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Explainable machine learning 
model for predicting spontaneous 
bacterial peritonitis in cirrhotic 
patients with ascites
Yingying Hu1,5, Ruijia Chen1,5, Haibing Gao2,5, Haitao Lin3, Jinye Wang1, Xiaowei Wang3, 
Jingfeng Liu4* & Yongyi Zeng4*

Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. 
We aimed to develop an explainable machine learning model to achieve the early prediction and 
outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. 
After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity 
and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley 
Additive exPlanations) method to provide insights into the model’s outcome or prediction. MODEL-2 
(AUROC: 0.822; 95% confidence interval [CI] 0.783–0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 
0.784–0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential 
predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, 
lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 
were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. 
We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of 
SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the 
occurrence of SBP.

Abbreviations
SBP	� Spontaneous bacterial peritonitis
AUROC	� Areas under the receiver operating characteristic curve
SHAP	� Shapley additive explanation
HBV	� Hepatitis B virus
CRP	� C-reactive protein
PTA	� Prothrombin activity

Spontaneous bacterial peritonitis (SBP) is the most common life-threatening infection in patients with ascites 
due to liver cirrhosis. Early and accurate diagnosis is key to improving patient survival. The early clinical symp-
toms of most patients with SBP are not typical, so it is easy to be misdiagnosed, which has an effect on the early 
treatment of patients1. It is very important to actively look for evidence of SBP diagnosis. Although diagnostic 
abdominal puncture can provide evidence for early diagnosis of SBP, it is an invasive procedure. With increasing 
use of antibiotics, there is a gradual shift in the causative flora of SBP from Gram-negative bacteria to Gram-
positive and, more importantly, to drug-resistant bacteria. It is necessary to reduce the misdiagnosis rate of SBP, 
rational use of antibiotics, in order to prevent the development of drug-resistant bacteria. As such, there is a real 
need to develop a sensitive, specific, and easy-to-apply non-invasive methods to diagnose SBP or to exclude SBP.
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Systemic inflammatory response for SBP is complex, and a single indicator is insufficient for diagnosis; a 
prediction model derived from a combination of different parameters would be more accurate. In recent years, 
people had been trying to explore the prediction model or scoring system for predicting risk for SBP in patients 
with cirrhotic ascites2–8, but so far there was no recognized standard model. Machine learning (ML) is a disci-
pline that uses computational modeling to learn from data, meaning that performance at executing a specific 
task improves with experience (i.e., more data). Machine learning has been applied in many fields of medicine 
such as outcome prediction, diagnosis, medical image interpretation, and treatment9. Electronic health records 
are increasingly becoming not only repositories of healthcare data, but platforms that can be used to deploy 
ML models as tools to help guide clinical decision-making. Although complex machine learning models are 
commonly outperforming the traditional simple interpretable models, it is often criticised for being a black-
box model, which makes clinicians find it hard to understand and trust these complex models. Interpretability 
of models are crucial in medical environments where results have to be explained to medical providers to be 
widely accepted10,11.

In this study, we applied machine learning methods to predict the risk for SBP in patients with cirrhotic 
ascites, so as to realize the early diagnosis of first episode of SBP. After a comprehensive evaluation of catboost 
importance matrix plot, SHAP summary plot and doctors’ clinical experience, we chose the influential variables 
and create the high performing models of dimension reduction, which not only saves computing time, but also 
is more suitable for clinical application. In addition, we used explainable machine learning methods to provide 
interpretability of the black-box for clinicians and patients10,11.

Results
Characteristics of patients.  A total of 1399 inpatients who met the enrollment criteria were included in 
the model construction, of which 538 (38.5%) patients were identified as having cirrhosis ascites complicated 
with SBP. All patients were randomly divided into training set (n = 951) and validation set (n = 448) in a 7:3 
ratio. The prevalence of SBP was 37.7% in the training set and 40.0% in the validation set. In training set, Table 1 
depicted the relationship between the 46 variables we included and the incidence of SBP. Patients with cirrhosis 
ascites combined with hepatic encephalopathy and acute(sub-acute)-on-chronic liver failure were more likely to 
have SBP, but there was no significantly different in patients with esophagogastric variceal bleeding. A total of 26 
laboratory variables were found to be statistically significant.

Construction of models.  The MODEL-1 with 46 variables was constructed by CatBoost algorithm, and 
the AUROC in the validation set was 0.822 (95% confidence interval [CI] 0.784–0.856). Figure 1 showed the Cat-
Boost’s own feature importance matrix plot and Fig. 2 showed the SHAP summary plot for CatBoost. Through 
the feature importance ranking of the two graphs, we could well distinguish which were the importance variables 
affecting the model. The CatBoost tree visualization could also more intuitively let us understand the opera-
tion mechanism of the model (see Fig. S2 in Supplementary information). The SHAP summary plot showed 
the impact of each variable on the predicted outcome. For example, Figs. 1 and 2 both found total protein and 
C-reactive protein, to be the most important variables. In SHAP summary plot, higher total protein (red dots) 
is associated with lower incidence of SBP (SHAP value less than zero). Higher CRP (red dots) is associated with 
higher incidence of SBP (SHAP value greater than zero).

According to the CatBoost importance matrix plot and the SHAP summary plot, we obtained 11 variables 
that have the most influence on the model. Nine models were constructed through feature selection, and the 
AUROC values of each model were compared (see Supplementary information, Table S2). We found that the 
AUROC = 0.822 (95% CI 0.783–0.856) of the model with 6 variables was equivalent to MODEL-1, and it was the 
simplest and optimal model. After communicating with clinical experts, it was considered that these 6 variables 
not only had clinical diagnostic significance, but also could be easily collected in the clinical settings and reduced 
the missingness of values. Therefore, we constructed MODEL-2 using these 6 predictive variables: total protein, 
C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1.

Comparison of models performance.  The receiver operating characteristic curves in Fig. 3A showed 
that the AUROC of MODEL-2 was similar to that of MODEL-1. The calibration curve in Fig. 3B showed that the 
predicted values of our two models were close to the actual observation results. The performance of MODEL-2 
was no worse than that of MODEL-1.

Table 2 showed performance of MODEL-1 and MODEL-2 as binary classifiers. By choosing the threshold 
probability that maximizes the F2-score of each model, the sensitivity of MODEL-1 and MODEL-2 were all 
greater than 0.89, and the negative predictive values were 0.885 and 0.904, respectively. Therefore, patients clas-
sified as low-risk by these models were less likely to develop SBP.

Model explainability results for four patients.  Through the SHAP force plot in Fig. 4, some examples 
were given to illustrate the role of the SHAP method in explaining the machine learning model. The base value 
in the figure was equal to 0.4913, which meant that through MODEL-2, we predicted that the incidence of SBP 
in the validation set was 49.13%. And its SBP incidence was actually 40%, which meant that our model overes-
timated the risk. This phenomenon can also be observed in the calibration curve of Fig. 3B, that was, the fitting 
curve of the models were below the reference curve.

With the help of Fig. 4, we could intuitively judge that patient 1 was a cirrhotic ascites patient with SBP, and 
the actual result was the same (true positive). The model predicted that no SBP occurred in the patient 2, and 
the actual results was also no SBP (true negative). For patient 3, the model incorrectly predicted outcome as no 
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Variables

Spontaneous bacterial 
peritonitis

P valueNo (n = 592) Yes (n = 359)

Gender 0.349

 Male 419 (70.8%) 265 (73.8%)

 Female 173 (29.2%) 94 (26.2%)

Age, years 52.4 ± 12.1 52.6 ± 12.7 0.749

Etiology of liver disease 0.106

 HBV-related cirrhosis 368 (62.2%) 209 (58.2%)

 Alcoholic cirrhosis 75 (12.7%) 47 (13.1%)

 HBV and Alcohol—related cirrhosis 45 (7.6%) 45 (12.5%)

 Cryptogenic cirrhosis 39 (6.6%) 29 (8.1%)

 Autoimmune cirrhosis 36 (6.1%) 12 (3.3%)

 Other 29 (4.9%) 17 (4.8%)

Esophagogastric variceal bleeding 0.768

 No 539 (91.0%) 324 (90.3%)

 Yes 53 (9.0%) 35 (9.7%)

Hepatic encephalopathy < 0.001

 No 565 (95.4%) 319 (88.9%)

 Yes 27 (4.6%) 40 (11.1%)

Diabetes 0.836

 No 538 (90.9%) 324 (90.3%)

 Yes 54 (9.1%) 35 (9.7%)

Hypertension 0.426

 No 546 (92.2%) 325 (90.5%)

 Yes 46 (7.8%) 34 (9.5%)

Smoking history 0.32

 No 471 (79.6%) 275 (76.6%)

 Yes 121 (20.4%) 84 (23.4%)

Drinking history 0.119

 No 452 (76.4%) 257 (71.6%)

 Yes 140 (23.6%) 102 (28.4%)

Family history of liver cancer 0.51

 No 406 (68.6%) 238 (66.3%)

 Yes 186 (31.4%) 121 (33.7%)

Acute(sub-acute)-on-chronic liver failure

 No 571 (96.5%) 305 (85.0%) < 0.001

 Yes 21 (3.5%) 54 (15.0%)

C-reactive protein (mg/L) 7.71 ± 13.7 18.4 ± 30.7 < 0.001

Procalcitonin (ng/ml) 0.425 ± 2.55 0.612 ± 2.60 0.279

White blood cell count (× 109/L) 4.48 ± 2.26 5.70 ± 3.71 < 0.001

Red blood cell count (× 1012/L) 3.84 ± 0.784 3.64 ± 0.825 < 0.001

Mean corpuscular volume (fL) 93.4 ± 10.0 93.7 ± 10.2 0.702

Hematocrit(%) 34.6 ± 9.77 31.7 ± 10.7 < 0.001

Neutrophil ratio (%) 60.2 ± 12.2 66.3 ± 12.9 < 0.001

Lymphocyte ratio (%) 29.4 ± 11.0 23.0 ± 11.4 < 0.001

Monocyte ratio (%) 7.53 ± 2.59 8.10 ± 3.04 0.00357

Hemoglobin (g/L) 119 ± 26.0 113 ± 26.2 0.00219

Mean hemoglobin (pg) 31.0 ± 3.98 31.3 ± 3.98 0.186

Mean hemoglobin concentration (g/L) 331 ± 17.4 334 ± 18.3 0.0102

Platelet (× 109/L) 95.7 ± 56.2 98.5 ± 70.2 0.51

Mean platelet volume (fL) 10.6 ± 1.33 10.5 ± 1.48 0.095

Total protein (g/L) 64.2 ± 14.1 48.0 ± 24.3 < 0.001

Alanine aminotransferase (U/L) 159 ± 362 222 ± 494 0.0356

Aspartate aminotransferase (U/L) 158 ± 314 216 ± 394 0.017

Gamma glutamyl transpeptidase (U/L) 169 ± 245 181 ± 298 0.526

Alkaline phosphatase (U/L) 142 ± 85.7 154 ± 105 0.0814

Total bilirubin (µmol/L) 66.4 ± 88.0 134 ± 159 < 0.001

Continued
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SBP for the patient, whereas the actual outcome was SBP (false negative). Patient 4 was also incorrectly judged 
to have SBP (false positive).

Model generalization ability evaluation.  Among 1011 patients with cirrhotic ascites complicated 
with infection other than SBP, 578 (57.17%) were patients with SBP complicated with other infection, and the 
remaining 433 (42.83%) were patients with other infection alone. The AUROC of MODEL-1 was 0.809 (95% CI 
0.783–0.833) and that of MODEL-2 was 0.803 (95% CI 0.777–0.827). It could be seen that both MODEL-1 and 
MODEL-2 have good generalization ability. The models we constructed excluding the factor of other infections 
could also well predict the occurrence of SBP in patients with cirrhotic ascites complicated with other infections. 
These fully reflected the clinical applicability of the models.

Discussion
SBP was the main cause of death in patients with end-stage liver disease. In recent years, with the early diagnosis 
and effective use of antibiotics, the mortality related to SBP infection has decreased significantly. However, due to 
the extensive use of antibiotics, not only the bacterial spectrum of ascites infection changed, but also the produc-
tion of multidrug-resistant strains increased, which seriously affected the effect of anti infection treatment and 
the prognosis of patients. In order to minimize the occurrence of bacterial resistance, it is wise to improve the 
diagnostic level of SBP and reduce the use of antibiotics for the low-risk population of SBP. In this single-center 
study, we used CatBoost algorithm to build a prediction model of SBP in cirrhotic ascites, solely based on the 
pre-paracentesis objective variables. Through the predictive model, we hoped to identify those patients with low 
risk of SBP, so as to reduce the use of antibiotics and invasive abdominal puncture. Therefore, the binary clas-
sifier generated by using the maximized F2-score of the model to set the threshold is more suitable for clinical 
application. In the clinical setting, recall is more important than precision. F2-score is conducive to improve the 
sensitivity of the model and reduce the false negative rate. Ikemura et al.12 better distinguished those COVID-
19 infected patients at high risk of death by using F2-score, so as to give these patients more intervention and 
attention. Therefore, the binary classifier based on F2-score can improve the clinical application of machine 
learning model. In our validation set, the binary classifier based on F2-score made the negative predictive value 
of MODEL-2 0.904 and the sensitivity 0.927. This meant that our model can effectively identify low-risk patients 
with SBP. For these patients, we suggest that it is not necessary to carry out abdominal puncture and the use of 
antibiotics, so as to reduce the occurrence of adverse events caused by invasive operation and delay the occur-
rence of bacterial resistance.

The MODEL-1 constructed with 46 variables and the MODEL-2 constructed with 6 variables had good pre-
diction performance. This showed that our dimensionality reduction was successful and 6 variables alone were 
still able to generate high performing models. Dimensionality reduction is an important process in machine 
learning model development. Data set dimensionality reduction can not only speed up the calculation, but also 
remove some redundant variables to solve the multicollinearity problem. The more important advantage of 
dimension reduction is to facilitate the application of clinicians in daily work and reduce the lack of data, thus 
reducing the risk of bias from imputation. The reduced dimension model is also helpful for other researchers 
to reproduce our work with their unique cohorts and realize the popularization and application of the model. 
In addition, through the evaluation of the generalization ability of the model, it was proved that our models 
can also well predict the occurrence of SBP in patients with cirrhotic ascites complicated with other infections. 

Table 1.   Demographic and clinical features of the training set. Data are represented as n (%) and mean ± SD.

Variables

Spontaneous bacterial 
peritonitis

P valueNo (n = 592) Yes (n = 359)

Direct bilirubin (µmol/L) 37.4 ± 57.3 77.5 ± 94.9 < 0.001

Total bile acid (µmol/L) 80.3 ± 89.5 127 ± 126 < 0.001

Cholinesterase (U/L) 3860 ± 1690 2870 ± 1290 < 0.001

Lactate dehydrogenase (U/L) 252 ± 207 278 ± 170 0.0415

Creatine kinase (U/L) 134 ± 163 157 ± 190 0.0548

Total cholesterol (mmol/L) 3.94 ± 1.48 3.39 ± 1.60 < 0.001

Triglyceride (mmol/L) 1.16 ± 0.742 1.18 ± 1.03 0.74

High-density lipoprotein(mmol/L) 0.965 (0.518) 0.674 (0.498) < 0.001

Apolipoprotein A1 (g/L) 1.07 ± 0.403 0.792 ± 0.404 < 0.001

Apolipoprotein B (g/L) 0.793 ± 0.330 0.747 ± 0.316 0.0339

Urea (mmol/L) 4.90 ± 3.22 5.29 ± 4.13 0.127

Serum creatinine (µmol/L) 76.1 ± 66.2 79.2 ± 67.7 0.498

Uric acid (µmol/L) 307 ± 116 289 ± 135 0.0332

Prothrombin activity (%) 69.6 ± 19.3 56.2 ± 19.7 < 0.001

Sodium (mmol/L) 139 ± 3.46 136 ± 5.04 < 0.001
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These fully reflected that the model had good robustness and clinical applicability, which was conducive to its 
popularization and application.

The 6 variables in MODEL-2 were important characteristics for predicting the first SBP in cirrhotic patients 
with ascites. Previous studies have confirmed that severe liver damage (Child–Pugh grades B/C) was a high risk 
factor for SBP13,14, and there was a correlation between the first SBP episode and liver dysfunction2,15. In our 
CatBoost model, the total protein, cholinesterase, apolipoprotein A1 and prothrombin activity were serological 
markers reflecting the synthesis and metabolism of liver. Table 1 showed that the indexes of cirrhotic ascites 
patients with SBP were lower than those of patients without SBP. Therefore, the function of liver synthesis and 
metabolism in SBP group was significantly lower than that in non SBP group. The severity of liver function 
damage was a predictor of SBP in cirrhotic patients with ascites. Traditional infection markers included white 
blood cell (WBC) count, neutrophil ratio, lymphocyte ratio, C-reactive protein (CRP) and procalcitonin. Our 
study showed that CRP and lymphocyte ratio had a greater contribution to the early prediction model of SBP. 
The SHAP force plot (Fig. 4) and previous studies16 all showed that CRP had a clinical value in predicting SBP 
infection in patients with cirrhosis ascites, but it could not be used to diagnose SBP only based on CRP level. We 
should put it into the prediction model to comprehensively consider its contribution to the prediction results. 

Figure 1.   Importance matrix plot of the CatBoost model.
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Lymphocytopenia performs better in predicting bacteremia in an emergency care setting than either the WBC 
count, neutrophil count or CRP level17. This was consistent with our study that lymphocyte ratio was better than 
neutrophil ratio in predicting SBP.

Single classification models such as logistic regression and simple decision tree model have good results in 
disease prediction, but there are some problems, such as weak generalization ability and poor fault tolerance. 
CatBoost is an ensemble learning algorithm. Different from the simple decision tree model, which use only single 
tree for classification, CatBoost use a series of trees, which strengthen the models ability for regression and clas-
sification. It prevents overfitting by using unbiased estimates for the gradients, so as to improve the generaliza-
tion ability and robustness of the model18. In our study cohort, the prediction performance of CatBoost model 
was better than that of logistic regression and simple decision tree model (see Supplementary information). In 

Figure 2.   SHAP summary plot of the CatBoost model.
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addition, the visualization of CatBoost tree could not only make us understand the operation mechanism of the 
model more intuitively, but also better understand the interpretability of the model.

Machine learning model is called “black box” by many people. This means that although we can get accurate 
predictions from them, we cannot clearly explain or identify the logic behind these predictions. If machine 
learning model is to be widely used in clinic, then interpretability is particularly important. The higher the 
interpretability of the model, the easier it is for physicians to comprehend why a certain prediction was made 
and thus make an appropriate clinical decision that is in the best interest of the patient. In this study, we provided 
explanations for our CatBoost model using the SHAP (SHapley Additive exPlanations) method by Lundberg and 
Lee19. SHAP method is the most commonly used explainability methods. It can provide an interpretive scheme 
for almost all machine learning and deep learning. This method has also been used to explain the characteristics 
of the machine learning model in the medical field and to help understand the decision path of the model10,11. 
Although we can know the contribution of each prediction variable to the target variable from the importance 
matrix plot of CatBoost, it can not explain the prediction results of each observation object. However, the SHAP 
method can not only explain the whole data set globally, but also get explanations for individual patients, so as 
to understand which factors affect the individual prediction results20. Through the SHAP force plot (Fig. 4), we 
could know the contribution of each variable to the prediction results of different patients. Therefore, through 
the visual interpretation of machine learning model, the clinicians could understand the cause of the machine 
learning model’s prediction, so as to use the prediction model more trust and make more beneficial clinical 
decisions for patients.

In this study, not only machine learning algorithm was used to establish a prediction model for the early 
diagnosis of first episode SBP in cirrhotic patients with ascites, but also the visualised interpretation of the 
machine learning black box was provided by using the SHAP values. However, there were still some limitations 
in this study. First, our analysis used only single-center data. The performance of the machine learning algorithm 
might differ for larger data sets with differently distributed patient characteristics and different institutions. 

Figure 3.   Receiver operator characteristic (ROC) curves and calibration curves for MODEL-1 and MODEL-
2(validation set). (A) ROC curves showing the prediction performance of the MODEL-1 and MODEL-2. (B) 
Calibration curve reflecting the degree of consistency between the predicted risk and the actual risk of the 
MODEL-1 and MODEL-2.

Table 2.   Summary of prediction results of models on the validation set.

Value

Models

MODEL-1 MODEL-2

AUC​ 0.822 0.822

95% CI of the AUC​ 0.784–0.856 0.783–0.856

F2-score 0.840 0.815

Threshold 0.376 0.306

Sensitivity 0.894 0.927

Specificity 0.543 0.457

Positive predictive value 0.565 0.532

Negative predictive value 0.885 0.904
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As such, external validation is required to prevent overfitting. Second, in order to avoid the invasive opera-
tion caused by diagnostic abdominal puncture, we constructed the predictive model for early identification of 
patients with cirrhosis and ascites at risk for SBP. Therefore, only pre-paracentesis variables were analyzed in 
this study, and ascitic fluid characteristics, such as ascitic fluid protein level, were not assessed in the current 
model. Third, the algorithm learned from the input features, and some hidden relationships may have been lost 
because of unknown or neglected features that were not enrolled by physicians. Also, the study lacked data on 
the medication history of patients, such as whether the patients had used antibiotics, proton pump inhibitors, 
and nonselective beta-blocker. We also lacked the data to reflect the immune function of patients. Fourth, data 
in this study was obtained from inpatients which were at a relatively more advanced stage of the disease and were 
at higher risk of SBP than outpatients. Therefore, the model was only applicable to inpatients. Future prospective 
studies are required to evaluate the application of machine learning-based predictive models to clinical practice 
for achieving early diagnosis of SBP.

Conclusions
In conclusion, we generated high-performing machine learning model that predicted the first episode SBP in 
cirrhotic patients with ascites using CatBoost algorithm. We also identified 6 important variables closely related 
to the occurrence of SBP. By the explainable machine learning methods, clinicians would be able to better under-
stand the reasoning behind the outcome.

Materials and methods
Ethical statements.  The study was conducted in accordance with the 1975 Declaration of Helsinki. 
The Ethics Committee of Mengchao Hepatobiliary Hospital of Fujian Medical University approved the study 
(approval no. 2020-032-01) and waived the requirement for informed consent due to the retrospective nature 
of the analyses.

Study population.  7103 adult patients (> 18 years old) with liver cirrhosis and ascites admitted for vari-
ous reasons to the Mengchao Hepatobiliary Hospital (tertiary specialist hospitals) of Fujian Medical University, 
from January 2015 to June 2019 were included in our study. Data concerning demographic information, medical 
history, clinical characteristics, laboratory values, comorbidities, and physical exam findings were collected ret-
rospectively. The exclusion criteria of model construction were: (1) malignant tumor; (2) acquired immunodefi-
ciency syndrome; (3) nosocomial-acquired SBP; (4) patients who had antibiotic administration within 3 months 
before admission; (5) patients with a previous history of SBP; (6) patients with a potential confounding etiology 
for ascites unrelated to cirrhosis, such as peritoneal carcinomatosis, pancreatitis, tuberculosis, hemorrhage into 

Figure 4.   SHAP explanation force plot for 4 patients from the validation set of the CatBoost model. Protein, 
total protein; CRP, C-reactive protein; PTA, prothrombin activity; LYR, lymphocyte ratio; Apoa1, apolipoprotein 
A1.
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ascites, or congestive heart failure; (7) cirrhotic ascites patients with infection other than SBP infection; (8) 
patients with incomplete clinical data (If a patient’s data was missing more than 30 variables, we defined it as 
incomplete clinical data). Finally, a total of 1399 cirrhotic patients with ascites were included for the construction 
of the model. The patient screening process of model construction was shown in Fig. 5.

Data collection and definitions.  We retrospectively collected clinical and laboratory data on admission 
from available medical records and included the following variables: age, gender, weight, cirrhosis etiology, por-
tal hypertension or not, upper gastrointestinal hemorrhage or not, hepatic encephalopathy or not, hypertension 
or not, diabetes or not, smoking history or not, drinking history or not, family history of liver cancer or not, total 
protein, white blood cell count, red blood cell count, hemoglobin, platelet count, mean platelet voulume, C-reac-
tive protein (CRP), procalcitonin (PCT), serum creatinine, prothrombin activity(PTA) etc. Detailed information 
for the 46 variables are listed in Table 1.

The diagnosis of cirrhosis was based on the results of the combination of physical, laboratory, and radiologic 
examination results or endoscopic signs of portal hypertension. Ascites was confirmed by ultrasonography. SBP 
was determined according to one of the following criteria, as revised from available guidelines13: (1) abdominal 
pain and/or fever (T > 37.5 ℃), and/or abdominal tenderness and rebound tenderness (excluding secondary 
peritonitis); and (2) ascites polymorphonuclear cells counts ≥ 250/mm3 and/or positive ascites bacteria culture. A 
community-acquired SBP episode was considered in any case diagnosed during the first 48 h of hospitalization.

Statistical analysis and machine learning.  We used the chained equation (MICE) R package to per-
form the multiple imputation for dealing with the missing values. The idea of Multiple imputation is to take 
into account uncertainty in predicting missing values by creating multiple complete datasets. It is superior to 
single imputation and has been widely used in medical data analysis21,22. Continuous variables are presented as 
the means and standard deviations or medians and interquartile ranges, and categorical variables are presented 
as frequencies and percentages. Differences between groups were analyzed using Fisher’s exact probability test 
for categorical variables and Welch’s t-test (or the Wilcoxon rank-sum test) for continuous variables. Statistical 
analyses were performed using R version 3.6.1 (R Foundation for Statistical Computing). A P value < 0.05 was 
considered statistically significant.

For machine learning models, the CatBoost, scikit-learn and SHAP packages were used to create models and 
tune hyper-parameters in Python version 3.6. We used MedCalc statistical software to compare the area under 
the receiver operating characteristic curve (AUROC) of different models.

Study design.  The cohort of 1399 patients used for model construction was randomly divided into 2 sets—
training set (70%) and validation set (30%). All models evaluation metrics were reported on the validation set, 
composed of the held out 448 patients who were never used in the model training. The training set was used to 
train a gradient boosting model (CatBoost), and the hyper-parameter was tuned using a grid search strategy with 
a fivefold cross-validation. The cross-validation strategy reduces overfitting of model and improves robustness.

For convenience, the CatBoost model generated with 46 variables was named MODEL-1. After a comprehen-
sive evaluation of CatBoost importance matrix plot, SHAP summary plot and doctors’ clinical experience, we 

Figure 5.   Patient screening process for model construction.
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selected the 6 most influential variables (explained below in Dimensionality Reduction). The CatBoost model 
built with these 6 variables was named MODEL-2.

For further evaluation of MODEL-1 and MODEL-2, we generated a binary classifier—whether SBP occured 
or not. We chose a threshold probability that maximizes F2-score of each model. Unlike the F1-score, which 
gives equal weights to precision (or positive predictive value (PPV)) and sensitivity (or recall), the F2-score gives 
more weight to sensitivity and penalizes the model more for false negatives than false positives. As our goal was 
to identify those patients at lower risk of SBP for reducing the use of antibiotics and invasive peritoneal puncture, 
our model’s metric of success should favour enhanced sensitivity. This ensured that our false negative rate was 
very low, that is, patients classified as low-risk were less likely to develop SBP. Sensitivity, specificity, PPV, and 
negative predicative values (NPV) were calculated for each binary classifier. F-score calculation is represented 
below and β = 2 for F2-score.

We also fitted several other machine learning methods including logistic regression and simple decision tree. 
The CatBoost model was preferred over the other models because of its higher performance on the validation 
set (see Table S1; Fig. S1 of Supplementary information).

Opening the black‑box: intuitive understanding of model’s variable utility.  The correct inter-
pretation of a prediction model for machine learning is a challenge. In this study, we provide explanations for 
our CatBoost machine learning model using the SHAP (SHapley Additive exPlanations)23. The SHAP summary 
plot organizes the variable display from top to bottom with the most important variable at the top and least 
important variable at the bottom as determined by the model in question. The SHAP value greater than zero on 
the X axis indicates an increase in incidence of disease, while the value less than zero indicates a reduction in the 
incidence of disease. Each patient is represented by a dot around the horizontal variable line. Each dot’s color 
reflects the value of the patient’s variable which is scaled to a normal color coded distribution (red is larger and 
blue is smaller).

The SHAP summary plot is a global explanation of the prediction results of the data set, and the SHAP force 
plot explains the prediction results of each individual patient to us. The SHAP force plot can be used to visualize 
the Shapley value for each feature as a force, which either increases (positive value) or decreases (negative value) 
the prediction from its baseline19. The baseline for the Shapley value is the average of all predictions, which, in 
our case, is the average incidence rate of the validation set predicted by the model we build. In order for us to 
understand why the machine learning model came to a certain conclusion, we will use the SHAP explanation 
force plot to explain individual prediction results of 4 randomly selected patients from the validation set.

Dimensionality reduction.  Dimensionality reduction is an important process in machine learning model 
development. In CatBoost importance matrix plot and SHAP summary plot, we first selected the top 10 most 
influential variables according to the variable influence ranking. Then, according to the feature importance 
measures, the variable with the lowest importance measures was eliminated each time to build the model. In 
the validation set, the AUROC values of each model were compared to obtain the simplest and optimal model.

Model generalization ability evaluation.  In order to proved that our models can predict the presence 
of SBP in patients with cirrhotic ascites complicated with other infections. We evaluated the predictive perfor-
mance of the models in 1011 patients with cirrhotic ascites with infection other than SBP.
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