 
Conversely, the NLTV can help overcome this shortcoming by utilizing more global searches and non-uniform 
weights depending on the similarities between non-local patches. Combining the cubic B-spline interpolation-
based backprojector allows the NLTV denoising-based FDK algorithm to be further enhanced and obtain more 
precise low-dose CBCT reconstruction images. The reason for such a performance improvement was that the 
CBCT reconstructed from conventional FDK with SL, ATV, and NLTV were based on nearest neighbor (NN) 
interpolation-based backprojector. NN is the simplest and fastest interpolation method, but it can introduce 
significant distortion. The cubic B-spline interpolation is more complex than the NN method and is thus more 
computationally expensive. For an unknown pixel in the projection data, the influence range is extended to16 
adjacent pixels. Then the pixel value is calculated as 16 pixels based on the distance. More complex improved 
interpolation methods such as cubic B-spline make the interpolation curve smoother. Thus, there are no discrete 
defects and the  high-frequency components are faded. This characteristic provides better visual effects without 
false artificial traces even at high voxel sizes and low resolutions.

We applied our proposed approach, the combination of NLTV and cube B-spline interpolation, to phantom 
data and compared its performance with the results from SL and ATV filtrations in terms of visual inspection, 
RMSE, CNR, and correlation. Reconstructions performed by the proposed method indicated that a higher image 
quality could be achieved with projection data acquired under a lower mAs protocol. We also determined that 
the proposed method shows a CNR with a spatial resolution comparable to those of images reconstructed using 
projections acquired from a high-dose protocol. Moreover, NLTV denoising yields filtered projection data with 
a greatly reduced noise using non-local patches. The cubic B-spline interpolation process slightly improved the 
reconstruction accuracy on SL, ATV, and NLTV, as well as the image clarification. All these results indicate that 
the proposed algorithm not only achieves a potential radiation dose reduction in the repeated CBCT scans, but 
also eliminates noise effectively without heavily compromising the striking features.

Technically, compared with the ATV transform, the proposed technique might increase the computational 
cost due to the larger search area when computing the weight function. In this work, to balance the reconstructed 
image quality with the computational burden, the search area was limited to 21 × 21 pixels around each pixel. The 
extra computational burden is related to the time elapsed for the backprojector with cubic B-spline interpolation. 

Figure 10.   Comparison between high resolution CBCT images generated by applying (a) NLTV on FDK 
reconstructed images as a post-processing strategy and (b) FDK with NLTV-denoised projection data as a pre-
processing strategy. These Catphan503 phantom images are displayed at window (width and level) settings of 
(750, 0) HU.
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In our implementation, OpenMP was used to parallelize the proposed algorithm on an Intel Xeon CPU with 24 
physical cores and 48 logical processors. Therefore, the proposed algorithm can be extended and accelerated by 
using a GPU28. The number of iterations for the NLTV minimization was determined to be ten, however, this 
value may not be optimal. Among the datasets used, we observed better reconstructed images with suppressed 
noise and preserved edges when the number of iterations was ten.

The same magnitude of imaging dose reduction can be achieved by reducing the number of projections while 
maintaining the mAs setting. However, this approach assumes fast gantry rotation. The maximum gantry speed 
of clinically used CBCT scanners is still limited to 1 rpm or 6°/s. Thus, low mAs acquisition may be a better 
option for imaging dose reduction than sparse view acquisition in practical aspects.

The NLTV denoising method can be extended to various applications. It can be used as an image fidelity 
term in compressed sensing-based approaches23. NLTV-based FDK reconstruction images can be used as an 
initial guess image for iterative reconstruction10,29. In general, it has been observed that the better the initial 
guess image when using an iterative reconstruction algorithm, the faster the convergence and CBCT images 
that can be created with a high contrast. In addition, a ray-driven backprojector can be combined with NLTV28.

In conclusion, an improved FDK reconstruction algorithm for low-dose CBCT imaging has been developed 
by adding non-local total variation (NLTV) denoising in the filtering process and a voxel-driven backprojector 
based on cubic-B spline interpolation. The proposed approach allows the conventional FDK algorithm to be 
used for low mAs image reconstruction without requiring iterative reconstruction algorithms, which are com-
putationally demanding. Moreover, substantial reductions in radiation exposure associated with the low mAs 
projection acquisition can facilitate wider practical applications of IGRT using daily online CBCT imaging with 
corrections for setup errors.

Data availability
All data generated or analyzed during this study are included in the article.
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