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High-fidelity scaling relationships 
for determining dissipative 
particle dynamics parameters from 
atomistic molecular dynamics 
simulations of polymeric liquids
M. H. Nafar Sefiddashti1,2, M. Boudaghi-Khajehnobar1,2, B. J. Edwards1* & B. Khomami1*

An optimized Dissipative Particle Dynamics (DPD) model with simple scaling rules was developed for 
simulating entangled linear polyethylene melts. The scaling method, which can be used for mapping 
dimensionless (reduced units) DPD simulation data to physical units, was based on scaling factors for 
three fundamental physical units; namely, length, time, and viscosity. The scaling factors were obtained 
as ratios of equilibrium Molecular Dynamics (MD) simulation data in physical units and equivalent DPD 
simulation data for relevant quantities. Specifically, the time scaling factor was determined as the ratio 
of longest relaxation times, the length scaling factor was obtained as the ratio of the equilibrium end-
to-end distances, and the viscosity scaling factor was calculated as the ratio of zero-shear viscosities, 
each as obtained from the MD (in physical units) and DPD (reduced units) simulations. The scaling 
method was verified for three MD/DPD model liquid pairs under several different nonequilibrium 
conditions, including transient and steady-state simple shear and planar elongational flows. 
Comparison of the MD simulation results with those of the scaled DPD simulations revealed that the 
optimized DPD model, expressed in terms of the proposed scaling method, successfully reproduced the 
computationally expensive MD results using relatively cheaper DPD simulations.

Accurate modeling and simulation of flow-microstructure coupling in entangled polymeric fluids is of great tech-
nological and scientific interest. Despite notable successes of advanced reptation (tube) based models under low 
to moderate flow conditions1–5, a number of key theoretical concepts used in these models have only been explic-
itly defined under quiescent conditions. How these basic concepts, such as the tube radius, number of entangle-
ments, primitive path length, tube stretch, tube orientation tensor, etc., are extrapolated to high strain rate flows 
is a matter of great interest to practitioners of polymer fluid mechanics and rheology.

To address these and other relevant questions, single molecular visualization experiments are paving the way 
for the molecular level understanding of the complex flow behavior of entangled polymeric fluids6,7. Although 
these experiments have shed light on the complex relaxation behavior of entangled polymeric fluids, namely, 
polymer chain and tube relaxation times, they have yet to provide a clear molecular mechanism for the dynamics 
of the entanglement network topology; i.e., reversible flow-induced disentanglement and its effect on the mac-
roscopic response of the fluid undergoing flow. The primary limitation of current single-molecule visualization 
experiments is the short time (compared to the longest relaxation time of the fluid) and the small number of 
molecules that can be effectively tracked simultaneously in dense entangled fluids under flow. Hence there has 
been a growing body of work aimed at atomistic or coarse-grained simulations of polymeric fluids. These include, 
atomistic Non-Equilibrium Molecular Dynamics (NEMD)8–12, coarse-grained NEMD13–16, Dissipative Particle 
Dynamics (DPD)17–25, and Slip-Link (SL) and Slip-Spring (SS) simulations26–29.

To date, NEMD simulations have provided a wealth of information regarding single chain dynamics and their 
relationship to the macroscopic rheological and microstructural properties of this class of fluids. Chief among 
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them are (1) a molecular description of convected constraint release (CCR) including new modes of chain relax-
ation, and (2) entanglement network dynamics and its inherent relation with tube stretch and orientation, and 
hence polymeric stress9,30– 33. A key advantage of this “virtual experimentation” over conventional experimenta-
tion is that every atomic constituent of each molecule can be tracked at arbitrarily small time increments, thus 
providing a complete description of the dynamical state of the entire fluid system. Furthermore, virtual experi-
mentation can be conducted on pure systems (e.g., strictly monodisperse, linear macromolecular melts) under 
ideal conditions without regard to instrument compliance or inertia. NEMD simulations also provide rheological, 
optical, and spectroscopic data in physical units that can be directly compared with experimental data34–38, in 
contrast to simulations of coarse-grained models (as discussed below). The primary limitations on what can be 
achieved are (1) the accuracy of the atomic potential model of the polymeric liquid and (2) the vast computational 
resources necessary to simulate these highly entangled macromolecular systems possessing up to 108 degrees of 
freedom which must be tracked over multiple disengagement times.

Coarse-grained models of atomistic liquids offer a more computationally tractable alternative to brute force 
MD simulations wherein individual atomistic molecular units are grouped together and treated as single entities, 
thus greatly reducing the number of degrees of freedom to be tracked during the time integration. Mesoscale 
simulation methods, such as SL, SS, and DPD, have contributed significantly to the understanding of linear and 
nonlinear rheology of entangled fluids at length and time scales beyond the computational limitations of MD 
simulations. However, the accuracy of the predictions made by the SL and SS techniques strongly depends on 
the assumed constraint release/renewal frequency, particularly at large deformation rates. On the other hand, the 
accuracy of DPD simulations is directly related to how accurately various static and dynamic properties of the 
chain (as determined via atomistic simulations) can be used to determine the time and length scales of the asso-
ciated multiatomic particles of the DPD simulations. To this end, attention is focused on developing an accurate 
yet simple method to obtain rescaling parameters such that DPD and MD simulation results are fully consistent 
over a wide range of deformation rates in common flow situations, such as steady-state and startup of shear and 
elongational flows.

Methodology
Dissipative particle dynamics (DPD) was originally introduced by Hoogerbrugge and Koelman39,40. In this model, 
three types of force are applied to each particle: a conservative force derived from a potential exerted on particle 
pairs, a dissipative force, and a random force. The original model of Hoogerbrugge and Koelman, however, lacked 
an expression relating the system temperature and the model parameters. Español and Warren41 derived the sto-
chastic differential equations and the corresponding Fokker-Planck equation for DPD. The temperature in this 
formulation was related to the random force via the fluctuation-dissipation theorem.

The forces typically employed in state-of-the-art DPD simulation of polymeric chain systems are 
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D, and Fij
R are the conservative, dissipative, and random forces 

between particles i and j, and Fi is the total acting force on particle i. The conservative force is a purely repulsive 
pairwise interaction with a repulsion constant, a, and a cutoff distance, rc. The distance between the particle pairs 
is represented as rij, and 

 =r rij ij/rij is the unit connector vector between the particles i and j. The dissipative force 
is expressed in terms of the velocities of the particles, vi, and a friction coefficient, γ, whereas the random force is 
modeled using a Gaussian random variable ζ with zero mean and unit variance. ωR = (1 − rij∕rc) and ( )D R 2ω ω=  
are weighting factors, and the amplitude parameter of the random force, σ, is related to the dissipative force 
through the fluctuation-dissipation theorem as 

k T2 (5)B
2σ γ= .

Moreover, for the simulations reported herein, the beads belonging to a particular molecule are connected using 
harmonic springs, = −k r rF ( )ij

S
s eq ij  between two consecutive beads and a small bending potential, 

θ= +U k (1 cos )bend b  between three consecutive beads, where ks = 400 is the spring constant and req = 0.95 is the 
equilibrium bond length. Two values for the bond-bending constant are used here: kb = 2, as used by Mohagheghi 
and Khomami18, and kb = 2.38, which is a fine-tuned value for reproducing entangled polyethylene melt proper-
ties obtained from MD simulation, as discussed in the Results and Discussion section.

To prevent chain-crossing in DPD simulations of an entangled liquid, we employed a computationally efficient 
method developed by Nikunen et al.42. This method suggests that chain crossing can be avoided by tuning the 
conservative force and enforcing a simple geometric constraint. Mohagheghi and Khomami18 showed that the 
criterion could be met by choosing a proper level of coarse-graining and an appropriate spring constant. In the 
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present work, we use the same level of coarse-graining and the parameter set as those used by Mohagheghi and 
Khomami18—see the cited reference for more details on the chain-crossing criteria. Table 1 summarizes the DPD 
model parameter numerical values and their relevant units. In this table, m is DPD particle mass, which is consid-
ered as the mass unit for the DPD model. In the present DPD simulations, the geometric chain-crossing criterion 
remained satisfied in all cases, regardless of whether kb = 2 or 2.38.

Equilibrium and nonequilibrium DPD simulations of monodisperse linear polyethylene molecules composed 
of 233 (N233), 250 (N250), and 400 (N400) beads per chain were performed in the NVT ensemble at a constant 
reduced bead number density of ρbead = 1 and constant temperature of kBT = 1. Newton’s equations of motion 
were integrated using the Velocity-Verlet algorithm, implemented within the Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS43) environment, to perform the DPD simulations. Nonequilibrium DPD 
simulations were performed using a boundary-driven approach along with the Lagrangian rhomboid periodic 
boundary conditions. The simulation time step was 0.012 for all the DPD simulations and the parameter sets for 
all systems were the same, except that the spring constant was set at kb = 2.38 for N233 and kb = 2 for N250 and 
N400—see Table 1. Table 2 summarizes the cell details for the DPD simulations.

Equilibrium and nonequilibrium molecular dynamics simulations of monodisperse, linear, C700H1402 and 
C1000H2002 melts were performed in the NVT ensemble at a constant density of 0.766 g/cm3 (corresponding to a 
pressure of 1 atm) and constant temperature of 450 K. The Siepmann-Karaboni-Smit (SKS) united-atom potential 
model34 was used to quantify the energetic interactions between the atomistic components of the polyethylene 
liquid except that the rigid bond between adjacent atoms in the original model was replaced with a harmonic 
potential function. The p-SLLOD equations of motion44–48 were used to perform the NEMD simulations, which 
were maintained at a constant temperature of 450 K using a Nosé-Hoover thermostat49,50. The equations were 
integrated using the reversible-Reference System Propagator Algorithm (r-RESPA)51 with two different time 
steps. The long timestep was 4.70 fs, which was used for the slowly varying nonbonded Lennard-Jones interac-
tions, and the short timestep was 1.176 fs (one-fourth of the long timestep) for the rapidly varying forces includ-
ing bond-bending, bond-stretching, and bond-torsional interactions. The set of p-SLLOD evolution equations 
for the particle positions and momenta were implemented and integrated within the LAMMPS43 environment. 
The MD simulation results are mostly based on prior work of Nafar Sefiddashti et al.10,12,32,33—see the cited refer-
ences for the simulation details. Specifically, the simulation cell sizes and the number of particles can be found for 
the C1000H2002 liquid in Table 1 of ref. 33, and for the C700H1402 melt in ref. 32 (equilibrium and shear simulations) 
and ref. 10 (PEF simulation). A detailed discussion of the SKS model equations and parameters can be found 
elsewhere9,12,52.

Results and Discussion
Equilibrium simulations.  DPD simulation parameters and outputs are usually expressed in reduced 
(dimensionless) units. The most common normal or natural units for DPD simulations are the bead’s mass, mbead, 
as the mass unit, the pairwise potential cut off distance, rc, as the length unit, and kBT as the energy unit (which 
could be used to define a time unit). As a consequence, DPD results can not be compared directly with the exper-
imental results and other real-unit simulations, such as atomistic MD. Therefore, the development of simple and 
accurate rescaling parameters through adequate mapping of DPD results to corresponding MD results could lead 
to significant advantages in the realistic and reliable analysis of the dynamics of polymeric liquids using compu-
tationally affordable methods such as DPD.

It is worth noting that practically many MD simulations are also performed in reduced units, for instance, 
Lennard-Jones (LJ) units where the monomer mass, LJ distance parameter, and LJ energy parameter are assumed 
to be unity; However, since the values of these parameters are known in real units, all quantities can be equiva-
lently expressed in real (e.g., SI) units, and hence easily compared against experimental results.

Comparing various coarse-grained simulations and developing scaling methods and parameters has been 
a subject of many recent studies53–55. For example, Masubuchi and Uneyama54 compared some results from a 

Quantity Value Units

a 200 kBT/rc

γ 4.5 mk T r( / )B c
2 1/2

σ 3.0 m k T r( ( ) / )B c
3 2 1/4

ks 400 k T r/B c
2

req 0.95 rc

kb 2.38 (N233) 2.0 (N250 and N400) kBT

Table 1.  DPD simulations parameters.

System Lx Ly Lz Number of particles

N233 97.8 41 41 164,265

N250 100 100 52.92 528,750

N400 130 65 65 549,600

Table 2.  The DPD simulation cell characteristics. Lx, Ly, and Lx are cell lengths in x, y, and z dimensions, 
respectively, in reduced (rc) units.
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few multichain models, including multichain slip-spring and slip-link (PCN) models, with Kremer-Grest type 
coarse-grained MD simulations56,57 and proposed conversion parameters for the units of length, time, and bead 
number. However, as the Kremer-Grest type simulations are coarse-grained simulations themselves, a direct com-
parison with experimental data cannot be performed using these conversion parameters. In this work, we focus 
on finding scaling parameters for DPD simulations using united atom MD simulations (with real units), which 
are essential to paving the way for direct comparison of DPD simulation results and experiment.

As discussed in the previous section, chain-crossing in DPD could be avoided by choosing a proper level 
of coarse-graining and an appropriate spring constant18. For the selected parameter set and simulation condi-
tions (i.e., temperature and density) discussed in the previous section, this proper level of coarse-graining for an 
entangled polyethylene melt is obtained by lumping roughly three methyl monomeric units into a single DPD 
bead. Moreover, a coarse-grained linear chain consisting of N beads should be expected to exhibit similar entan-
glement properties as those of a linear C3NH6N+2 polyethylene melt. This can be investigated by comparing the 
probability distribution functions (PDFs) for the entanglement densities and the number of Kuhn segments per 
chain obtained from DPD and MD simulations. Figure 1a displays the PDFs of the entanglement density, Zk, for 
C700H1402 and C1000H2002 melts from MD simulations and the N233, N250, and N400 liquids from DPD simula-
tions under quiescent conditions obtained from Z1-code analysis58. The ratios between the number of monomeric 
units and the number of beads are 2.8 and 2.5 for the C700H1402/N250 and C1000H2002/N400 pairs, respectively. 
These ratios are slightly smaller than the ultimate value of 3 that will be shown to represent equivalent MD and 
DPD simulation pairs; however the deviation of these ratios from 3 is small enough to allow an insightful com-
parison of the DPD and MD results and to fine-tune the coarse-grained DPD model.

Figure 1a reveals that despite a good agreement between the PDFs for C700H1402/N250 and C1000H2002/N400 
simulation pairs, they are not precisely equivalent. The discrepancy could be due to various factors including the 
degree of coarse-graining (bead ratio or ratio of Kuhn segments) and relative chain flexibility (controlled by kb in 
the DPD model). The number of Kuhn segments per chain can be readily calculated from the simulation results 
as =N RR /k max

2 , assuming Gaussian statistics, where R max is a chain’s maximum contour length and ⟨R2⟩ is 
the ensemble average of the squared chain end-to-end magnitude. Table 3 shows that there is a significant dis-
crepancy between the number of Kuhn segments for the C700H1402/N250 and C1000H2002/N400 simulation pairs. 
These discrepancies (in both Zk and Nk) suggest that both the coarse-graining ratio and bond-bending potential 
need to be optimized to map the DPD results accurately to a real physical (in the present case, polyethylene) liq-
uid through comparison with MD simulations.

This optimization was performed and the results are also presented in Fig. 1 as the N233 DPD simulation 
results. The optimized coarse-graining bead ratio and bending potential turned out to be 3 and Kb = 2.38, respec-
tively. Figure 1b presents the probability distribution function for the chain end-to-end distance, ∣R∣, normalized 
with the chain contour length under quiescent conditions for the simulated liquids. The distributions are 
Gaussian, as expected, with a peak at an ensemble average normalized end-to-end distance, R2 1/2/| |R max for each 
liquid. Note that the peak position theoretically corresponds to Nk

1/2−  ( R2 1/2/ N bR ( )kmax
2 1/2| | = / = −N b N( )k k

1/2, 

Figure 1.  Probability distribution functions of the number of entanglements per chain (a) and normalized 
chain end-to-end distance (b) for C700H1402 and C1000H2002 liquids from MD simulations, and N233, N250, and 
N400 from DPD simulations under quiescent conditions.The bond-bending parameter was kb = 2.38 for the 
N233, and kb = 2 for N250 and N400 simulations.

Chain τd R
/2 1 2

⟨Zk⟩ Nk DG

C700H1402 1216 ns 123.5 Å 17.5 53 3.22 × 10−1 Å2∕ns

N233 1.15 × 106 29.1 16.9 57 1.97 × 10−5

N250 1.07 × 106 27.9 16 72 1.6 × 10−5

C1000H2002 5270 ns 141.8 Å 24.3 83 1.28 × 10−1 Å2∕ns

N400 5.3 × 106 35.2 26 116 6.1 × 10−6

Table 3.  Structural, dynamical, and topological properties of the simulated liquids under quiescent conditions.
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where b is the Kuhn length). The apparent differences in Fig.  1a,b between the C700H1402-N250 and 
C1000H2002-N400 pairs is due to a suboptimal matching of the number of Kuhn segments resulting from a higher 
chain flexibility in the DPD simulations (which used kb = 2). However, for the optimized parameter of kb = 2.38 
and a bead ratio of 3, the N233 DPD simulation results for both Zk and R R/ max practically overlap with those of 
the corresponding MD simulation data of the C700H1402 melt.

For an entangled liquid, the ensemble average equilibrium chain end-to-end distance, R2 1/2, radius of gyra-
tion, Rg

2 1/2〈 〉 , and the reptation (disengagement) time, τd, are perhaps the most suitable candidates for scaling the 
length and time units of the DPD simulations based on MD simulation data. Prior DPD simulations have shown 
that the root-mean-squared end-to-end distance and disengagement time scale with the number of beads, N, as 
N1∕2 and N3.3, respectively18, in agreement with both experiment and the MD simulations31–33. Molecular 
Dynamics simulations and experiments also suggest that these quantities are physically reasonable scaling 
choices. On the other hand, these properties only reflect the long time (( )dτ ) dynamics of the system, and hence 
may not work properly at shorter time scales. Also, such scaling parameters that are obtained solely based on 
equilibrium properties are not guaranteed to be valid in a nonequilibrium flow application. These issues will be 
discussed later. Table 3 presents several equilibrium properties of the polyethylene liquids from both MD and 
DPD simulations. The disengagement time was calculated from the longest decorrelation time of the chain 
end-to-end vector autocorrelation function, as described in prior work32,33. A length scaling factor can now be 
postulated as 

F
R

R (6)
l

MD

DPD

2 1/2

2 1/2= .

Similarly, a time scaling factor is defined as 

F
(7)

t
d
MD

d
DPD

τ
τ

= .

To use these scaling factors, one should multiply the DPD length and time units by Fl and Ft, respectively, to 
obtain their values in real units.

A scaling factor for the stress tensor, σ, can be defined as the ratio of plateau modulus obtained from the MD 
and DPD simulations. Calculation of the plateau modulus, however, can be computationally expensive, especially 
for MD simulations. Alternatively, the zero-shear viscosity can be used to define a scaling factor for viscosity as 

η

η
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v
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0
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where η MD
0  and DPD

0η  are the zero-shear viscosities calculated from NEMD (extrapolated to zero strain rate) and 
DPD simulations. The zero-shear viscosity in both NEMD and DPD simulations scales as N3.3. Since all three 
scaling factors have numerators and denominators that scale with N equally (for entangled liquids), these ratios 
should not change with N (for a specific value of the MD/DPD particle ratio) in the long-chain limit (above C∞).

These three scaling factors constitute the most important principal physical dimensions, which can be 
employed to extract units (scaling factors) for other physical quantities, such as stress, velocity, etc., using a sim-
ple dimensional analysis. Scaling factors for the stress and normal stress coefficients can be readily calculated, 
respectively, as 
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It should be noted that the stress scaling factor from Eq. (9) should not be used for converting the thermodynamic 
pressure due to significant differences among the potential models employed in MD and DPD simulations. 
However, it works fairly well for scaling all components of the extra stress tensor, including shear and normal 
stresses. The mass conversion factor can be readily calculated as Fm = FνFtFl, using a similar dimensional analysis. 
The numerical value of Fm in SI units for N233 is Fm = 2.022 × 10−26 kg. A conversion factor for density can then be 
calculated as Fρ = Fm/ = .F 265 7l

3  kg/m3 for N233. Note that the mass density in DPD simulations is ρm = 1, as the 
DPD particle mass is m = 1. Hence, DPD mass density can be expressed in SI units as ρmFρ, that is, 1 × 265.7 = 265.7 
kg/m3 for N233; in physical units of the PE melt, this corresponds to a density of 3 × 265.7 = 797.1 kg/m3, which is 
within 4% of the density value used in the MD simulations, i.e., 766 kg/m3. This ratio is not coincident; it arises from 
the level of coarse-graining used here, i.e., lumping three CH2 united atoms of MD into one DPD bead.

Table 4 collects the length, time, and viscosity scaling factors for the C700H1402/N233, C700H1402/N250, and 
C1000H2002/N400 melt systems. Note that the N250 and N400 systems have numerical values for the scaling factors 
that are relatively consistent with those of the optimized N233 system, except for the Fv scaling factor, which var-
ies significantly from one system to another.

https://doi.org/10.1038/s41598-020-61374-8


6Scientific Reports |         (2020) 10:4458  | https://doi.org/10.1038/s41598-020-61374-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Armed with scaling factors for length and time, a theoretical scaling factor can be calculated for diffusivity. 
From a dimensional point of view, diffusivity is expressed in (length)2/time units. Hence a diffusivity scaling fac-
tor can be defined as =F Fd l

2/Ft, and calculated as 1.699 × 104 Å2/ns for N233, 1.724 × 104 Å2/ns for N250, and 
1.632 × 104 Å2/ns for N400, based on the quantities displayed in Table 4. These values lead to estimations of 
3.364 × 10−1 Å2/ns and 2.759 × 10−1 Å2/ns for the diffusivity of C700H1402 based on N233 and N250 results, 
respectively, and 1.0 × 10−1 Å2/ns for the diffusivity of C1000H2002 based on N400 results. These estimations differ 
by about 4% based on N233, 14% based on N250, and 9% percent based on N400, compared to the corresponding 
values from the MD simulations. The agreement between the estimated values and the MD values is very good, 
especially for the optimized N233 system ( ≈ 4%), considering the statistical error associated with estimating the 
diffusivity coefficient as well as the error in estimating the disengagement time, ensemble average chain 
end-to-end distance, and the corresponding length and time scaling factors.

Both the disengagement time and diffusivity are steady-state and large timescale properties of the system that 
only reflect the longer time dynamics (( )dτ ) of the liquids. It could be argued that any length and time scale 
obtained from these properties is not guaranteed to be valid for shorter time and length scales, and hence this 
issue needs to be examined under those conditions. Furthermore, the same skepticism exists for any and all tran-
sient physical properties that are scaled using these factors. Therefore, we next examine the segmental 
mean-squared displacement, φ τ τ= 〈 + − 〉t tr r( ) ( ( ) ( ))n n

2  (rn is the position vector of the n-th monomer or 
bead)3, which quantifies steady-state dynamics over a wide spectrum of time and length scales simultaneously, 
ranging from the entanglement time τe and tube diameter a, to the disengagement time τd and chain end-to-end 
distance ∣R∣. Hence, comparison of φ between the various simulation methods is instructive for examining the 
accuracy of the simulations as well as the validity of the scaling factors used for mapping their results. Reptation 
theory predicts four regimes for the motion of chain segments3. For times shorter than τe, the segmental MSD 
scales as t1∕2. For τe < t < τR (where τR is the Rouse relaxation time), the chain motion is affected by the Rouse-like 
diffusive motion (and the tube constraints) and the segmental MSD scales as t1∕4. For τR < t < τd, φ scales as t1∕2, 
and for t > τd, reptation becomes the dominant diffusive mechanism wherein φ scales as t1.

Figure 2 displays the segmental mean-squared displacement, φ, as a function of time for the C700H1402, N233, 
and N250 (panel (a)) and the C1000H2002 and N400 (panel (b)) liquids. The DPD data for N233, N250, and N400 
were scaled using Fd and Ft from Table 4, as explained above. It is evident from this figure that a single scaling 
factor works satisfactorily over the entire range of time and length scales. Note that both plots cover times from 
5 ns (i.e., roughly the entanglement time of polyethylene31–33,52) to times well above the disengagement time for 
each liquid. Furthermore, the good agreement between the DPD and MD results (especially for the C700H1402/
N233 pair) confirms that the proposed DPD method is capable of capturing the short and long time-length scale 
dynamics reliably. This is not surprising as the smallest timescale of the DPD simulation remains well below the 
entanglement time of the macromolecular system (or, equivalently, the shortest DPD length scale remains small 
relative to the tube diameter).

Nonequilibrium simulations.  It has been demonstrated thus far that simple time and length scaling factors 
obtained from long-time properties, such as the overall chain dimensions and the reptation time, can be used for 
reliably mapping the steady-state properties calculated from DPD simulations to real, physical dimensions; 

Chain Ft (ns) Fl (Å) Fv (Pa s)

N233 1.057 × 10−3 4.238 4.515 × 10−5

N250 1.136 × 10−3 4.427 6.332 × 10−5

N400 9.943 × 10−4 4.028 7.428 × 10−5

Table 4.  Length, time, and viscosity scaling factors for the C700H1402/N233, C700H1402/N250, and C1000H2002/
N400 melts.

Figure 2.  Segmental mean-squared displacement versus time of the 50% centermost chain monomeric units 
for C700H1402, N233, and N250 (panel (a)), and C1000H2002 and N400 (panel (b)). The MD data were taken from 
refs. 32,33 and the DPD data were scaled using Fd and Ft from Table 4.
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however, the same demonstration needs to be performed under transient conditions and in nonequilibrium situ-
ations. In this section, we examine transient and steady-state flow behavior for several different systems: the 
C700H1402/N233 pair subject to simple shear flow at Wi = 50 and at Wi = 1000, the C1000H2002/N400 pair subject 
to simple shear flow at Wi = 58, and the C700H1402/N250 pair subject to planar elongational flow (PEF) at 
WiR ≈ 1.6 (Wi = 30). The reptation Weissenberg number, 


γτ≡Wi d, is proportional to the shear rate, 


γ, which is 

made dimensionless using the disengagement time of the liquid, and the Rouse Weissenberg number, ετ≡WiR R, 
is proportional to the extension rate, ε, which is made dimensionless using the Rouse relaxation time of the liquid. 
It should be noted that in all cases the strain rates are above R

1τ−  of the liquids, and hence flows are highly nonlin-
ear. Indeed, we chose the values Wi = 50 and Wi = 1000 because the former is greater than τ−

R
1 and the latter is 

greater than τ−
e

1, thus covering two very different but highly nonlinear flow regimes. At such high flow strength, 
most of the liquids’ structural and topological properties are significantly perturbed as compared to their proper-
ties under quiescent conditions. It is logical to assume that, if the scaling methods are reliable under quiescent 
conditions and at such high flow strengths, they should also perform reasonably well over a wide range of flow 
strengths including the linear, nonlinear, and highly nonlinear flow regimes. The velocity gradient tensor assumes 
the form 

γ∇ =













u
0 0 0

0 0
0 0 0 (11)

for the simple shear flow and 

ε
ε∇ =






−











u
0 0

0 0
0 0 0 (12)

for planar elongational flow.
Figure 3a displays the evolution of the ensemble average chain end-to-end distance as a function of time for 

the C700H1402 and N233 liquids upon startup of shear flow at Wi = 50 and Wi = 1000. The DPD length unit has 
been scaled using the end-to-end distances of the NEMD and DPD simulations under equilibrium conditions 
(according to Eq. (6): Fl = 4.238 from Table 4) and the time unit is scaled using Ft from Table 4. Note that at the 
initial instant, both simulations occupy microstates that are statisitically not at the quiescent ensenmble average 

Figure 3.  (a) The ensemble average chain end-to-end distance as a function of time and shear strain (inset) 
upon startup of shear flow for the C700H1402 and N233 liquids. (b) The probability distribution functions for 
the chain end-to-end distance at equilibrium, εH = 2, and steady-state for the same liquids. The transient shear 
viscosity (c) and normal stress coefficients (d) as functions of shear strain. The four top curves in panel (d) 
represent Wi = 50 and the four bottom curves represent Wi = 1000 simulations. The NEMD data of panel (c) 
for Wi = 1000 were taken from ref. 59 and the DPD data were scaled as explained in the text.
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microstate; however, the scaling method was applied using the equilibrium average results represented in Table 4 
rather than employing a value of Fl based on the NEMD and DPD systems’ instantaneous microstructural states 
at the initial time (t = 0). In general, there is a good agreement between the two simulations, suggesting that the 
proposed scaling method suffices at least for mapping preaveraged quantities such as the ensemble average molec-
ular extension over a wide rage of flow strength. However, the average extension overshoot is slightly underpre-
dicted by DPD for Wi = 50. This could be because kb was optimized under quiescent conditions, whereas the 
DPD chains could possibly be stiffer than the NEMD chains (which follow the SKS potential) at the overshoot 
time. Nevertheless, the overshoot time is captured correctly by the scaled DPD data. The inset of Fig. 3a shows the 
same quantity as a function of shear strain, 


γ γ= t, which provides a quantitative measure of the relative defor-

mation of the material within the applied shear flow field. Note that γ also serves as a dimensionless time, which 
is not affected by the time scaling method used here. The good agreement between the curves in the inset suggests 
that the length scaling works fairly well under transient conditions. Overall, it is evident from Fig. 3a that both the 
proposed length and time scaling factors independently perform well under transient conditions.

The probability distribution functions of the chain end-to-end distance are presented in Fig. 3b at equilibrium 
and various shear strains/rates during the evolution of the systems. The distributions are Gaussian and practically 
identical at equilibrium, as evident from Fig. 3b. The DPD end-to-end distances in this figure are scaled using 
Fl = 4.238 from Table 4. As flow begins, the molecules become partially oriented and stretched, and the distribu-
tions widen and become non-Gaussian—see the γ = 2 and steady-state curves in Fig. 3b. Note that γ = 2 corre-
sponds to the stress overshoot time for Wi = 50 (see Fig. 3c). The quantitative agreement between these curves 
demonstrates that the DPD simulations and the proposed length scaling method reproduce the NEMD results 
not only on the mean-field level (e.g., average chain extension), but also on the molecular level.

The transient shear viscosity (


/xyη σ γ≡ −+ ) is presented in Fig. 3c for the C700H1402 and N233 liquids upon 
startup of shear flow at Wi = 50 and Wi = 1000. The DPD values were scaled using Fv = 4.515 × 10−5 Pa.s, as 
obtained from the ratio of the shear viscosities of C700H1402 (taken from ref. 32) and N233 at Wi = 1. The first 
(


( )/xx yy1

2σ σ γΨ ≡ − ) and second (


σ σ γΨ ≡ −( )/yy zz2
2) normal stress coefficients as functions of shear strain are 

displayed in Fig. 3d. The DPD values were scaled using FΨ = 6.6958 × 10−17 Pa.s2, according to Eq. (10). The 
agreement between the NEMD and scaled DPD values for all these rheological functions is nearly quantitative for 
both Wi’s, except for the η+ and Ψ2 overshoots at Wi = 1000. It is not apparent whether this minor discrepancy is 
due to the viscosity scaling procedure or the DPD simulation potentials. It should be noted that FΨ is subject to 
two error sources since it is calculated as the product of two other factors (i.e., Fv and Ft), which are themselves 
prone to error. Nevertheless, the overshoot strains are captured by the DPD simulation fairly well in both cases.

Figure 4 is the counterpart of Fig. 3 for the startup shear simulations of the C1000H2002 and N400 melts at 
Wi = 58. The reasonable agreement between the evolution of the ensemble average end-to-end distance between 

Figure 4.  (a) The ensemble average chain end-to-end distance as a function of time (main panel) and shear 
strain (inset) upon startup of shear flow at Wi = 58 for the C1000H2002 and N400 liquids. (b) The probability 
distribution functions for the chain end-to-end distance at equilibrium, εH = 2, and steady-state for the same 
liquids. The shear viscosity (c) and normal stress coefficients (d) as functions of shear strain. The NEMD data 
were partially taken from ref. 33 and the DPD data were scaled as explained in the text.
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the NEMD and DPD simulation data, as displayed in Fig. 4a, verifies again that both the length and time scaling 
factors work fairly well under transient conditions of startup shear flow. The inset of Fig. 4a shows the end-to-end 
distance as a function of shear strain, γ. Similar to the C700H1402/N233 case (see 3a), there is minor discrepancy 
between the NEMD and scaled DPD data after the overshoot in Fig. 4a. In addition to previous comments con-
cerning the C700H1402/N233 melt, the discrepancy here could also be due to the fact that the C1000H2002 and N400 
systems are not identical, as discussed in the previous section; however, the end-to-end distance probability dis-
tribution functions at equilibrium are almost identical, as presented in Fig. 4b. Note that the DPD end-to-end dis-
tances in Fig. 4b are scaled using Fd = 4.028 from Table 4. The distributions at γ = 2, corresponding to the stress 
overshoot time for both simulations (see Fig. 4c), agree fairly well over all chain end-to-end distances.

The rheological material functions also agree reasonably between the NEMD and scaled DPD results, as 
demonstrated in Fig. 4c,d. The DPD values for the shear viscosity are scaled using Fv = 7.428 × 10−5 Pa s, as 
obtained from the ratio of the shear viscosities of the C1000H2002 and N400 melts at Wi = 1, taken from refs. 33 
and19. The DPD values for the normal stress coefficients are scaled using FΨ = 7.8543 × 10−17 Pa s2, according to 
Eq. (10). Despite the reasonable quantitative agreement between the data at low shear strains, i.e., γ < 1, and high 
shear strain, i.e., γ > 10 (nearly steady-state), the agreement is only qualitative for η+ and ψ1 within the intermedi-
ate range of shear strains that includes most of the transient region. Specifically, there is a maximum of 45% differ-
ence between the shear viscosity values, which occurs at the shear stress overshoot time. Such a discrepancy could 
arise because of (at least) two reasons. One reason is that such a simple viscosity (stress) scaling method using 
the ratio of zero-shear viscosities, is not adequate for startup of shear flow, especially near the stress overshoot 
time. The other possible reason is that the C1000H2002 and N400 liquids are not precisely equivalent systems, as 
discussed above. In fact, the N400 melt is closer to a C1200H2402 polyethylene melt, whose molecular weight is 20% 
heavier than C1000H2002. It is worth emphasizing that viscosity scales as M3.3 under equilibrium conditions. Hence, 
a relatively small difference in polymer molecular weight could lead to a relatively large difference in viscosity. 
Also, the bond-bending potential parameter for the N400 simulation was taken as kb = 2.0, which is slightly softer 
than the optimized potential; this could also lead to deviation of DPD results from those of NEMD simulations. 
Nevertheless, the overshoot strains are captured well by the DPD simulations, suggesting that the proposed scal-
ing methods are fairly robust with respect to small inaccuracies in simulation parameters. Bear in mind that Fig. 4 
was produced via simulations that did not employ the optimal parameters (i.e., kb = 2.0 rather than the optimized 
value of 2.38 and bead ratio of 2.5 rather than the optimized value of 3), which also demonstrates the robustness 
of the proposed scaling factors.

For completeness, we examine the performance of the proposed DPD and scaling methods for another impor-
tant type of flow, i.e., elongational flow. Elongational flows apply very large deformations which can stretch the 
molecules significantly as compared to quiscent conditions and shear flows. Hence, entangled polymeric liquid 
responses under elongational flows are commonly quite different from their responses under shear and require 
independent investigation since shear behavior is not necessarily generalizable to elongational conditions. 
Figure 5a displays the evolution of the ensemble average chain end-to-end distance as a function of time for the 
C700H1402 and N250 liquids upon startup of planar elongational flow at WiR = 1.6. The DPD length unit was scaled 
using Eq.(6) and Fl = 4.427 Å from Table 4, and the time unit was scaled using Eq. (7) and Ft = 1.136 × 10−3 from 
Table 4. There is a good agreement between the two simulations, suggesting that the proposed scaling method 
sufficiently matches averaged quantities, such as the ensemble average molecular extension under elongational 
conditions. The inset shows the same quantity as a function of Hencky strain, tHε ε= , which provides a quanti-
tative measure of the relative deformation of the material. Similarly to the shear strain, εH can be thought of as a 
dimensionless time, which allows comparing the respective time evolution behavior regardless of the time scal-
ing. The good agreement between the curves in the inset of Fig. 5a implies that the length scaling works very well 
under transient conditions. Overall, it is evident from Fig. 5a that both the proposed length and time scaling 
factors independently perform well under transient elongational flow conditions.

The probability distribution functions of the chain end-to-end distance are presented in Fig. 5b at equilibrium, 
startup of PEF, and steady-state PEF conditions at WiR = 1.6 for the C700H1402 and N250 liquids. The distributions 
are Gaussian and practically identical at equilibrium, as evident from Fig. 5b. At εH = 2, although the distribu-
tions do not overlap, they exhibit some qualitatively similar features. Specifically, both distributions have a peak 
around 100 Å representing the coil configurations that have not yet been significantly disturbed by the imposed 
flow. Also, the probabilities for highly stretched configurations are significantly lower than those of the coiled and 
mildly stretched configurations for both the NEMD and DPD simulations. The differences between the distri-
butions at εH = 2 could arise from various factors; however, most importantly, it should probably be attributed 
to the simulation cell size effect of the NEMD simulation rather than the scaling of the DPD length units. It has 
previously been shown that there could be significant cell size effects in elongational flow simulations of entan-
gled liquids, especially in the calculation of the probability distribution function of chain extension12; however, 
such effects are not expected to influence the qualitative features exhibited by the liquid. See the Supplementary 
Materials of ref. 12 for more details. Meanwhile, the small NEMD simulation cell size translates to poor sta-
tistics and consequently large fluctuations in the transient PDF curve, which makes the resulting comparison 
inconclusive. Also, recall that the N250 melt is not quite equivalent to the C700H1402 liquid as both the employed 
bond-bending potential (kb = 2) and the bead ratio (700/250 = 2.8) were slightly different than the optimized 
values of kb = 2.38 and bead ratio (3).

Similar statements can be made when comparing the end-to-end distance distributions under steady-state 
conditions. Once again, the NEMD and DPD distributions do not completely match at steady state; however, 
they exhibit qualitatively similar behavior. Both distributions have peaks at high values of ∣R∣, corresponding to 
highly stretched molecules. The NEMD peak position is at approximately 650 Å, which is somewhat lower than 
that of the DPD peak at 710 Å. The NEMD distribution is Gaussian-like and relatively narrow, whereas the DPD 
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distribution is comparatively wide (hence shorter than that of NEMD) with a long tail on the left side of the peak. 
Again, it appears that mostly quantitative differences between the distributions arise from cell-size effects in the 
NEMD simulations rather than the scaling factors or scaling methodology. In other words, it appears that the 
discrepancy arises from the fact that the NEMD simulation ensemble is not large enough to capture all the possi-
ble system configurational microstates and hence has a bias towards stretched configurations in agreement with 
observations of Nafar Sefidashti et al.12. It is worth noting that the NEMD simulation box contains 104 chains, 
which is significantly lower than the 2115 chains within the DPD simulation cell.

Figure 5c,d show the primary extensional viscosity, η +
1 σ σ ε≡ −( )/(4 )xx yy , and the secondary extensional vis-

cosity, 2η +
( )/(4 )yy zzσ σ ε≡ − − , respectively, as functions of Hencky strain upon startup of extensional flow at 

WiR = 1.6 for the C700H1402 and N250 simulations. The DPD data have been scaled using Fv = 6.332 × 10−5 Pa s, 
which is the ratio of the shear viscosities of the C700H1402 and N250 melts at Wi ≈ 1, taken from refs. 32 and19. It 
should be noted that we did not use the viscosity values at a lower Wi (e.g., Wi = 0.1) since those values are sub-
ject to huge statistical errors–see the error bars in Fig. 3b of ref. 32 and Fig. 1a of ref. 19. It is evident from Fig. 5c,d 
that both the scaled extensional viscosities from the DPD simulation agree very well with those of the NEMD 
simulation within statistical error bounds, implying the effective performance of the scaling method under both 
transient and steady-state conditions. These results again confirm that preaveraged rheological and microstruc-
tural quantities are not very sensitive to the proposed scaling method, nor are they very sensitive to the DPD 
simulation parameters per se.

Conclusions
A simple and accurate method was developed to rescale equilibrium and nonequilibrium DPD simulation data, 
which are naturally dimensionless, to physical units that are consistent with those obtained from equivalent atom-
istic MD simulations of model linear entangled polyethylene liquids. The ratio of monomeric (MD) units to DPD 
particles was optimized at 3 and the bond-bending constant of the DPD simulations was optimized at kb = 2.38. 
Three fundamental scaling factors were defined for length, time, and viscosity (equivalently, stress and force) as 
the ratios of relevant quantities that are readily obtained from MD and DPD simulations. Specifically, the length 
scaling factor was obtained from the ratio of the ensemble average chain end-to-end distances under quiescent 
conditions, the time scaling factor was calculated as the ratio of the disengagement times, and the viscosity scaling 
factor was obtained from the ratios of zero-shear viscosities. Most other scaling factors could be readily obtained 
from the fundamental ones using straightforward dimensional analysis. The numerical values for the optimized 
scaling factors were Ft = 1.057 × 10−3 ns for time, Fl = 4.238 Å for length, and Fv = 4.515 × 10−5 Pa s for viscosity. 
The comparisons of equilibrium MD and DPD simulation data, as well as nonequilibrium simulations including 

Figure 5.  (a) The ensemble average chain end-to-end distance as a function of time (main panel) and 
Hencky strain (inset) upon startup of PEF at WiR = 1.6 for the C700H1402 and N250 liquids. (b) The probability 
distribution functions for the chain end-to-end distance at equilibrium, ϵH = 2, and steady-state for the same 
liquids. Also displayed are the primary, η1 (c), and secondary, η2 (d), extensional viscosities as functions of 
Hencky strain for the same liquids. The NEMD data of panel (a) were taken from ref. 10 and the DPD data were 
scaled as explained in the text.
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shear and planar extensional flows at high flow strengths, revealed that these simple scaling factors were capable 
of mapping the DPD data onto those of equivalent MD simulations in both transient and steady-state flows within 
the linear and nonlinear viscoelastic flow regimes. Since these scalings were developed for chain lengths above 
the long-chain characteristic ratio, C∞, they possibly apply to all polyethylene liquids of higher molecular weight. 
Because of its much greater computational efficiency, this new DPD model allows for simulations of polyethylene 
liquids of much greater molecular weight over longer time durations and with larger simulation cells than previ-
ously possible.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding authors on 
reasonable request.
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