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Deep robust residual network 
for super‑resolution of 2D fetal 
brain MRI
Liyao Song1,4, Quan Wang2,4, Ting Liu3, Haiwei Li2, Jiancun Fan1*, Jian Yang3* & 
Bingliang Hu2*

Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance 
imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing 
high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. 
To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to 
generate a sharp HR brain image from an LR input. Due to the Charbonnier loss can handle outliers 
well, and Gradient Difference Loss (GDL) can sharpen an image, we combined the Charbonnier loss 
and GDL to improve the robustness of the model and enhance the texture information of SR results. 
Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness 
of our model. To further verify the generalizability and robustness of the proposed model, we collected 
eight clinical fetal brain MRI 2D data for evaluation. The experimental results have shown that the 
proposed deep residual-learning network achieved superior performance and high efficiency over 
other compared methods.

Spatial resolution is a key factor of evaluating the quality of magnetic resonance imaging (MRI). Images having 
high spatial resolution produce rich structural details, enabling accurate image analysis and detailed anatomical 
information for accurate quantitative analysis1. The recent development of fast MRI slice acquisition techniques 
has enabled MRI to be used for fetal imaging. MRI can be used to assess brain disease and diagnose fetal con-
genital brain malformations. High-quality and HR slices can be obtained through fast slice acquisition techniques 
such as half-Fourier acquisition single shot fast spin echo (SSFSE)2. The slices are acquired as snapshots in frac-
tions of a second, thus freezing the motion of the subject. Therefore, MRI is one of examination methods for 
prenatal screening and has a broad application prospect. Although high-quality slices are frequently acquired by 
these techniques, due to the interference of amniotic fluid, placenta, maternal pelvis, and fetal skull, limitations of 
the equipment’s component performance, fetal motion and other factors, fetal brain slices can’t reach the quality 
of neonatal imaging. Especially, MRI needs to be done quickly to avoid motion artifacts, one way to speed up is to 
acquire the lower resolution image. Overall, the above limitations of the component performance of equipment, 
uncooperative patients, and other factors, improvements to 2D MRI quality are necessary3.

With conventional medical image processing, bicubic or spline interpolation is usually adopted as standard 
image-processing techniques to be more convenient to match the resolution of internal atlases for a volume input 
with thicker slices. This interpolation method negatively affects image accuracy4. Therefore, coherently recovering 
the missing information during the acquisition of medical images and better reconstructing the high-resolution 
(HR) image is a fundamental problem in the field.

Convolutional neural networks (CNN) have been widely used for natural images, and CNN-based super-
resolution (SR) algorithms have been extended to MRI5–18. Many SR algorithms are based on SR combined with 
CNNs (SRCNN). Zeng et al.12 proposed a model that simultaneously performed single- and multi-contrast SR 
reconstruction. To capture the cubic spatial feature of the MRI, Du et al.11 exploited 3D dilated convolution as 
encoder to extract high-frequency features, resulting in good performance. Based on this model, Pham et al.6 
developed a SRCNN algorithm which employed 3D covolutions for brain MRI SR, and the network performed 
excellently.

The input to above SRCNNs must be a bicubic low-resolution (LR) image. To reduce the computational cost, 
Fast SRCNN19 adopted a deconvolutional layer to reconstruct HR images from LR features. Shi et al.20 proposed 
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an efficient sub-pixel CNN. When the redundant nearest-neighbor interpolation was replaced with the interpola-
tion, the deconvolutional layer was simplified into a sub-pixel convolution. This interpolation was more efficient 
than the nearest-neighbor interpolation.

Although these models demonstrated promising results, they all required upscaled input images at the desired 
spatial resolutions via bicubic interpolation prior by applying the network, and these models did not use low-level 
feature information. To cope with these limitations, some SR algorithms have adopted residual learning5,7–9,13,21,22, 
showing effective improvements.

In this work, there are three aspects of our contributions: (1) To address the computational-cost problem 
and avoid generating fake features, we adopted a deep residual network to train residuals in a coarse-to-fine 
fashion. (2) In order to sharpen the SR image, we combined Gradient Difference Loss (GDL)23 and the robust 
Charbonnier loss function, this way can deal with outliers and improve reconstruction accuracy. (3) We collected 
eight clinical fetal-brain MRIs for further evaluating the generalizability and robustness of the proposed model.

Experimental results
Figure 2 has shown the HR example slices for the different algorithms: cubic spline interpolation and non-local 
means up-sampling (NMU)24 , low-rank total variation (LRTV)25, and SRCNN26 for visual inspection with the 
ground-truth MR image and LR image on Kirby 21, NAMIC1, and clinical fetal MR images, respectively. All the 
figures in our paper were drawn by Microsoft Office PowerPoint 2016 (https://​www.​office.​com/). It can be seen 
that our approach recovered fine details and preserved the edges.

The SR deep-learning technique was not very limited by MRI parameters and could therefore be further 
migrated to the fetal brain. Thus, we applied our model to fetal MRIs, which were provided by the First Affiliated 
Hospital of Xi’an Jiaotong University. We labeled the fetal brain on the MRI and extract the fetal brain. The MRIs 
of each fetus were cut into 10–20 slices. We tested all slices of each fetus. Figure 2c shows the SR example slices 
of different algorithms on a subject. The reconstructed MR images by our network provided more details than 
did the other algorithms. The error maps Fig. 3 can make it easier to identify differences between the methods.

For a quantitative comparison, the average peak signal-to-noise ratio and structural similarity27 were used 
to evaluate the performance of each algorithm. Tables 1, 2 and 3 provided a summary of the quantitative evalu-
ation within a scale factor of two, include Mean, Standard Deviation (SD) and confidence interval (CI) which 
confidence level is 95% of PSNR and SSIM. The reported results tend to show that CNN-based approaches (e.g., 
SRCNN and our RRLSRN model) achieved better performance than did cubic spline, NMU, and LRTV. Our 
experiments also showed that residual learning approaches were more effective than SRCNN.

In our model, we combined the Charbionner loss and GDL to train our model. To verify the effect of GDL 
on SR results, we compared the PSNR of model without GDL on 8 clinical fetal brain MR images, the results 
are shown as Table 4. All PSNR of 8 fetal MR images with the GDL are higher than without GDL. The results 
demonstrate that GDL is helpful to improve the quality of images.

Our experiment has shown that the proposed model with GDL can enhance the brain’s edge of MRI. And 
we show the visual difference between our model with GDL and without GDL on the clinical fetal brain MRI 
dataset as Fig. 4. As shown by the yellow arrow , the reconstruction result of our model with GDL has sharper 
edges and is similar with HR image than the model without GDL.

We trained the model without the transpose convolution at the bottom of our model to demonstrate the effect 
of transpose convolution. We compared the PSNR on 8 clinical fetal brain MR images, the results have been 
shown as Table 5. The experimental results show that transpose convolution at the bottom is helpful to improve 
the accuracy of the results. Residual learning is beneficial to the model.

To verify the efficiency of our algorithm, we separately calculated the test time of our Kirby 21, NAMIC, and 
the fetal MR image methods. We then compared the spending time of other methods. The results are shown in 
Table 6. The average speed of our model was faster than those of the NMU, LRTV, SRCNN (faster version)19 on 
three datasets.

Discussion
In this work, we proposed a network-based algorithm to learn the residual information between upsampled MR 
images and HR MR images. Our approach adpoted the robust Charbonnier loss function and GDL which are 
helpful to train our model. In order to demonstrate the potential of SR methods for enhancing the quality of LR 
images, we have presented an experiment with image quality transfer from HR experimental dataset to LR images. 
The results based on two brain MR image datasets have shown that our algorithm outperforms cubic spline, 
NMU, LRTV and SRCNN in this study. RRLSRN network effectively learned the residual information between 
upsampled LR MRI and HR MRI, the model can not only improve the accuracy of network SR results, but also 
greatly reduce the computational cost. Then we applied the model on the clinical fetal MR images. The fetal SR 
results of the proposed RRLSRN are better than above listed methods. The texture of SR results become detailed.

In terms of the processing speed, we observed that our method trained ×2 faster than NMU, LRTV and 
SRCNN on both Kirby 21 and NAMIC datasets. Overall, our algorithm performed well in terms of speed.

Our SR method has shown clear improvement over other listed methods, which is the standard technique 
to enhance image quality from visualization, quantitative evaluation and computational efficiency. Our model 
is currently SR on the scale of ×2 of 2D MR slices, it can also be extended to ×4 or ×8 times for SR reconstruc-
tion by cascading. In future work, we will improve our residual learning based SR framework to obtain better 
accuracy, meanwhile reduce computational complexity. In addition, we will further apply the SR technology to 
improve the accuracy and validity of the clinical diagnosis by combining the equipment.

https://www.office.com/
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Methods
MR image super‑resolution framework.  We proposed RRLSRN to generate an HR brain image from its 
LR input. Our network is made up of the feature extraction and image reconstruction parts. The image recon-
struction part estimates a raw HR output and extracts useful representations from LR MRI. We up-sampled 
LR MRI and learned the residual information between the HR MRI and the up-sampled MRI. Our LR MRI is 
derived from the HR MRI via bicubic interpolation.

where x and y represent the LR and HR images, respectively. κ is the down-sampling operator. r is the residual 
information between the HR MRI and the bicubic-interpolated MRI. u represents the up-sampling operator. 

(1)
r =y − (u(κBy))

= y − ux

= y − z

Figure 1.   (a) When we use fetal data, we label and segment fetal brains under professional guidance. (b) The 
proposed RRLSRN architecture for brain MRI SR.

Figure 2.   Illustration of SR results with upsampling (scale factor is 2): (a) Kirby 21; (b) NAMIC; (c) clinical 
fetal brain MR images.
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The model can learn the residual feature and up-sampling feature with normal and transposed convolutional 
layers. The network architecture used in this study is illustrated in Fig. 1b. When using fetal data, we segmented 
and extracted fetal brains as shown Fig. 1a.

The main architecture of the network for feature extraction consisted of 13 convolutional layers and two 
transposed convolutional layers to up-sample the extracted features using a scale of two. Because the fetal MRI 
slice sequence did not enable 3D representation, we designed our model with 2D convolution. The convolution 
kernel size was 3× 3× 64 . The transpose convolutions were 4× 4× 1 . Our model performed feature extraction 
at a coarse resolution and generated feature maps with finer details by using the transposed convolutional layer. 
Compared to the listed networks, our network can reduce computational complexity significantly.

Figure 3.   The error maps of SR results: (a) Kirby 21; (b) NAMIC; (c) clinical fetal brain MR images.

Table 1.   The mean, standard deviation (SD) and confidence interval (CI) of PSNR/SSIM for scale factor ×2 
between our method and compared methods on Kirby 21 dataset.

Kirby 21 Metric Cubic spline NMU LRTV SRCNN Ours

Mean PSNR 34.16 34.40 35.26 36.56 37.16

SD PSNR 1.90 2.00 1.90 1.02 1.05

CI (95%) PSNR [31.80,36.51] [31.87,36.87] [32.90,37.62] [35.29,37.83] [35.90,38.43]

Mean SSIM 0.9402 0.9464 0.9589 0.9496 0.9902

SD SSIM 0.1109 0.1056 0.0083 0.0088 0.0013

CI (95%) SSIM [0.9264,0.9540] [0.9333,0.9595] [0.9485,0.9692] [0.9388,0.9605] [0.9886,0.9919]

Table 2.   The mean, standard deviation (SD) and confidence interval (CI) of PSNR/SSIM for scale factor ×2 
between our method and compared methods on NAMIC dataset.

NAMIC Metric Cubic spline NMU LRTV SRCNN Ours

Mean PSNR 33.78 28.68 34.34 33.26 35.56

SD PSNR 1.83 0.64 1.79 0.78 0.34

CI (95%) PSNR [31.51,36.05] [27.88,29.48] [32.12,36.56] [32.29,34.24] [35.14,35.99]

Mean SSIM 0.9388 0.5590 0.9549 0.9447 0.9821

SD SSIM 0.0069 0.0134 0.0044 0.0049 0.0040

CI (95%) SSIM [0.9303,0.9473] [0.5430,0.5762] [0.9488,0.9595] [0.9388,0.9598] [0.9765,0.9896]
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Loss function.  This approach can learn the information lost in the image by interpolation, and it can also 
reduce computational complexity. We optimized the network with a Charbonnier loss4, as stated in the following 
formulation:

Table 3.   The mean, standard deviation (SD) and confidence interval (CI) of PSNR/SSIM for scale factor ×2 
between our method and compared methods on clinical fetal brain MRI dataset.

Fetal brain MRI Metric Cubic spline NMU LRTV SRCNN Ours

Mean PSNR 33.61 32.63 34.78 35.91 39.40

SD PSNR 2.08 2.44 2.10 2.84 0.33

CI (95%) PSNR [31.03,36.19] [29.61,35.67] [32.17,37.39] [32.38,39.44] [38.99,39.81]

Mean SSIM 0.9983 0.9546 0.9913 0.9564 0.9897

SD SSIM 0.0009 0.0336 0.0019 0.0045 0.0001

CI (95%) SSIM [0.9972,0.9994] [0.9505,0.9588] [0.9897,0.9942] [0.9507,0.9620] [0.9896,0.9898]

Table 4.   The PSNR results compared with/without GDL.

ID 01 02 03 04 05 06 07 08

Without GDL 39.03 38.66 40.24 39.83 39.54 39.39 38.79 38.71

With GDL 39.18 38.68 40.36 39.95 39.64 39.54 38.96 38.90

Figure 4.   Visual difference between our model with GDL and without GDL on the clinical fetal brain MRI 
dataset.

Table 5.   The PSNR results compared with/without transpose convolution of bottom.

ID 01 02 03 04 05 06 07 08

Without transpose convolution of bottom 36.78 35.89 38.11 37.89 36.58 37.77 36.24 35.92

With transpose convolution of bottom 39.18 38.68 40.36 39.95 39.64 39.54 38.96 38.90

Table 6.   Comparison of computational speed (second) with different methods.

Dataset Cubic Spline NMU LRTV SRCNN (faster version) Ours

Kirby 21 0.0104 6.5719 11.7059 1.7473 0.8244

NAMIC 0.0128 10.3675 6.9668 1.5395 0.8020

Fetal MRI 0.0125 8.5935 9.7356 1.7254 0.8173
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Let x be the input. We denote the ground-truth HR MRI slice by y, generating the corresponding HR MRI slice 
by ŷ , and the residual information of MRI by r. The overall Charbonnier loss function is:

Where s represents the number of training samples. ε is a very small constant. ε is empirically set as 1e−3 . We 
utilized our model with the Charbonnier loss function instead of the L2 loss to cope with outliers and improve 
MRI SR result accuracy, due to the loss is robust.

We also combined the GDL, which can directly penalize the differences of image gradient to sharpen the SR 
result. The GDL function is defined as follows:

The overall GDL loss function is:

Where |.| denotes the absolute value function.
Then the final combined loss is:

Dataset and training details
To verify the ability to reconstruct HR MRI slices of the brain, we applied our method on two adult-brain datasets 
(Kirby 21 and NAMIC) and eight clinical fetal MRIs.

Dataset.  Kirby 21 dataset.  The Kirby 21 dataset1 contains the data of 21 volunteers who were all healthy, 
had no history of neurological conditions, and the dataset contained T1-weighted MRIs. The dataset was ob-
tained using a 3-T MRI scanner (Achieva, Philips Healthcare, Best, Netherlands) with a sagittal view (FoV) of 
240× 204× 256 mm and a resolution of 1.0× 1.0× 1.2 mm3.

NAMIC brain multimodality dataset.  The NAMIC dataset (http://​hdl.​handle.​net/​1926/​1687) was acquired 
using a 3-T General Electric (GE) device at Brigham and Women’s Hospital in Boston, MA. An eight-chan-
nel coil was employed to perform parallel imaging by using array spatial sensitivity encoding techniques1. The 
parameters of structural MRI were as follows: TR = 7.4 ms , TE = 3 ms , 25.6 cm2 FoV , and matrix = 256× 256

.

Clinical fetal MRI dataset.  The eight clinical fetal MRI data was provided by the First Affiliated Hospital of 
Xi’an Jiaotong University. Images were continuously collected from September 2017 to October 2018 using GE 
3.0-T MRI scanner (Discovery 750W; GE Medical system, Milwaukee, WI; 240× 204× 256 mm FoV; 4-mm 
slice thickness; TE = 85 ms) for fetal-head MRI. Eight pregnant volunteers used silent sequences, which con-
tained silent T2 half-Fourier acquisition single-shot fast-spin-echo axial, sagittal, and coronal. These eight 
women underwent MRI scans because of health concerns. We performed the experiments by following the 
safety guidelines for MRI research. All patients signed informed consent forms, and the clinical protocol was 
approved by the Institutional Review Board of the First Affiliated Hospital of Xi’an Jiaotong University in Xi’an 
Shaanxi, China on February 25, 2019. The experimental data were completely de-identified, so that any related 
information of the subject cannot be retrieved.

(2)

LCharbonnier(y, ŷ) =
√

x2 + ε
2
(ŷ − y)

=
√

x2 + ε
2
(ŷ − (ux + r))

=
√

x2 + ε
2
((ŷ − ux)− r)

(3)

LCharbonnier(ys , ŷs) =
1

N

N∑

s=1

√
x2s + ε

2
(ŷs − ys)

=
1

N

N∑

s=1

√
x2s + ε

2
(ŷs − (uxs + r))

=
1

N

N∑

s=1

√
x2s + ε

2
((ŷs − uxs)− r)

(4)
Lgdl(y, ŷ) =

∑

i,j

||yi,j − yi−1,j| − |ŷi,j − ŷi−1,j||
2

+ ||yi,j−1 − yi,j| − |ŷi,j−1 − ŷi,j||
2

(5)
Lgdl(y, ŷ) =

1

N

N∑

s=1

∑

i,j

||ysi,j − ysi−1,j | − |ŷsi,j − ŷsi−1,j ||
2

+ ||ysi,j−1−yi,j | − |ŷsi,j−1
− ŷsi,j ||

2

(6)Lcombined = LCharbonnier + Lgdl

http://hdl.handle.net/1926/1687
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Training details.  In order to validate our model, one tenth of the sections from each sequence of MRI were 
selected as validation data. We sliced Kirby21 and NAMIC datasets into 2D images. The total number of images 
is 1921. The whole images are split into 7:1:1:1 ratio as 1345 training, 192 for optimizing network weights, 192 
for choosing hyper-parameters, and 192 for testing. We chose data from KKI2009-06 to KKI2009-42 in Kirby 21 
to train the model. KKI2009-01, KKI2009-02, KKI2009-03, KKI2009-04, and KKI2009-05 were used for testing. 
We tested the model from case01011 to case01034 NAMIC. The remaining images were used for training. All 
eight fetal brain MRIs were used for testing. LR images were generated using a scale factor of two.

We initialized the network using the model of Lai4. The slope of leaky rectified linear units was −0.2 . We 
padded zeros to make sure that the size of the feature map for each layer is the same as the input. And we trained 
the model by randomly sampling 64 patches whose sizes were all 128× 128 . We set the momentum parameter 
to 0.9 and the weight decay to 1e−4 . The learning rate was initialized to 1e−5 and decreased by a factor of two at 
every 50 epochs. We trained the original codes of the compared methods to calculate the runtime on the same 
computer with an Intel i7 processor (64-GB RAM) and Nvidia Tesla V100 graphics processor (16-GB Memory).
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