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Bundle analytics, a computational 
framework for investigating 
the shapes and profiles of brain 
pathways across populations
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Tractography has created new horizons for researchers to study brain connectivity in vivo. However, 
tractography is an advanced and challenging method that has not been used so far for medical data 
analysis at a large scale in comparison to other traditional brain imaging methods. This work allows 
tractography to be used for large scale and high-quality medical analytics. BUndle ANalytics (BUAN) 
is a fast, robust, and flexible computational framework for real-world tractometric studies. BUAN 
combines tractography and anatomical information to analyze the challenging datasets and identifies 
significant group differences in specific locations of the white matter bundles. Additionally, BUAN 
takes the shape of the bundles into consideration for the analysis. BUAN compares the shapes of the 
bundles using a metric called bundle adjacency which calculates shape similarity between two given 
bundles. BUAN builds networks of bundle shape similarities that can be paramount for automating 
quality control. BUAN is freely available in DIPY. Results are presented using publicly available 
Parkinson’s Progression Markers Initiative data.

The human brain contains billions of axons that bundle together in tracts and fasciculi. These can be recon-
structed in vivo by collecting diffusion MRI data1–3 and deploying tractography algorithms4–7. The outputs of 
tractography algorithms are called tractograms. These tractograms are represented digitally using streamlines, 
which are representations of 3D curves traversing the brain. Whole-brain tractograms are densely populated with 
millions of streamlines which makes it difficult to visually and computationally inspect and characterize brain 
pathways. When streamlines of similar shapes and characteristics travel together through the white matter they 
are called bundles. These bundles approximate the white matter fiber bundles that connect distant parts of the 
brain to each other and are also known as tracts or fasciculi. These bundles of axons carry crucial information 
between cortical and/or subcortical areas and potential damage to these bundles, for example, from surgery, 
trauma, or disease can have tremendous consequences for the patient’s cognitive function and quality of life. 
Every bundle has a different functional association or set of functional associations. For example, the arcuate 
fasciculus is involved in the understanding of language8 while the optic radiation is involved primarily with visual 
processing9,10. Therefore, a valuable capability for the analysis of digital models of white matter is the ability to 
automatically identify known bundles contained within the whole brain tractograms. This process is known as 
bundle recognition11, extraction, or segmentation.

Manual virtual dissection12–14 and automatic bundle extraction11,15–20 of white matter bundles has enabled 
the scientific community to gather thousands of extracted fiber tract exemplars from source tractograms and 
visualize them in vivo. With the rise of machine learning in the field of neuroimaging, we are able to automate 
complex and unwieldy tasks such as white matter fiber bundle segmentation from whole-brain tractograms. Seg-
menting bundles has become convenient, efficient and fast11,21 and this practice has resulted in the generation of 
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exceedingly large data sets22–26. With a great amount of data available to them, the neuroscience community can 
now proceed to perform statistically sophisticated group comparisons on the acquired tracts. In the past decade, 
a plethora of methods for analyzing tractograms and combining them with anatomical information have been 
developed20,27–34. These analytical methods combining tractography and anatomical measures such as fractional 
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)35,36 to study pathways 
are termed as tractometric analysis methods31. Furthermore, tractometric analysis methods look at how bundles 
differ between specified groups. Recently, many studies27–34,37 have applied statistical methods to the study of 
group differences along the length of tracts. These are often called bundle profiles28.

In the field of neuroimaging, many different methods exist separately27–34 for the different tasks required to 
perform tractometric studies. Building a complete pipeline requires careful planning and forethought, especially 
for clinical applications. However, no such end-to-end pipeline has achieved wide acceptance or prominence 
which offers one platform to extract and perform group comparisons of white matter bundles.

In our work, we present BUndle ANalytics (BUAN), an end-to-end computational framework that can pre-
cisely extract bundles, perform statistical analyses across groups, and compare the shapes of different bundles. 
Our framework starts by taking a whole-brain target tractogram as input and then performs streamline-based 
registration of the tractogram to MNI space using an atlas of exemplar bundles (template). It next proceeds to 
bundle extraction, wherein it applies the auto-calibrated version of RecoBundles11 (see "Auto-calibration" sec-
tion) which is sufficiently robust to permit the extraction of particularly long or short tract bundles. For each 
of the tracts extracted, BUAN generates a tract profile for each subject. BUAN then performs statistical analysis 
on the bundle profiles to discover group differences along the length of tracts based on anatomical measures 
such as fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)35,36, 
Constant Solid Angle-generalized fractional anisotropy (CSA-GFA)38,39, and Constant Solid Angle-quantitative 
anisotropy (CSA-QA)40. Indeed, BUAN is sufficiently robust such that a wide array of anatomical information 
can be integrated into the analysis. Group comparisons on bundle profiles are performed using linear mixed 
models41–43. BUAN is capable of precisely localizing group differences to specific subsections of bundles. BUAN 
has the further advantage of permitting shape analysis of extracted tracts. In this paper, we present a novel 
graph-theoretic approach to compare the shapes of two bundles of the same type using bundle adjacency (BA) 
method21. Bundle adjacency is a bounded method for expressing how similar the shapes of two bundles are and 
bundle adjacency score ranges from 0 to 1. We construct a network of bundles across the subjects and calculate 
bundle adjacency (BA) among them. This results in a network graph/adjacency matrix that gives insights about 
inter-group and intra-group shape differences. This method can be used for quality assurance and is performed 
in common ’atlas’ space. Furthermore, BUAN operates without the need for nonrigid deformations, a process 
that could potentially make it harder to interpret group differences.

Our fully automated, streamline based approach enables us to create a robust, fast, and flexible computational 
framework. It is important to note that our framework is applicable to every kind of diffusion brain image data 
including hard-to-process clinical data. It does not require any sort of heavy training that requires large amounts 
of data and nor does it depend on any training data set. BUAN is publicly available in DIPY44 through python 
scripts and command-line interfaces.

Results
Overview.  Here, we provide an overview of BUAN. Fig. 1A, shows the process of bundle extraction. We regis-
tered our input tractogram [target tractogram (A.a)] to the model atlas (A.b) space using streamline-based linear 
registration (SLR)45. For extracting bundles from whole-brain tractograms, we have applied Recobundles (RB)11. 
RB takes the registered tractogram (A.c) and model bundle (A.d) as input and extracts bundle (A.e). A new auto-
calibration step in RecoBundles (refer to "Auto-calibration" section for details) has been added for extracting 
small and difficult to find bundles. (A.f) shows the final extracted bundle after auto-calibration (refine). Fig. 1B, 
shows the next step in the process wherein BUAN segments the final extracted bundle: the left arcuate fasciculus 
(AF_L) in small segments. We call this step the assignment step because every point of the bundle is assigned 
to the closest point of the model centroid. In (B.a) we see a depiction of a given bundle, in (B.b) we see model 
bundle centroids projected on to the bundle (B.a). In (B.c), each point on streamline is assigned to the nearest 
centroid point (shown with random colors). In Fig. 1C, we see the tractometric part of our framework, where 
we provided extracted and segmented bundles from all subjects as input as shown in (C.a). Here, the red box 
indicates patient data while the green box indicates healthy control data. We found significant differences across 
populations using information from anatomical measures such as fractional anisotropy (FA), mean diffusivity 
(MD), radial diffusivity (RD), axial diffusivity (AD), generalized fractional anisotropy (GFA) and several other 
metrics. We applied linear mixed models (LMM)41–43 to find group differences across subjects for all bundles at 
specific locations. In (C.b) we see the exact segment where anatomical measures differed between groups (e.g., 
FA is different between patients and controls). Notice in (C.c) that FA and CSA-GFA differed at 65–75 segments 
while MD and AD differed at 45–55 segments as indicated by p value < 0.001. BUAN can locate and visualize 
exactly where a significant difference is found between the two populations. Now we can build a more complete 
picture of the data by looking into the shape differences. This is shown in Fig. 1D. In (D.a), we took extracted 
bundles from all subjects as input, once more, the red box indicates patient data while the green box indicates 
healthy control data (similar to Fig. 1C). However, this time the input was extracted bundles without any infor-
mation associated with segments (assignment maps). Explicitly, we only provided the bundles themselves. The 
goal was thus to see the shape differences along the lengths of the bundles and study their sub-clusters. In (D.b), 
BUAN created a similarity matrix by calculating bundle adjacency (BA)21, our proposed shape similarity metric, 
between each subjects’ bundle and every other subjects’ bundle. Higher BA values (dark blue color) indicate 
higher shape similarity and lower BA values (light blue color) indicate lower shape similarity among bundles. 
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Figure 1.   Overview of bundle analytics (BUAN) framework. (A) shows the process of bundle recognition. (B) 
shows the process of creating assignment maps (segments) on each extracted bundle. (C) shows the bundle 
profile analysis concept where groups (red and green) with assignment maps can be used to find statistically 
significant group differences at specific locations in the bundles. Notice in (C.c) how multiple metrics can be 
significant in one area (shown with red) and others can be significant in other areas (shown with yellow). Finally 
(D), shows an example of the network-based bundle shape similarity analysis method of BUAN. In (D.c), a 
single scalar value [0–1] summarizes the shape differences between the two bundles. The matrix (D.b) provides 
the complete information of all shape differences in the populations for the the left arcuate fasciculus.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17149  | https://doi.org/10.1038/s41598-020-74054-4

www.nature.com/scientificreports/

Using shape similarity matrix information, we can go back and visually inspect the shape of the bundles and 
what BA score they were assigned. An example is shown in (D.c). Bundle adjacency is a bounded measure and 
takes values between 0 to 1, such that 0 means no shape similarity, i.e. no similar adjacent clusters of streamlines 
were found between the two bundles and 1 means maximum similarity, i.e. all clusters of both bundles had at 
least one neighbor.

In this work we used data from the publicly available Parkinson’s Progression Markers Initiative (PPMI) 
database46. In the following sections, we present results generated by BUAN on 30 extracted white matter fiber 
bundles for 64 subjects: 32 controls and 32 patients.

The complete description of the methods and data summarized here can be found in "Methods" section.

Bundle profiles.  Bundle profiles were generated for 30 extracted white matter bundles of all 64 subjects by 
creating assignment maps of extracted bundles. Each assignment map contained 100 segments per bundle. All 
were generated in common space. See "Assignment maps" section for details about the method. Data were then 
transformed back into native space to project anatomical measures, fractional anisotropy (FA), mean diffusivity 
(MD), radial diffusivity (RD), axial diffusivity (AD)35,36, Constant Solid Angle-generalized fractional anisotropy 
(CSA-GFA)38,39, and Constant Solid Angle-quantitative anisotropy (CSA-QA)40 on the segments of bundles. 
Throughout the process of bundle profile creation, no data was discarded. We did not smooth or deform our 
tracts or sub-sample them. We used all the points of each streamline and all the streamlines of the bundles. Com-
parisons between groups (patients vs controls) were done using linear mixed models (LMM) which adjusted for 
the correlations between the streamline data extracted from the same subject’s tract. Fig. 2 shows the analyses 
summary for the 100 segments for each tract. Information about the white matter tracts used in the study can 
be found in the supplementary materials, Appendix A.1 Fig. A1. Statistically significant differences (p value < 
0.001) between the groups were found in FA along the IFOF_L and IFOF_R tracts between segments 55 and 
65 as shown in Fig. 2. We also found group differences on FPT_R bundle at 30–37 segments, MdLF_R at 25–29 
segments, and 30–35 segments, ILF_R at 72–78 segments, OPT_R 70–75, and 85–90, OR_L at 38–45 segments 
and finally for UF_L at 85–95 segments. The LMM result plots for other anatomical measures can be found in 
the supplementary materials Appendix A.2, for MD Fig. A4, RD Fig. A2, AD Fig. A3, CSA-GFA Fig. A5, and 
CSA-QA Fig. A6.

We found group differences for FA, MD, RD, AD, CSA-GFA, and CSA-QA across different bundles. The LMM 
plots can be found in the supplementary materials in Appendix A.2. MD results are available in Sec. Appendix 
A.2 Fig.A4, RD in Sec. Appendix A.2 Fig. A2, AD in Sec. Appendix A.2 Fig.A3, CSA-GFA8 in Sec. Appendix 
A.2 Fig.A5, and CSA-QA in Sec. Appendix A.2 Fig.A6. The summarized version of results for all 6 anatomical 
measures is described in Fig. 3. The locations on the bundles are selected based on the criteria of p values < 0.001 
for group differences at that location. We found consistency in the results for the same bundles with differences 
at similar locations for FA, RD, GFA, and QA metrics/measures. We also found results for MD, RD, and AD 
to have the same locations with significant differences. We examined the locations mentioned in Fig. 3 to find 
actual differences between patient data and control data at those locations. FA, CSA-GFA, and CSA-QA values 
increase in patients, the average anisotropy values of all these 3 metrics used here are higher in patient data than 
in healthy control data. AD, RD, and MD values decrease in patients, and the average diffusivity value in patients 
is lower than in healthy controls.

Fig. 4, depicts BUAN’s bundle profile analysis process. On the top, we have the left Inferior Fronto-occipital 
Fasciculus (IFOF_L) and on the bottom, we have the right Inferior Fronto-occipital Fasciculus (IFOF_R). For 
both IFOF_L and IFOF_R, we have (A) bundle divided into 100 segments. (B) shows LMM result plots for IFOF 
bundles for FA, RD, CSA-GFA, and CSA-QA measures. We can see FA, RD, CSA-GFA, and CSA-QA are signifi-
cantly different at 58-62 segments on the IFOF bundles for patient and control groups. The highlighted yellow 
segment in (C) points out exactly where 58-62 segments lie on both left and right IFOF bundles. Locations on 
the bundles are selected by using segments with higher significant differences (p value < 0.001) provided by linear 
mixed models results. We selected the 58-62 segments on the IFOF bundles of all 64 subjects, 32 controls, and 32 
patients and calculated the mean FA, RD, CSA-GFA, and CSA-QA at the highlighted yellow location as shown 
in (C) per bundle. (D) shows histogram plots for mean FA, MD, CSA-GFA, and CSA-QA of control (green) and 
patient (red) groups at the location of 58-62 segments on bundles. On the y-axis, we have the number of the 
subjects, and on the x-axis, we show the FA/RD/CSA-GFA/CSA-QA values. FA, CSA-GFA, and CSA-QA values 
increase in patients, and RD values decrease in patients as compared to the control group.

Bundle Shape Similarity.  We performed the shape analysis of the bundles using bundle adjacency (BA) 
for all the 30 bundles of all 64 subjects. See "Shape analysis using bundle adjacency" section for method explana-
tion. Results generated by bundle adjacency (BA) are used to create a connected bundle graph network that is 
represented in a compact manner as similarity matrices. One similarity matrix for each bundle. Fig. 5.A, shows 
the similarity matrices for 30 bundles created using BA for 64 subjects. Each similarity matrix is a 64× 64 matrix. 
The first 32 rows of the matrices (0-31 subjects) belong to the control data, and the last 32 rows of the matrices 
(32-63 subjects) belong to the patient data. The darker blue color of the similarity matrix means bundles have 
higher BA scores of shape similarity and blue color converging to white shows the least similarity in the shape 
among the bundles. BA threshold used is 5mm, which is towards the higher strictness spectrum for calculating 
the shape similarity among bundles. For some subjects, we cannot extract a specific bundle or the bundle is very 
thin. In this case, the similarity matrix of the bundle has a white line in the subject’s row and column. Therefore, 
shape similarity matrices also play the role of quality assurance. Similarity matrices detect outlier subjects who 
have lower BA scores with other subjects’ bundles. These matrices tell us which bundles are prominent and easily 
extractable among subjects. Here, we observe, CC_ForcepsMinor, MLF_L, MLF_R, ML_L, ML_R, UF_L, and 
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UF_R to have dark similarity matrices. This implies that shape for all these bundles is highly consistent across 
the subjects and that sets of bundles are readily extractable in all the subjects. The AF_R, ILF_R, OPT_L, and V 
have white lines in their similarity matrices. This suggests these four bundles were missing from some subjects 
and if they were available, they differed in shape overall. Note that the BA threshold being used here is extremely 
strict in giving similarity scores. Most of the bundles tend to have darker similarity matrices, proving robust and 
good quality bundle extraction performed by the BUAN framework. In order to find clusters and patterns in the 
BA similarity matrices, we applied hierarchical clustering on the similarity matrices. Fig. 5.B, shows hierarchical 
clustering on the similarity matrices of two bundles, AF_L and AF_R respectively. Here, we have added label 
row and column to show a group of the observation. The observation (subject) belongs to a patient group when 
the label color is red and it belongs to the control group when the label color is green. Notice that the AF_L 
bundle has two bigger clusters and the AF_R bundle similarity matrix is divided into five clusters. Hierarchical 
clustering results of the similarity matrices can be interpreted as clusters that are comprised of subjects who have 
similar bundle shapes. Results for hierarchical clustering on all 30 bundles can be found in the supplementary 
materials Appendix A.3 Fig. A7.

Comparisons with AFQ.  The same preprocessing and bundle extraction methods were used in creating 
Automated Fiber-Tract Quantification (AFQ)29 and BUAN bundle profiles. Both AFQ and BUAN bundle profile 
analyses were run on the PPMI data set comprised of 64 subjects, 32 controls, and 32 patients respectively. Sub-

Figure 2.   Showing plots summarizing population differences for fractional anisotropy (FA) using LMM for 
30 bundles along their length. On the x-axis, we have segment numbers and on the y-axis, we have negative 
logarithms of p values. In the plots, the horizontal lower line indicates a p value < 0.01 and the horizontal 
upper line indicates a p value < 0.001. The p value at a specific segment implies how much significant FA group 
differences are there between patients and healthy controls for that particular bundle. Most plots show left and 
right bundles of the same type except V and CCMid. The plot at first row, second column shows simultaneously 
Minor and Major Forceps of CC. The rest of the plots show the left and right parts of the same type of 
bundle e.g. AF left (AF_L) vs AF right (AF_R). Notice for example that the IFOF bundles (left and right) are 
significantly different around segment 60.
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ject bundles and anatomical files used for analysis are the exact same for both bundle profile methods. The AFQ 
method generates one mean bundle profile per subject, we took an average of 32 patient subjects bundle profiles 
to create one bundle profile for the patient group and averaged 32 control subjects bundle profiles to create one 
mean bundle profile to represent the control group. The AFQ does not provide statistical analysis beyond the 
generation of profiles. To get the areas of significant group differences we ran a 2-sample independent t-test on 
AFQ bundle profiles along the length of the tract. The AFQ method generates a mean streamline (bundle profile) 
per subject with 100 equidistant points. For a given bundle, a t-test was run to get group difference significance at 
each point. In Fig. 6, we present results from two methods using 5 bundles, AF_ L, CST_ L, IFOF_ R, OR_ R, and 
UF_ R. In Fig. 6, both A) AFQ and B) BUAN bundle profile analysis results are plotted. In both, the first row has 
mean bundle FA plots for 5 bundles and mean bundle MD plots in the second row. The control group is shown 
in the green and the patient group is shown in red. Plots have mean anatomical values on their left y-axis, the 
x-axis has a length along the tract and the negative logarithm of p values is plotted on the right y-axis of plots. In 
all the plots, the horizontal lower line indicates a p value < 0.01 and the horizontal upper line indicates a p value < 
0.001. In Fig. 6A, for FA, we see group differences in AF_L at 40–90 area of the tract, for CST_L at 30–50, 55–65, 
and slight difference throughout the rest of the tract, for IFOF_R 1–55 area shows the bigger difference and 
relatively small difference in rest of the tract, for both OR_R and UF_R there are group differences throughout 
the tract. In the case of MD, we observe slight changes in groups for all 5 bundles. In the IFOF_R tract, we see a 
spike in patient group’s mean at 20–25 area along the tract. In UF_R, we see a huge spike in the patient group’s 
mean at 25-40 areas along the tract. In Fig. 6.B, we consider segments with p values in the range of 0.001–0.01 
to be significantly different. For FA, we observe significant group changes in AF_L at segment 70, in CST_L at 
segments 65–70, in IFOF_R at segments 55–60, in OR_R at segments 35–42, and in UF_R at the segment 65. 
In the case of MD, we observe significant group differences in IFOF_R at segments 58–74, segments 78–82, and 
segment 90. In OR_R tract at segments 35–42, segments 50–60 and segments 64–76. We do not see significant 
group differences in AF_L, CST_L, and UF_R tracts.

Discussion
BUndle ANalytics (BUAN) provides a unique platform for tractometry and connects it to anatomical information 
for analysis of white matter bundles. BUAN is a fast and robust framework that provides a completely automatic 
and streamline-based framework for extracting bundles to facilitate the study of the anatomy and shape of 
those white matter structures. It does not require nonrigid image registration at any step in the pipeline. This is 
important because image registration is particularly prone to failure when dealing with patient data47. None of 
the methods used in the BUAN framework depend on training data as compared to deep learning methods15,48 

Figure 3.   Summary tables showing locations with statistically significant differences in the bundles between 
groups for different metrics. Listed are tables for FA, MD, RD, AD, CSA-GFA, and CSA-QA. Each table has a 
bundle name on the left column and the right column has a location on a bundle where significant differences 
between patient and control data were identified by LMM. All locations have p values <0.001. Overall, we 
observed higher anisotropy and lower diffusivity for patients as compared to controls at these locations on the 
bundles.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17149  | https://doi.org/10.1038/s41598-020-74054-4

www.nature.com/scientificreports/

which need labeled patient data, which can be hard to find. This is important as researchers do not have training 
data for most clinical cases and BUAN can be directly used for these cases. Deep learning systems15,48 can only 
extract bundles used in training data. Another advantage of BUAN is therefore that new bundles can be found 
when new atlases or model bundles are provided. BUAN could be extended to be used in the brains of other 
species. There are no theoretical or other limitations that restrict usage to other species. However, this is a topic 
for future research and we hope that the community will apply BUAN in many other data sets, including non-
human primates and other species. For statistical analysis of bundle profiles, BUAN uses linear mixed models. 
However, we are planning to include other methods such as functional data analysis49,50 and predictive machine 
learning37. Bundle adjacency (BA) is used for shape similarity analysis of the same bundles across subjects. BA 
can be extended to use any distance metric between streamlines, we are currently using the minimum direct flip 
(MDF) distance21. Other distances can be used too, such as the Hausdorff distance51 or MAM distance52,53. We 
can look at shape similarity matrices as a method not only for finding shape similarity among the bundles but 
also as a metric to check the quality of data. A darker similarity matrix (see Fig. 5) of a given bundle suggests 
that this bundle is readily extractable across all subjects. BUAN’s end-to-end processing time for 64 subjects was 
46.847 hours on a single machine with 32 GB RAM, and one Intel Core i7-7700K CPU with 8 cores. The details 
about the processing time of each of the BUAN’s steps can be found in supplementary materials Appendix A.5.

Advantages.  Our approach is highly generic, modular, and flexible. It can be adopted for any sort of chal-
lenging clinical data sets or any animal data sets. In the case of animal data, the user can provide their own 
atlas of bundles and can perform bundle analysis using the same pipeline. For adult human data we are already 
providing an atlas, though users can also use their own atlas. None of the methods described here require a large 
number of labeled data for training. BUAN uses all the points on the streamlines, as we do not need to reduce 
the number of points of data points to simplify the statistics. Neither do we need to cut out the extremities of a 
bundle. It is left to the user to decide at what lengths they want to study a pathway. BUAN does not simplify the 
final bundle profiles by taking the average of anatomical measure values along the length of the bundle. Most 
importantly, BUAN does not impose or apply any sort of deformations at any stage of the framework. How 
deformations affect statistical validity is still an open question47 for the field of neuroimaging and therefore, 

Figure 4.   BUAN can identify the significant areas (middle column), visualize and locate them (left column) 
and then show why this is happening for the population (right column). Here showing the left (top) and right 
Inferior Fronto-occipital Fasciculus (bottom). Bundles are divided into 100 segments as shown in (A), each 
segment is given as an input to linear mixed models (LMM) and the output of LMM identifies significant FA, 
MD, CSA-GFA and CSA-QA group differences at each segment in (B). The highlighted yellow segment in (C) 
shows the exact location (58-62 segments) on the bundles where the p value < 0.001. Locations/segments on 
bundles are selected by using segments with higher significant differences provided by Linear Mixed Models 
results. Histograms of mean FA, MD, CSA-GFA, and CSA-QA of control (green) and patient (red) groups at 
specific significant locations of 58 - 62 segments shown in (D) provide additional explanation of the results. 
Notice how BUAN not only provides significant results but also shows why these differences were brought up in 
the populations (see right column).
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given this uncertainty, we do not deform the data. The sparsity of the tractograms exploited by BUAN is enough 
to enable high-quality correspondence between the subjects and use the anatomical measures directly in native 

Figure 5.   (A) Similarity matrices for 30 bundles of 64 subjects. The similarity metric used here is bundle 
adjacency (BA). The first 32 rows represent healthy controls and the last 32 rows belong to patient data. Higher 
BA value has a darker blue color which signifies higher shape similarity among bundles. Lower BA value which 
tends to white color signifies lower shape similarity. The diagonal of every matrix is dark blue (BA score of 
1) as it is measured against itself. All similarity scores are calculated with the BA threshold of 5 mm. Notice 
that we can easily identify from these matrices which bundles are less similar in shape by looking at the color 
of matrices. (B) The hierarchical clustering of similarity matrices of AF are presented. The red bars represent 
patient observations and green bars represent healthy controls. Notice how the AF_R has overall more white 
than AF_L. This is expected as the right arcuate fasciculus is not always easily detected in the brains of all 
individuals.
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space. Our methods can also be used for quality control, for example, if multiple model bundles are not being 
found in the data that means there are very likely issues with acquiring the data.

Concerns.  Our framework results in a large amount of derivative data. In this paper, resulting HDF5 files 
for 64 subjects (30 bundles) occupied 10 GB. This suggests that the application of this method to 650 subjects 
would result in the generation of a TeraByte or more of data. These derivative files are important because LMM is 
applied to them to provide results based on the proper accounting of correlations among the streamlines. How-
ever, the analysis can be run per bundle as they are all independent and it is, therefore, permissible to discard 
the large intermediary files. Therefore, the analysis is scalable to hundreds and thousands of subjects. Bundle 
extraction method relies on model bundle’s definition of a bundle, it will try to extract a bundle from target data 
that has similar properties as the model bundle. The more realistic the model bundles the better the extraction. 
The auto-calibration step helps in extracting the bundle which has shape influence from its own data because 
the model bundle provided is part of the target tractogram itself. Some bundles, due to their morphology, will 
be less well summarized by the use of a single centroid. For example, the corticospinal tract exhibits a great deal 
of fanning in its superior terminations. As future work, it would be worthwhile to attempt to model these more 
complex white matter tracts with multiple centroids.

We provided the results for the nominal significance level of 0.001 as an illustration in our pipeline. The 
significance level is a parameter that is chosen by the user. We reported in our manuscript the results at the 
0.001 level to illustrate the pipeline. We now provide an additional option in the pipeline, where the user can 
specify the chosen significance level. We set as default the FWER (family-wise error rate) method. As the tests 
both within the tract and across tracts are correlated, we use the result on the bounds of correlated tests54, and 
make the following corrections: (1) within-tract adjustment is specified as (the number of points) divided by 

Figure 6.   Bundle profile analysis was carried out on PPMI data of 32 control and 32 patient subjects. The figure 
shows results for five major bundles, AF_ L, CST_ L, IFOF_ R, OR_ R, and UF_ R. The 2-sample independent 
t-test was carried out on AFQ bundle profiles of subjects to get significant group differences along the tract. 
For BUAN, linear mixed models (LMM) was run to get significant group differences along the tract. (A) shows 
AFQ bundle profile results on 5 bundles and (B) shows BUAN results on the same data. In both (A) and (B), the 
first row has mean bundle plots for fractional anisotropy (FA) and second row has mean bundle plots for mean 
diffusivity (MD). Each plot has a mean bundle profile for the control group in green and a mean bundle profile 
for the patient group in red. On the x-axis, we have length along the tract/segment number, on the left y-axis, we 
have mean anatomical values and the negative logarithm of p values on the right y-axis of the plots. In the plots, 
the horizontal lower line indicates a p value < 0.01 and the horizontal upper line indicates a p value < 0.001.
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the (correlation of the test statistics within the tracts); (2) across-tract adjustment is specified as (the number 
of tracts) divided by the (correlation of the test statistics across the tracts). Thus, for example, if the testing is 
done at n=100 points within the tract and there are 30 bundles, the corrected significance level is 0.05 divided 
by (100/(1− ρwithin) and (30/(1− ρacross)) ; assuming ρwithin = 0.9 and ρacross = 0.6 , the corrected significance 
level is 0.05/(10× 5) = 0.001 . Proper adjustment for multiple comparisons needs to take into account very 
high correlations between the adjacent disks. We will address this issue in our future work via a functional data 
analysis approach treating all the streamlines as functions clustered within a tract.

Using the same MDF metric in bundle extraction method and bundle shape similarity method might over-
state the similarity between the bundles. However, the estimated relative difference between any two subject’s 
bundles will be very similar.

Connections to previous studies.  The inferior fronto-occipital fasciculus is a major long-range tract 
connecting anatomically distinct cortical brain regions. Previous studies have suggested a role of the IFOF in 
complex cognitive tasks, including executive function, social cognition, attention, and semantic processing of 
language, perhaps as different subunits55–57. Previous studies in PD have identified changes in the IFOF in PD-
dementia (PDD) and Dementia with Lewy Bodies (DLB), as well as associations with executive function, lan-
guage, attention, and depression in PD patients58–61. Previous reports in the PPMI cohort indicated increased 
FA and reduced diffusivity in the IFOF and other tracts in PD relative to healthy controls, particularly tremor-
dominant PD62,63. Other tracts showing differences between healthy control (HC) and Parkinson’s disease (PD) 
patients included the frontopontine tracts, inferior longitudinal fasciculus, occipitopontine tracts, middle longi-
tudinal fasciculus, and uncinate fasciculus. The frontopontinue tracts showed degeneration in progressive supra-
nuclear palsy (PSP), an atypical Parkinsonian syndrome64. In addition, alterations in the inferior longitudinal 
fasciculus were observed in previous reports in PDD, DLB, and PSP, as well as associations with cognition, color 
vision deficits, and depression in PD58,59,61,65–68 The uncinate fasciculus also showed alterations in PD without 
dementia, PDD, DLB, and PSP, as well as associations with cognition and depressive symptoms58,59,61,66–69. The 
uncinate fasciculus is also involved in olfactory function, which is impaired in patients with PD70. In this experi-
ment, we observe a trend towards higher FA, and lower diffusivity in PD patients relative to controls, which may 
reflect a compensatory response to ongoing pathological changes associated with the disease, such as deposition 
of alpha-synuclein and degeneration of the substantia nigra and striatum. These findings are similar to previous 
reports in this sample62,63. Increased FA in the motor pathways of PD patients: the bilateral corticospinal tracts, 
bilateral thalamus-motor cortex tracts, and the right supplementary area-putamen tract have been reported71. 
Increased FA in the precuneus area of patients with PD without mild cognitive impairment has also been 
reported72. Another study has shown an increase in FA and AD in the nigral subareas in PD73. However, previ-
ous reports have also suggested a faster longitudinal decline in FA and an increase in diffusivity in PD patients 
relative to controls63,74. Patients with early-stage PD had reported higher MD relative to healthy controls75. 
Decreased FA was observed in PD subjects in the frontal lobes, including the supplementary motor area, the 
pre-supplementary motor area, and the cingulum and no significant differences observed in MD between PD 
subjects and controls76. A test–retest study on PPMI dataset27 reported similar results as presented in BUAN. An 
increased FA and GFA and decreased MD and RD in patients as compared to controls in substantia nigra (SN), 
the striatum and subthalamic nucleus (STN), pallidum, putamen and thalamus regions of the brain. The same 
trend was observed in the motor and premotor part of the corpus callosum and corticospinal tract27. Future 
studies with the BUAN framework extending the method to longitudinal DTI data from PPMI are warranted.

Comparisons.  Figure 6 shows plots for only 5 bundles but AFQ and BUAN were run on all 30 bundles. In 
AFQ, for most bundles average FA values increase in patients as compared to controls and average MD values 
decrease in patients as compared to controls. Few bundles have areas where FA decreases in patients as shown 
in Fig. 6A. FA values decrease in AF_L and OR_R bundle. In the case of MD, we see a small spike in MD val-
ues of patients in the IFOF_R and a huge spike in patients in the UF_R bundle. This could be caused due to 
two reasons, (1) anatomical values at the endpoints (extremities) of the tracts change drastically, and (2) one 
weighted-averaged streamline cannot represent the whole bundle with fanning. When average is taken, one out-
lier subject can cause the spike in the final plot which happens to be the case in MD plots for IFOF_R and UF_R 
bundle. In BUAN, significant areas on the tracts with group differences show consistent results. The average FA 
values increase in patients as compared to healthy controls at all segments with significant group differences. The 
average MD values decrease in patients as compared to healthy controls at all segments with significant group 
differences. The reason for the consistent results of average FA and MD values in BUAN is because all points 
on all streamlines are taken into the account by LMM to find group differences. BUAN utilizes information 
from all streamlines with different shapes and sizes in the data. In BUAN MD plots, we see a spike in patient 
mean in CST_ L and IFOF_ R bundle plots. This could be due to one or two outlier subjects in the patient data. 
However, LMM does not give higher significance to that area which validates that reported areas of significant 
group differences in BUAN are not affected by outliers. In the plots shown in Fig. 6, we observe the average FA 
and MD plots generated by AFQ and BUAN look different. AFQ has a higher mean variation in groups as com-
pared to BUAN results. The reason for these differences could be due to the algorithmic differences between the 
two methods. These are two different methods with different assumptions about the data. Different lengths of 
streamlines and how they are weighted can play a role in getting different results from AFQ and BUAN. AFQ dis-
cretizes each streamline into N equidistant points and then takes an average of every ith point of all streamlines 
to create one weighted averaged streamline per subject where streamlines/points closest to mid of the bundle 
are weighted more than streamlines far from the mid. As shown in Fig. 8, streamline 2 and streamline 7 end 
earlier and streamline 5 starts later than the rest of the streamlines (smaller in length than other streamlines). 
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The last point of streamline 2 and streamline 7 will contribute to the average of the 5th point of the final averaged 
streamline. The last point of both streamline 2 and streamline 7 is far from other streamlines’ last points. The 
same goes for the first point of streamline 5. This length variation of the streamlines is not taken into account in 
this experiment by AFQ which can cause a difference in comparisons with BUAN. In BUAN, points are assigned 
a segment number, and the length of the streamline is taken into account this way. In the case of Fig. 8, the last 
points of the streamline 2 and streamline 7 are assigned to the closest model centroid point and assigned the 
4th segment number. Starting points of the streamline 5 are assigned 2nd segment in a similar fashion. Also, all 
points on the streamlines are used to take the average per segment. Weights are not given to points while taking 
the average. In summary, BUAN utilizes all points on the streamlines when taking the average and also takes 
lengths of streamlines into account. AFQ discretizes points into N equidistant points per streamline and assigns 
more weight to the streamlines in the middle of the bundle while taking the average. Overall, both AFQ and 
BUAN report similar WM alterations between patients and controls (increased FA in patients and decreased MD 
in patients as compared to healthy controls). Further research will be needed in the future to study the impact 
of different tractometry methods and their assumptions. We hope this framework will help in that direction.

Conclusion.  BUndle ANalytics (BUAN) is a powerful tool for performing analytics of white matter fiber 
bundles. BUAN provides a completely automatic, end-to-end streamline-based solution that connects bundle 
recognition, analysis of bundle anatomy, and shape analysis. More importantly, BUAN is the nexus between 
several successful streamline-based methods11,21 of tractography, and other brain imaging modalities. BUAN 
reports the exact locations of population differences along the length of bundles. Additionally, beyond look-
ing at the profiles of the bundles, BUAN includes individual shape differences of the bundles. For this purpose, 
we introduced a novel network-based, bundle shape analysis method using bundle adjacency metrics to assess 
and compare shapes of the same type of bundles, across groups. BUAN is a generic framework that can be 
applied both in clinical and healthy populations. In theory, BUAN should work with other animal brains with 
no changes in the code. All methods of BUAN are carefully implemented, thoroughly tested, and made publicly 
available to the community for use through command-line interfaces, and Python scripts. Scientists can use the 
BUAN framework to study different types of pathological data and find differences between populations based 
on tractometry and shape analysis. BUAN is available with DIPY44 at dipy.org.

Methods
Data.  Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers 
Initiative (PPMI)46 database. PPMI is a longitudinal, observational, multi-site study with a goal of identifying 
and evaluating biomarkers for detecting and monitoring the progression of Parkinson’s disease (PD). Partici-
pants were included as PD if they: (1) had two of the following symptoms: resting tremor, bradykinesia, rigidity 
(must have either resting tremor or bradykinesia) or either asymmetric resting tremor or asymmetric bradykine-
sia; (2) a diagnosis of Parkinson disease for ≤ 2 years at screening; (3) Hoehn and Yahr stage I or II; (4) screening 
dopamine scan (DaTSCANTM or VMAT-2) was consistent with dopamine transporter deficit; (5) not expected 
to require PD medication within at least 6 months from Baseline; (6) Male or female age ≥ 30 years at PD diag-
nosis. Control subjects were also males or females age ≥ 30 years with no first degree relative with idiopathic PD 
and normal cognition. This dataset contains 179 healthy control subjects and 412 patients recently diagnosed 
with PD. These details about the data set are available at the PPMI website46 and they are also described in this 
paper27. Healthy controls and patients have a mean age of 59 and 61 years respectively. Most of the subjects are 
Caucasians (93% ), 71% of PD subjects are male, and 57% of healthy patients are male. PPMI dMRI data was 
acquired using a standardized protocol used on Siemens TIM Trio and Siemens Verio 3 Tesla MRI machines 
from 32 different international sites. Diffusion-weighted images were acquired along 64 uniformly distributed 
directions using a b-value of 1000  s/mm2 and a single b =  0 image. Single-shot echo-planar imaging (EPI) 
sequence was used (matrix size = 116× 116 , 2 mm isotropic resolution, TR/TE 900/88 ms, and twofold accelera-
tion). An anatomical T1-weighted 1 mm3 MPRAGE image was also acquired. Each patient underwent two base-
line acquisitions and two more one year later. The right and left-onset patients are distributed in proportions of 
57% and 43% . More information on the MRI acquisition and processing can be found online at www.ppmi-info.
org. We have processed 64 subjects: 32 controls, and 32 We selected subjects in the age range of 39–61 to elimi-
nate the possibility of any biases introduced by the age differences of the subjects. Each group is comprised of 14 
female and 16 male subjects to further eliminate biases introduced by different sex distribution of the subjects in 
groups. In summary, these were all the valid subjects available in the PPMI dataset that were in the specific age 
range and also balanced the number of subjects with same sex in both groups.

Streamline‑based Bundle Atlas.  In this paper, we used a publicly available streamline-based bundle 
atlas. Our atlas was a reduced form of the HCP-842 template77,78. Original population-based atlas was modified 
for the BUAN framework. Original atlas comes with 80 bundles. We combined all 80 bundles together to create 
an atlas of the whole brain tractogram. The whole-brain atlas tractogram and 80 bundles were moved to MNI 
152 space (ICBM 2009a). Lastly, 30 bundles of interest were selected out of 80 bundles to be used in the analysis. 
We excluded bundles from the atlas that did not exist in the PPMI data. Many of the bundles in the original atlas 
were cranial nerves (pathways outside of the brain) that do not exist in this data. Our neuro-anatomist inspected 
the atlas and removed any bundles or streamlines with unrealistic shapes that did not confirm the anatomy as 
reported in5,12. The final atlas can be downloaded from DIPY44 using the dipy_fetch command. The atlas con-
tains a whole-brain tractogram and the corresponding subset of the 30 bundles. Names of the bundles can be 
found in supplementary materials Appendix A.1 Fig. A1.

http://www.ppmi-info.org
http://www.ppmi-info.org
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Data preparation.  The local principal component analysis (LPCA) noise reduction method79 was used for 
the diffusion MR images. For brain tissue extraction, the median Otsu algorithm80 was used. The distortions 
induced by eddy currents and motion were corrected by registering the diffusion-weighted volumes to the b0 
volume. An affine transformation was computed to register b0 volume and non-b0 3D volumes by maximiza-
tion of normalized mutual information. The optimization strategy used in DIPY is similar to that implemented 
in ANTs81. The B-matrix (b-vectors) were rotated to preserve the correct orientational information as described 
in this paper82. After the diffusion data is denoised, DTI measures, fractional anisotropy (FA), mean diffusivity 
(MD), radial diffusivity (RD), and axial diffusivity (AD)35,36 were extracted from each subject’s data. A spherical 
harmonics model based on QBall-Constant Solid Angle were fitted to get orientation density functions (ODFs) 
and extracted generalized fractional anisotropy (CSA-GFA)38,39, and quantitative anisotropy (CSA-QA)40. For 
generating whole-brain tractograms, a constrained spherical deconvolution (CSD) model was used to get direc-
tional information from dMRI data83, from which a simplified peaks representation was extracted. The obtained 
peaks were then used as the input to a local tracking algorithm. We performed deterministic tracking84,85 using 
EuDX52. EuDX tracking algorithm was initialized with following parameters, tracking starts from voxels where 
fractional anisotropy (FA) > 0.3 , number of seeds per voxel = 15, step size = 0.5, angular threshold = 60 degrees, 
and stopping tracking if FA value drops below 0.1. Each generated tractogram comprised of 5–10 million stream-
lines. DIPY’s44 implementation of methods was used in all preprocessing steps.

Bundle recognition.  Tractography algorithms generate potentially unmanageably large data sets with mil-
lions of streamlines. It is a logistically challenging task to visually and/or computationally inspect any given 
individual streamline for aberrant or otherwise distinctive traits looking at the whole tractogram. Thus, our 
method greatly simplifies this process by extracting specific subsets of related streamlines from the otherwise 
intractable mass of streamlines. This process of extracting specific groups of streamlines with similar anatomi-
cal characteristics from whole-brain tractograms is called automated bundle extraction or bundle recognition. 
Bundle recognition11 goes a step further from automated bundle extraction as it requires no training as it learns 
from single examples of bundles. In our approach, in order to extract white matter fiber tracts from whole-brain 
tractogram, we first register an input target tractogram (A.a) to a model tractogram (A.b) using Streamline-
based Linear Registration (SLR)45 as shown in Fig. 1. After we have transformed the target tractogram from 
native space to common space, we begin extracting bundles. Whole-brain tracrograms contain a large number of 
false positives for example, unrealistically small or extremely long streamlines. We pre-processed the tractogram 
by removing streamlines smaller than 30 mm. The input to RecoBundles (RB) is the registered target tractogram 
(A.c) and a model bundle (A.d)11. The model bundle is used as a reference bundle to find corresponding stream-
lines in the target tractogram. The model bundle is part of the atlas used for registering the target tractogram to 
common space. Both target tractogram and model bundle are in common space. The first step in RecoBundles 
is to reduce the search space and find neighboring areas for the model bundle in the target tractogram. This 
is achieved by a process called far pruning. We exclude the streamlines from our search space whose MDF21 
distance with model bundle streamlines is greater than the reduction threshold. The default value or reduction 
threshold is set to 15 mm. Now, the search space consists of only potential bundle streamlines, we call these 
streamlines neighbor streamlines of the model bundle in the target tractogram. In the next step, RecoBundles 
applies local registration of neighbor streamlines to model bundle streamlines using SLR45. After local registra-
tion of streamlines, local pruning of neighbor streamlines is performed in a similar manner as far pruning. 
Neighbor streamlines whose MDF distance with model bundle streamlines is greater than the pruning threshold 
are discarded. The default pruning threshold is set to 8 mm.

Auto‑calibration.  Human brain pathways come in all sorts of shapes and sizes. While larger bundles are 
easier to locate and extract, it becomes difficult to reliably extract smaller and hard to find pathways in large 
tractograms. To resolve this problem and eliminate the need for changing parameters to deal with short bundles, 
we added one more step in RecoBundles (RB)11 algorithm. We call this new step, auto-calibration. As shown 
in Fig. 1A. during the auto-calibration step, the final extracted bundle output of standard RB (e) becomes our 
new model bundle. RB is run again on the same target tractogram but this time the model bundle is not part of 
an atlas but part of the target tractogram itself. Since the new model bundle is part of the target tractogram, it 
eliminates the need for local streamline-based registration with the model bundle. All steps of RB are performed 
again in the same order as described in "Bundle recognition" section except the local registration of neighbor 
streamlines with the model bundle. The default auto-calibration reduction threshold is set to 12 mm and the 
auto-calibration pruning threshold is set to 6 mm. This additional step allows us to: (a) use the same parameters 
for short and long bundles, (b) produce more dense bundles than before, and (c) reduce any issues because of 
shape differences between the initial model bundle and the final target bundle. We found auto-calibration to 
be especially useful when dealing with noisy data or when extracting small bundles like the uncinate fasciculus 
(UF) from the whole brain tractograms. All bundles are extracted using the same default parameters. At the end 
of the bundle extraction process, we assess the quality of bundle extraction by using two cost functions, bundle 
adjacency (BA) and bundle-based minimum distance (BMD)45. Bundle adjacency of the extracted bundle is cal-
culated with the model bundle to report the shape similarity score between two bundles. BA evaluates the shape 
similarity between the two bundles. The bundle adjacency method is explained thoroughly in "Shape analysis 
using bundle adjacency" section. BMD is used for calculating a distance between two bundles. BMD function is 
explained in detail with equations in Appendix A.6.2 of the supplementary materials.

Assignment maps.  For tractometric studies along the length of the tracts, we are combining information 
from extracted bundles and anatomy. To perform analysis on extracted bundles, we create assignment maps 
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by dividing the bundles into segments using the model bundle centroids along their lengths in common space 
(model tractogram space). We cluster our model bundle using QuickBundles21 resulting in a cluster centroid (b) 
with 100 points per centroid as shown in Fig. 1B. To divide a given bundle into segments, we calculate Euclidean 
distances between every point on every streamline of the bundle (B.a) and all model bundle centroids (B.b) 
and assign the considered point to the nearest segment centroid similar to27. However, we do not resample our 
streamlines to have a discrete number of points or change the distribution of points. Our approach of creating 
segments does not require a streamline to have a specific number of points. We use all the points of the stream-
lines, and assign them to the closest points of the centroid on the model bundle to create assignment maps/
segments (B.c). Assignments are created in a common space (model atlas), which ensures that the segment 
index corresponds to the same centroid across all individuals. Fig. 1B, presents the visual process of creating 
assignment maps.

The advantage of creating these assignment maps and diving bundles into segments is that we are able to 
analyze specific areas of a bundle. White matter tracts have distinct shapes and their shapes vary across the length 
of the tract. For example, in the case of the arcuate fasciculus, we see a larger spread of streamlines at both ends 
of the bundle. Anatomical measures such as FA also change throughout the bundle. It makes sense to look at a 
specific segment that has a consistent shape and anatomical measure values.

Information such as the positions of the points of each streamline, the index of the streamlines in the bundle, 
the segment number, the subject ID, group ID, and anatomical measure values like FA, MD, RD, AD, CSA-GFA, 
and CSA-QA were saved in HDF5 (.hd5) files. Those files were used as input to statistical models. We used linear 
mixed models (LMM) for group comparisons based on a given metric (e.g. FA) over a specific tract and specific 
tract location (segment).

Linear mixed models.  We used linear mixed-effects models (LMMs)41–43 to study how anatomical meas-
ures differ between patient and control groups along the length of white matter bundles. We applied LMMs 
separately for each segment of a given white matter bundle. Our main interest was in differentiating between 
the groups: patients vs. controls. We achieved that by including the group effect as a fixed effect in the regression 
model describing the outcomes’ (FA, AD, RD, MD, CSA-GFA, and CSA-QA) differences between the groups. 
To account for the correlations among the observations from different streamlines collected from the same 
individual and tract, we included random subject-tract effects. See supplementary materials, Appendix A.4 for 
a detailed mathematical explanation.

Shape analysis using bundle adjacency.  We introduce, a new network-based approach to perform 
shape analysis between bundles. For getting the resemblance between two bundles, we use the bundle adjacency 
(BA) metric first introduced in21. We use bundle adjacency (BA) to calculate the shape similarity between the 
same type of bundles across subjects and groups. The higher the BA value, the higher the similarity between the 
shapes of the two bundles. We created a network graph and similarity matrix from BA values for the same bun-
dle-type across subjects. Bundle adjacency (BA) is calculated between two bundles. BA uses a minimum direct 
flip (MDF) distance21 to get the distance between two streamlines. The minimum average direct-flip distance21 is 
a symmetric distance function that deals with the streamline bi-directionality problem. It calculates both direct 
and flipped distances between two streamlines which have the same number of points and takes a minimum of 
both. For equations and more details on MDF distance please see Appendix A.6.1 in the supplementary materi-
als. Let, B1 and B2 be two sets of streamlines (bundles), and let θ > 0 be a selected adjacency threshold. We will 
say that b1 ∈ B1 is adjacent to B2 if there is at least one streamline b2 ∈ B2 with MDF(b1, b2) ≤ θ . We define the 
coverage of B1 by B2 as the fraction of B1 that is adjacent to B2. Coverage ranges between 0 (when all streamlines 
in B1 are too far from B2) and 1 (when every streamline in B1 is adjacent B2). In order to compare two bundles 
of possibly different data sets, we define the symmetric measure bundle adjacency (BA). BA is the average of the 
coverage of B2 by B1 and the coverage of B1 by B2:

BA ranges between 0 and 1. BA score is 0 when no streamlines of B1 or B2 have neighbors in the other set, and 
1 when they all do.

Figure 7, shows the bundle network graph and similarity matrix. Figure 7A, illustrates the concept of bundle 
shape analyses using the bundle adjacency metric. We can understand this by looking at the diagram as a tree 
where parent node p, the left arcuate fasciculus (AF_L) bundle, for example, has 5 child nodes, c1, c2, c3, c4,  and 
c5. Here, the tree nodes are the bundles. These children bundles are created by selecting a subset of the parent 
bundle streamlines p. The c1 bundle is an exact replica of p, c2 bundle is missing parts of the p bundle. We created 
all 5 child bundles in similar fashion by removing significant parts of the original bundle p as we move from the 
left to the right. At the end, the c5 bundle contains only the middle part of the original p bundle.

The Bundle Adjacency method requires two bundles and a threshold θ . Where, θ determines the degree of 
stringency of shape comparison between two bundles. The higher the value assigned to θ , the easier it is for two 
bundles to obtain a high BA score, while the lower the value assigned to θ , the lower the resultant BA score.

In Fig. 7, the branches of the tree represent the BA score between two bundles. The color of the BA score rep-
resents the threshold value, θ . The black-colored BA score label corresponds to θ = 5 mm used while calculating 
the BA score. The red-colored BA score label corresponds to θ = 15 mm used while calculating the BA score. We 
show in the Fig. 7, how one can adjust the bundle adjacency method to produce results for shape similarity based 
on a threshold θ which can be seen as a parameter for leniency. With leniency, we mean how loosely we want 
our method to classify shape similarity between bundles. For example, if we want our bundles to be extremely 
close in shape by having a rigidly similar length and width, we set the threshold to be a smaller number (5 mm 

BA(B1,B2) = 0.5(coverage(B1,B2)+ coverage(B2,B1))
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in this example). Which gives a BA score of 1 if the bundle is an exact replica of itself, and it gives a BA score of 
0 when no similarity whatsoever which is the case with c5.

In the case where θ = 15mm , we can see perfect BA score between c1 and p which is also the case when 
θ = 5mm . But for the c5 bundle, we get a BA score of 0.543. Although the c5 is quite different in shape, it still 
has some part of the parent bundle p (the middle part). The usage or selection of threshold depends on user-
specific needs. If we strictly want two bundles to have the same length and width we can use smaller threshold 
value and if we want to see if a given bundle has sub parts of other bundles or it has some relation with other 
bundles we can use higher threshold value. BA requires two bundles to be in the same coordinate space to give 
interpretable results.

Bundle networks.  Results generated by the bundle adjacency function can also be represented as a fully 
connected network graph of bundles as shown in Fig. 7B. We created a fully connected graph with a similarity 
(BA) score on the edges connecting two vertices (bundles) shown in (B.a). Here, we have created a fully con-

Figure 7.   Bundle-based shape analysis. (A) shows shape similarity among a parent bundle p with 5 children 
bundles in a tree structure. We calculate shape similarity using bundle adjacency (BA) between parent p (AF_L) 
and children c1, c2, c3, c4,  and c5 which are curated by eliminating parts of the same parent bundle p. The c1 
bundle is an exact replica of the p bundle and it has a perfect BA score of 1. BA score changes as we eliminate 
larger parts of the bundle in child bundles. For c5, we see the least similarity with the BA score of 0 in the case of 
θ = 5 . We can manage how strict we want our similarity/shape analysis by adjusting the threshold θ accordingly. 
The red threshold of 15 mm is lenient while the black threshold of 5 mm is more strict as shown in (A). (B) we 
can illustrate our shape analysis overview as a fully connected graph with similarity (BA) scores on the edges 
and the bundles as nodes as shown in (a). We can also visualize it as a similarity matrix (b) where dark blue 
color means higher shape similarity and white color indicates lower shape similarity.
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nected left arcuate fasciculus (AF_L) bundle graph of 5 subjects. In this paper, for each of the 30 different bun-
dles, we created a fully connected network graph of bundles from 64 subjects. Where every subject’s bundle is 
connected to every other subject’s bundle. The weight on the edges connecting two bundles signifies the strength 
of shape similarity relationship between two bundles. The higher the weight, the higher the shape similarity.

When there are many subjects (vertices), it becomes difficult to see shape similarity visually only from a con-
nected network graph. For this purpose, we interpret results in a compact way as a similarity matrix (B.b), where 
darker blue color means higher similarity and lighter blue color indicates less shape similarity among bundles. In 
the diagonal, we have all 1s as BA is calculated between a bundle and itself. BA can be used as a quality assurance 
measure, it can also be used to detect outliers in the dataset. When a subject’s bundle is comparatively different 
than other subject’s bundles, BA gives it a lower score and we can detect that subject’s bundle as an outlier from 
the similarity matrix.

Using graph-theoretic analysis we can study differences between similar types of bundles. The hierarchical 
clustering of the similarity matrix is a useful technique to find clusters in the data. We can also represent our 
similarity matrix as a Voronoi diagram. In this paper, we are applying Ward’s hierarchical clustering86 on similar-
ity matrices to find clusters of subjects with similar bundle shapes.

Method comparison.  Automated Fiber-Tract Quantification (AFQ)29 has gained popularity in the past 
couple of years. AFQ is an open-source and freely available software that provides methods for extracting bun-
dles and quantifying diffusion measurements along the length of the white matter fiber tracts (bundle-profiles) 
that can be used for group comparisons. Originally, AFQ provided region-of-interest (ROI)-based fiber tract 
extraction method for 18 white matter tracts. AFQ now enables users to select from ROI based bundle extrac-
tion or RecoBundles11 bundle extraction. After bundles are extracted from the data, bundle profiles are gener-
ated based on anatomical measures. For every subject, a mean bundle profile is generated with mean values of 
any given anatomical measure along the length of the tract. The mean bundle profile is generated by resampling 
each streamline in the bundle into 100 equidistant points and calculating the mean location of each point. Mean 
anatomical measurements (eg. FA) are calculated at each point by taking a weighted average of the FA measure-
ments of each individual streamline at that point. Weights are calculated based on the Mahalanobis distance of 
each streamline point from the core streamline. The final output of AFQ per subject is a mean bundle profile 
with 100 equidistant points and anatomical measurement values associated with each point along the tract.

Both AFQ and BUAN generate bundle profiles with anatomical measures associated with it along the length 
of the tract. Figure 8 illustrates the representation of AFQ and BUAN bundle profiles for one subject. This is not 
real data but simulated for the sake of explanation. Here, the AFQ bundle profile is created by resampling each 
streamline in the input bundle into 5 equidistant points and then taking a weighted average of all points along 
the length of the tract. One weighted mean streamline represents the whole bundle. Whereas, in the BUAN 
bundle profile, streamlines are not discretized into 5 points. The input bundle is divided into 5 segments. Each 
point on a streamline is given a segment number (label) based on which centroid is it closest to on the model 
centroid streamline. In the BUAN bundle profiles, all points on all streamlines are kept and are not represented 
as one simplified averaged streamline.

Note that in the AFQ bundle profile, the last few points on the streamline 2 and streamline 7 are discretized 
and represented by one 5th point. The 5th point of streamline 2 and streamline 7 is far from the rest of the stream-
lines’ 5th point. AFQ will take a weighted average of all streamlines’ 5th points to create averaged 5th point of 
final AFQ bundle profile streamline. Whereas in the BUAN bundle profile, the last points of streamline 2 and 

Figure 8.   Input bundle is given to (a) AFQ and (b) BUAN to generate bundle profiles. (a) Shows AFQ bundle 
profile representation for one subject. Each streamline is resampled to have 5 points and then all streamlines are 
averaged together to create one FA bundle profile. (b) Shows BUAN bundle profile representation of the same 
subject. The input bundle is divided into 5 segments. Each point on the streamline is assigned a segment number 
based on the closest centroid on the model centroid streamline (yellow).
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streamline 7 are closest to the 4th model centroid point and therefore are assigned to segment number 4. AFQ 
does not provide any statistical analysis method that can be applied to bundle profiles. User has to visually look 
at mean bundle plots of subjects and find differences in plots manually. On the other hand, BUAN provides a 
sophisticated method to automatically find group differences for a given anatomical measure along the length of 
the tract. BUAN uses linear mixed models for finding group differences. BUAN provides a visualization tool that 
highlights the exact area on the bundle which is significantly different in two groups. AFQ does not provide any 
bundle shape analysis method. BUAN provides a novel graph-based bundle shape similarity method explained 
in "Shape analysis using bundle adjacency" section that can also be used for quality assurance.

Data availability
The Parkinson’s Progression Markers Initiative (PPMI)46 is publicly available database https​://www.ppmi-info.
org. A subset of the datasets generated and analyzed during the current study is released as examples with the 
pipeline, and complete data set processed is also available. PPMI data derivatives generated during this study 
can be found at https​://doi.org/10.35092​/yhjc.12033​390. It contains PPMI data derivatives for 64 subjects used 
in the paper, each subject contains 30 white matter bundles in common space (MNI space), same 30 bundles in 
subject’s original space, and files containing anatomical information (FA, MD, RD, AD, CSA Peaks). Streamline-
based bundle atlas used in this paper can be downloaded from DIPY44 using the dipy_fetch command or from 
figshare. The atlas contains a whole brain tractogram and the corresponding subset of the 30 bundles.

Code availability
Bundle extraction tutorial can be found here. To reproduce the results on PPMI data, please follow the BUAN 
tutorial in DIPY. https​://githu​b.com/dipy/dipy/blob/maste​r/doc/inter​faces​/buan_flow.rst. Code for Bundle Ana-
lytics framework is publicly available in GitHub and can be found here https​://githu​b.com/dipy/dipy.
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