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Forecasting of excavation problems 
for high‑rise building in Vietnam 
using planet optimization 
algorithm
Thanh Sang‑To1,2, Minh Hoang‑Le2, Samir Khatir1, Seyedali Mirjalili3, 
Magd Abdel Wahab1* & Thanh Cuong‑Le2*

In this paper, a new method in forecasting the horizontal displacement of diaphragm wall (D.W.) for 
high-rise buildings is introduced. A new stochastic optimizer, called Planet Optimization Algorithm 
(P.O.A.), is employed to assess how proper finite element (F.E.) simulation is against field data. 
The process is adopted for a real phased excavation measured at the field. To automatically run the 
iterative optimization tasks, a source code is constructed directly in the Geotechnical Engineering 
Software (PLAXIS) by using Python to ensure that the operation between optimization algorithm and 
F.E. simulations are smooth to guarantee the accuracy of the complex calculation for the soil problem. 
The proposed process consists of two steps. (1) The parameters will be optimized at the early phases 
of the excavation. (2) The responses of D.W. displacements are forecasted at the subsequent phases. 
The aim of the process is to predict the displacements of D.W. of the building from the result of the 
nearby excavation or to provide early warning about the risks of excavation that may happen under 
vital phases. The proposed procedure also provides an effective method for optimization-based soil 
parameters updating in real engineering practice.

With the drastic development in the field of Computer Science in the past several decades, dealing with complex 
problems becomes easier by using a combination of Artificial Intelligence (A.I.) and finite element models1 to 
solve the problems. With growing challenges that require A.I. algorithms to be constantly improved2–4, many 
swarm-inspired algorithms such as Particle Swarm Optimization algorithm (P.S.O.)5, Genetic Algorithm (G.A.)6, 
or physics-inspired algorithm (e.g. Gravitational Search Algorithm7), even behavior-inspired of human (e.g. 
Human Behavior-Based Optimization8) have been proposed. Optimization algorithms are employed in most 
fields in daily life. In difficult and obscure fields such as soil and foundation mechanics, it is even more necessary 
to apply the strengths of both to maximize efficiency.

Skyscrapers have emerged as a solution to meet workplace or residence needs. While the used space expands 
upwards, the space inside the ground is also exploited for entertainment, storage, museums, or simply parking 
at the same time. Excavated construction for projects with two to four basements has become quite popular, in 
which the traditional method of digging with the anti-system has existed for a long time. This solution is simple 
and easy to run; it requires, nevertheless, a large area for construction.

Additionally, displacement of the soil and the diaphragm wall is usually large9. A semi-Top-Down construc-
tion solution is more suitable for excavation in urban space. This method has two advantages; short construction 
time and smaller displacement of the diaphragm wall than the braced excavation method.

Many previous studies show the influence of displacement of the diaphragm wall on adjacent buildings with 
the Semi-Top-Down (S.T.D.) constructed technique. Tan et al.10 studied the effects of subway station construc-
tion on surrounding buildings. Huang et al.11 presented a method combining S.T.D. excavation technique with 
steel bracing for the Shanghai’s subway station. Peck12 proposed the inverse analysis or observational method. 
This technique is typically adopted to evaluate the dominant or representative characteristics or parameters of 
soil via observed data at the site.
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Applying the nature-inspired optimization algorithm for the inverse analysis of the problem brings several 
benefits. This gives us a practical view of the suitable parameters for soil behavior.

One of the inverse analyses is a Bayesian updating procedure (e.g. Wang et al.13, Qi and Zhou14, Zhang and 
Mahadevan15, Hsiao et al.16 or Juang et al.17 employing Bayesian updating of soil parameters for prediction settle-
ment or displacement of D.W., and Špačková and Straub18 using Bayesian for the tunnel excavation problem, etc.). 
Nevertheless, in the application of a model to update Bayesian, more than 10,000 calculations for the Markov 
chain of Monte Carlo sampling may be required, which makes the method impractical to use. In the last two 
decades, a new, more suitable method that has been widely used is the optimization algorithm. Specifically, it is 
particularly an intelligent algorithm to solving optimization problems. Yin and Jin19 demonstrated that an effi-
cient multi-objective optimization-based updating framework could be constructed. Tang and Kung20 presented 
a study called a Nonlinear Optimization Method (NOM) to inversely analyze geotechnical engineering problems.

This study presents the model calibration’s concepts based on inverse analysis. In the first section, the built 
methodology for the prediction of a horizontal deflection of diaphragm wall via an optimal combination of 
various design parameters of soil in the deep excavation problem is introduced. Specifically, a combination of 
F.E. using PLAXIS21,22 and programming language Python is constructed for inverse analysis of this problem. In 
which the objective function is defined by total displacement and settlement of excavation phases. Furthermore, 
soil parameters that are optimized at early phases of excavation are employed to predict the lateral deflection 
of D.W. and surface settlement at subsequent phases. Finally, the obtained results from model calibration are 
compared to field observation to verify the fitness of this technique and draw conclusions.

Methodology
In deep excavation problems, settlement and displacement of the D.W. are the two important information on 
the construction of the structure of a high-rise building. In practice, the deformation ratio, which is defined as 
the maximum surface settlement over the maximum lateral displacement of D.W. introduced by Kung et al.23, 
can be adapted to predict the surface settlement profile based on the estimated maximum lateral displacement of 
D.W. This study, however, employs both displacement of the D.W. and settlement to enhance the efficiency and 
reliability of the model calibration. In this section, the proposed methodology is presented via three subsections, 
namely (1) simulation F.E. using PLAXIS, (2) novel optimization algorithm (P.O.A.), and (3) the link between 
(1) and (2) based on the environment of the Python language.

Simulation model.  Soil model.  The geotechnical engineering software PLAXIS version 2020 is employed 
to calculate the behavior of the soil under the excavation. In more detail, the Hardening Soil Model (H.S.M.) 
is the soil model employed to characterize the soil in the PLAXIS simulation of the excavation. The stiffness of 
soil commonly is indicated by a set three modulus, namely the secant modulus in standard drained triaxial test 
( Eref50  ), the tangent modulus for primary oedometer loading ( Erefoed ) and Unloading/reloading modulus ( Erefur ).

H.S.M. is a strong and modern model for the behavior of various soils, not only stiff soils but also soft soils24. 
A strong characteristic of the H.S.M. is the stress dependency of soil stiffness. For oedometer conditions of stress 
and strain, for instance, the model implies the relationship Eoed = E

ref
oed

(

σ
′

1/p
ref
)m

 . In many practical cases, it 
is appropriate to set Erefur = 3E

ref
50  . This is the default setting used in PLAXIS.

A case in Ho Chi Minh City.  Data for this problem is collected from the construction process of the Lancaster 
Lincoln Tower (L.L.T.), see Fig. 1a. This project is a proposed luxury residential and commercial development in 
Ho Chi Minh City, Vietnam. The development comprises two residential towers of 38 story’s, one office building 
of 7 story’s and three basements.

The excavation width at the L.L.T. is 70 m, and the length of the 0.8 m thick diaphragm wall is 32 m with 
material properties: EA = 2.02 × 107 kN/m, EI = 1,075,200 kNm2/m and Poisson’s ratio is 0.15. The excavation of 
Lancaster was performed employing the Semi -Top-Down technique. The excavation process underwent 5 main 
steps, in which the D.W. is supported by concrete slabs of 250 mm thick with material properties: EA = 9.88 × 106 
kN/m and Poisson’s ratio is 0.15. The steps of excavation are summarized in Table 1. The geotechnical data of 
the project is illustrated in more detail in Table 2 and Fig. 2. The soft clay layer 15 m thick is divided into three 
layers, namely 1a, 1b, 1c whereas the stiff clay also is split into two sections, 2a and 2b as shown in the Fig. 1c. 
Meanwhile, Fig. 1b illustrates the adjacent buildings, one or two stories, for this reason, the surcharge load is 
chosen 20 kN/m2. Figure 3 illustrates the structural geometry and the PLAXIS mesh of the Lancaster excavation. 
The overall size of the model is 200 × 48 m2.   

While the three first excavation stages are employed to search soil parameters by using PLAXIS and Python, 
the lateral displacement of D.W. and settlement under two final-stages excavation are predicted based on these 
optimized parameters at early-phases.

Soil parameter for inverse analysis.  In recent decades, many researchers26–28 tried to determine the stiffness and 
strength parameters for H.S.M. Some scholars made a concentrated effort to back calculate the ratio of the stiff-
ness modulus of the undrained shear strength ( E/Su ). The undrained shear strength Su is evaluated by the vane 
shear tests in soft clay or triaxial tests on stiffer clay. These tests are normally employed in the inverse analyses of 
the E/Su ratio. Several studied results in the world are summarized in Table 3.

Meanwhile, E′(stiffness parameter) is employed to indicate the stress–strain behavior of sandy soil. However, 
many physical soil characteristics (e.g. structure, location of the sand grains into sample, which is affected sig-
nificantly by the disturbance due to the process sample collection at the field) can have a powerful influence on 
stiffness parameter. In practice, E′ can be computed using the results of the Standard Penetration Test with the 
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Nspt value. Hsiung et al.29,32,33 proposed an empirical correlation between Nspt and stiffness parameter as follows 
E′ = (2000− 4000)× Nspt.

In this study, stiffness parameters are employed for updating the optimization framework. While many stud-
ies estimated secant modulus in [300, 700] Su for very soft clay and [500, 1200] Su for stiff clay, the proposed 
method randomly selects an initial value in the range [200, 700] Su for very soft clay and [400, 1000] Su for stiff 
clay. Meanwhile, this stiffness parameter value is [2000, 4000] Nspt for sandy layers. In other words, the search 
space is larger than some normal results to evaluate the operation of this optimization process. Table 4 illus-
trates in detail the soil parameters for each soil layer. In which low and up are lower and upper bounds of each 
parameter, respectively.

Optimization model.  Using the optimization method is vital for finding optimal solutions for different 
optimization problems. In this subsection, we present a summary of the new Planet Optimization Algorithm 

Figure 1.   The Lancaster Tower project: (a) 3D view, (b) Nearby buildings of the project25, (c) Geotechnical data 
and main excavation stages.

Table 1.   Construction sequences for Lancaster Lincoln Tower.

Sequences Construction activities

Stage 1 Excavation from existing to level-1.0 m

Stage 2 Excavation to level-3.9 m, construction of B1 slab

Stage 3 Excavation to level-6.9 m, construction of B2 slab

Stage 4 Excavation to level-10.9 m, construction of H400 trusts system

Stage 5 Excavation to level-14.7 m, level of elevator pit bottom

Table 2.   Soil parameters of soil layers.

No Soil Type γ (kN/m3) m ν Su (kN/m2) c’ (kN/m2) φ’ (°) ψ(°) Rinter

0 Sand fill Drained 18.0 0.50 0.2 – 5 30 – 0.5

1a Soft clay Undrained 14.8 0.90 0.2 23.1 ~ 26.4 – – – 0.8

1b Soft clay Undrained 14.8 0.90 0.2 23.9 ~ 33.3 – – – 0.8

1c Soft clay Undrained 14.8 0.90 0.2 34.5 ~ 35.3 – – – 0.8

2a Stiff clay Undrained 19.2 0.75 0.2 70 ~ 110 – – – 0.8

2b Stiff clay Undrained 19.2 0.75 0.2 110 ~ 150 – – – 0.8

3 Clay sand Drained 20.2 0.50 0.2 – 10.2 22.3 – 0.8

4 Fine sand Drained 20.9 0.50 0.2 – 3.9 33.5 3.5 0.8
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(P.O.A.). The P.O.A. theory will be fully developed in the other paper, and consequently is not reproduced here. 
In the paper, a brief description of the algorithm is, however, also presented including flowchart.

The basic concept of gravitation laws (or Newton’s law) will be presented. Next, inspired by the motion of 
planet in the universe by this law, a mathematical model for an optimal algorithm will be constructed.

(1)F = G ×
MassA×MassB

∥

∥R
AB

∥

∥

2

Figure 2.   The parameters of soil from the investigation: (a) Su value (kPa), (b) Nspt value.

Figure 3.   PLAXIS model for L.L.T. excavation.

Table 3.   Results of E/Su ratio from F.E. inverse analyses.

Tang and Kung20 Hsiung et al.29 Phienwej and Gan30 Likitlersuang et al.31

Very soft clay 300–700
500

500 500

Stiff clay 700–2000 1200 600–1000
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where F is the gravitational force, G is the gravitational constant, RAB is the distance between the centers of their 
masses, MassA,MassB are the mass of each planet.

In this study, the parameter F is ineffective in conducting the search process of the algorithm. Thus, moment 
force M = F × R is adopted to operate as the main parameter instead of F.

The optimized model is illustrated simply by a system consists of the Sun, the Earth and the Moon as shown 
in the Fig. 4. In more detail, each object is impacted by two forces. For instance, for the Earth, 2-force are from 
the sun and the Moon. The Earth can create a gravitational force large enough to keep the moon in orbit around 
the Earth. This demonstrates that two parameters influence the motion of a planet, not only mass but also the 
distance between the two planets. Specifically, the implementation of the algorithm is as follows:

Stages 1: The best start. The algorithm’s first step is to search for an effective solution to operate as the best 
solution. The aim of this step is to improve the convergence and accuracy in the first iterations.

Stages 2: Calculation M factor.

where, massi ,massj =
1

a
obji,j

/

α

;a = 2;α =
∣

∣max(obj)− objsun
∣

∣ ; obji,j , max(obj), objsun are the value of objective 

function of the ith or jth planet, the worst planet and the sun, respectively. This means that the objective function 
value of a planet is smaller, the mass of this planet is larger. The distance 

∥

∥Rij
∥

∥ is the Cartesian distance between 
two planets i and j at Xt

i  and Xt
j  , respectively. Meanwhile, G is a constant and equal to one unit in this 

algorithm.

Stages 3: Global search. β = Mi/Mmax is a coefficient, which depends on M moment presented in Eq. (2). In 
which Mi is the sun’s gravity on a planet ith at t iteration, and Mmax is the value of max

(

Mt
i

)

 at t  iteration. The β 
coefficient, therefore, contains values in (0, 1).

Stages 4: Local search. When the distance between the Sun and a planet is small, the local search process 
is operated. The planet with the biggest mass will operate like the sun. It means that the planet moves a small 
distance between it and the hypothetical Sun at iteration t instead of going straight towards the hypothetical 
Sun. This is illustrated and Eq. (5).
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Table 4.   Parameters of soil and boundary for input data PLAXIS-Python.

Type

Soft clay Soft clay Soft clay Stiff clay Stiff clay Clay sand Fine sand

Layer 1a Layer 1b Layer 1c Layer 2a Layer 2b Layer 3 Layer 4

Un-Drained Un-Drained Un-Drained Un-Drained Un-Drained Drained Drained

Su kN/m2 23.1–26.4 23.9–33.3 34.5–35.3 70–110 110–150 – –

Nspt 1–2 1–2 1–2 9–23 9–23 10–31 22–60

E
ref
50

 kN/m2
low 5000 5740 6894 36,000 52,000 60,000 80,000

up 18,000 20,090 24,129 90,000 130,000 120,000 160,000

Figure 4.   The interaction of three planets for Newton’s law.
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where c = c0 − t/T; c0 = 2 , with T is the maximum number of iterations. r1 is a chaotic function in (0,1) whereas 
r2 is normal distribution function (mean value µ = 0.5 and standard deviation σ = 0.2).

In sum, a flow chart is proposed for the new planet optimization algorithm (P.O.A.) summarized in the Fig. 5. 
Where,Rmin is chosen by dividing the search space into 1000-zone as shown Eq. (6).

where low is lower bounds, and up is upper bounds of the problem; R0 = 1000.

Combined simulation–optimization framework.  The meta-heuristic optimization algorithm (P.O.A.), 
which is integrated into geotechnical engineering software, is adopted to solve this problem. Each set of param-
eter values is sent to the simulation model using PLAXIS, which has been calibrated for the particular soil 
system. Then, the simulation model is solved to obtain the resulting response in the form of displacements of 
diaphragm wall at phases. This displacements values and observed data at field are utilized by P.O.A. to solve 
the objective functions 

(

obj
)

 as shown in Eq. (7). With the Python environment, a strong and fast connection is 
created between PLAXIS and the optimization algorithm. It means that the P.O.A. is easy to proceed with the 
information from PLAXIS accurately without any interruption. This proposed procedure is iterated until the 
specified termination criterion is reached. The developed methodology for the estimation displacement of the 
diaphragm wall is presented with a schematic diagram in Fig. 5.

DSPi is a point’s displacement of D.W. simulated by F.E. in PLAXIS at phase ith.
DOFi is a point’s displacement of D.W. obtained from field observation at phase ith.
SSPi is a point’s settlement simulated by F.E. in PLAXIS at phase ith of the adjacent building.
SOFi is a point’s settlement obtained from field observation at phase ith of the adjacent building.
nd , ns ,Np are the observed node number of D.W., settlement and phases, respectively.
wd = 1 , ws = 0.5 are weights.

Up to sum, this methodology that combine of F.E. method using PLAXIS and the optimization algorithm 
(P.O.A.), in which Python language is operated as a strong connection both together.

(6)Rmin =

∥

∥up− low
∥

∥

R0

(7)
obj = wd ×

nd
∑

i=1
(DOFi − DSPi)

2

nd × Np
+ ws ×

ns
∑

j=1
(SOFi − SSPi)

2

ns × Np

Figure 5.   Schematic diagram of the proposed methodology.
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Results and discussion
Comparison P.O.A., G.A. and P.S.O..  In this subsection, the comparison between P.O.A. and two well-
known algorithms (P.S.O. and G.A.) for forecasting real excavation problems is presented. A thorough inves-
tigation is conducted for comparison between computed displacements and field data via observations from 
inclinometers of the excavation. The results of the P.O.A. are presented for comparison with the results of the 
G.A. and P.S.O. in this problem. It means that the proposed methodology replaces P.O.A. with G.A. or P.S.O. 
Furthermore, by doing that, we can evaluate the effect of optimization algorithm on the proposed method, check 
the performance of P.O.A. at the same time. Figure 6a shows the value of the objective function in predicting 
D.W. displacement at subsequent phase via the soil characteristics inverse analysis at early phases. For example, 
the information about the displacement of points indicated in Fig. 7d represents the predictions of the D.W. dis-
placements at the final phase of excavation, stage 5, employing the soil parameters inverse analysis at the stages 
of 1–3, respectively, based on the observed D.W. displacements at the corresponding phases. It can seem that 
the objective function of algorithms is quite small, by doing that, it demonstrated that the method is effective. 
However, how good the effect of the method is depending on the superiority of the optimal algorithm in this 
problem. The results of P.O.A. is more accurate than G.A. and much outperform P.S.O. As we can see in Fig. 6a, 
P.O.A. takes only 11 iterations for finding out the best solution, while G.A. and P.S.O. cannot converge. 

Figure 6b presents the comparison of surface settlement between predictions and field data by the bar chart. It 
is apparent that the prediction of surface settlement by P.O.A. is acceptable and approximately identical between 
field observation and prediction with simulation. To some extent, this prediction result shows that P.O.A. is 
achieving better value than P.S.O. and G.A. in the final stage of excavation.

The inverse analysis D.W. displacements of each excavation phase in the L.L.T. are indicated in Fig. 7a–c. In 
this case, the horizontal displacement of D.W. is significantly influenced by stiffness of layer 1 and layer 2. Clearly, 

Figure 6.   Results of comparison between P.O.A and candidates: (a) Convergence curve (best solution in each 
iteration), (b) Monitored settlement of the near building.

Figure 7.   D.W. displacements.
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the results of the model calibration by P.O.A. and G.A. are closely similar in first-stage excavation, because both 
algorithms explore the proper modulus Eref50  of layer 1 (see Table 5). There is a similarity in the Eref50

/

Su ratio of 
1a, 1b and 1c layers, which means that P.O.A. and G.A. verify three layers had the same physical properties, in 
other words, they are one soil layer. With P.S.O. it is the other way around, this ratio is the large difference between 
layer 1a and 1c. Which leads to the results of displacement D.W. updated by PSO is a substantially discrepancy 
in comparison with the others. It is interesting to note that all candidates provide good results of Eref50

/

Su ratio 
for the layer 2. Nevertheless, once again, we can see that the results of P.O.A. are more suitable than other algo-
rithms, because the displacement of the D.W. and the ground settlement based on the analysis using P.O.A. are 
closer to reaching the field observations than G.A. or P.S.O. The above reasons illuminate why target parameters 
of P.O.A. are the more proper. Consequently, the objective function value of P.O.A. far outstanding to G.A. and 
P.S.O.

Up to the sum, the P.O.A. provides the prediction of horizontal displacements of retaining wall is more suit-
able than G.A. and P.S.O. Although the difference of value of displacement D.W. is not large between algorithms, 
it also verifies that P.O.A. explores effectively and strongly in optimization.

Discussion about results of the proposed methodology using P.O.A..  In practice, the inverse 
analysis combination with excavation is to make a forecast the final soil behavior of excavation on what hap-
pened in early-phase observations. First, the target parameters have to be optimized at the early phases of the 
excavation. Next, the responses of D.W. displacement at the subsequent phases, especially the final phase of 
excavation, are predicted under target parameters optimized at early phases. Consequently, the results of inverse 
analysis of the L.L.T. is adopted to further experiment the capacity of the developed method. The Eref50

/

Su ratio 
in the range [400, 750] inverse analysis of the soils, including [400,500] for soft clay (1a, 1b and 1c) and [600, 750] 
for stiff clay (2a and 2b), which are considered the proper previous researches20,29,31–33. The back-figured values 
of modulus for both layer 3 and 4 in [2400, 2600] are essentially suitable for recommendation of researchers29,32,33. 
The identification iteration paths illustrated in Fig. 8 reflect how the variation of updating parameters with exca-
vations gradually converges to reach the real parameters.

In this case, the inverse analysis is employed for only one target parameter for each soil layer, however, this 
back computing provides the essential accuracy and satisfaction for inverse analysis D.W. displacements. It is 
clear that for back-figured parameters for D.W. displacement in early-stage excavation are approximately identi-
cal with field observation despite the differences. This is acceptable in real geotechnical engineering problems 
because these errors are quite small. Additionally, the shape of the displacement line of D.W. is very proper with 
field monitoring data. Furthermore, these errors at the maximum displacement points do not exceed 3 mm, 
which are highly desirable results in the design field of real geotechnical engineering problems. Generally, the 
soil parameters inverse analysis at early phases can be employed to predict the maximum D.W. displacements at 
stage 5 satisfactorily. It means that the similar soil parameters inverse analysis at different phases may be repre-
sentative and is approaching the real soil parameters.

Conclusions
Based on the analyses and comparisons presented herein, the following conclusions can be drawn:

(1) The inverse analysis procedure, which is a fully automated process integrated the optimization algorithm 
(P.O.A.) with the Python code into geotechnical software (PLAXIS) platform, is effectively employed for the 
model calibration of lateral movements at the excavation. Simultaneously, it is also employed in conjunction 
with field observations to increase practicality. (2) From early observations about lateral movements of D.W. and 
surface settlement in the first excavation, stages are employed to recalibrate the model, which can "adequately" 
estimate the responses of the soil for the subsequent excavation stages. This method is significant in that a suc-
cessfully updated model at the first excavation stages, which affects all processes, is the automatic forecast of the 
soil behaviour whole excavation. (3) The growing accuracy of the computed results of the objective function and 
relative fit enhancement are statistics that proof this technique’s efficiency.

Table 5.   Eref
50

/

Su and E′
/

Nspt ratio for soil layers.

Parameter Soil Layer

Depth
Optimization 
algorithm

(m) P.O.A G.A P.S.O

E
ref
50

/

Su

layer1a 2 ~ 7 458 457 298

layer1b 7 ~ 12 479 475 357

layer1c 12 ~ 17 402 417 675

layer2a 17 ~ 26 628 674 778

layer2b 26 ~ 35 747 564 582

E′
/

Nspt

layer3 35 ~ 38 2534 2041 3469

layer4 38 ~ 48 2411 2000 3691
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With the inverse analysis method based on monitored data in the field at the early phases of excavation or 
from nearby excavation buildings, model parameters may be obtained easily and reliably instead of the traditional 
approaches, which depend mainly on the pure experience of engineers. Forecasting accidents due to extraor-
dinary displacement D.W. and the surface settlement in time provides a good risk forecasting guarantee for the 
proper prevention. This research provides a comprehensive methodology for predicting risk, enhancing safety, 
saving time and budget, and effectively designing and constructing high-rise buildings. Furthermore, with the 
drastic development of the Computer Science field and Artificial Intelligence (A.I.) in recent decades, we firmly 
believe that the technique will be trending in the future inevitably.
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