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incentive motivation improves 
numerosity discrimination: insights 
from pupillometry combined with 
drift-diffusion modelling
Annika Dix1,2* & Shu-chen Li  1,2

Recent studies show that training the approximate number system (AnS) holds promise for improving 
symbolic math abilities. Extending this line of research, the present study aims to shed light on 
incentive motivation of numerosity discrimination and the underlying mechanisms. thirty-two 
young adults performed a novel incentivized dot comparison task, that we developed, to discern the 
larger of two numerosities. An EZ-diffusion model was applied to decompose motivational effects on 
component processes of perceptual decision-making. Furthermore, phasic pupil dilation served as an 
indicator of the involvement of the salience network. the results of improved accuracy and a higher 
information accumulation rate under the reward condition suggest that incentive motivation boosts 
the precision of the ANS. These novel findings extend earlier evidence on reward-related enhancements 
of perceptual discrimination to the domain of numerosity perception. in light of the Adaptive Gain 
Theory, we interpret the results in terms of two processes of gain modulation driven by the locus 
coeruleus-norepinephrine system. Specifically, the reward-induced increase in pupil dilation may reflect 
incentive modulation of (i) salience attention during reward anticipation towards incentivized stimuli to 
upregulate stimulus processing that results in a larger drift rate; and (ii) response caution that leads to 
an increased decision threshold.

“Number sense” refers to the intuitive ability to process numerical information without consciously dealing 
with symbolic representations of numbers1. This sense of numerosity has been widely studied and discussed as 
a foundational perceptual function that serves higher-order cognitive processes for the acquisition of abstract 
numerical concepts and mathematical skills in humans2. A subcomponent of this function is the approximate 
number system (ANS), which allows for a quick, albeit inexact, estimation of the number of sensory (e.g., visual 
or auditory) objects. The precision of ANS correlates with mathematic achievements throughout the lifespan3,4 
and has been investigated in earlier training studies that were aimed at enhancing individuals’ ANS precision and 
related symbolic math abilities5. Such training usually only relies on accuracy-based feedback6–8, although reward 
incentive has been validated as a potent modifier of performance in many other cognitive and sensory domains 
(for reviews, see9–11). So far, systematic research on incentive motivation of the precision of the ANS has not been 
undertaken. Thus, the aim of the current study is twofold: (i) investigating whether incentive motivation improves 
numerosity discrimination; and (ii) understanding mechanisms underlying the potential incentive benefits.

Incentive motivational regulation implicates neural activities in the brain’s reward network, which broadly 
comprises various cortical and striatal regions that are richly innervated by the mesolimbic and nigrostri-
atal dopamine (DA) projections (for reviews, see12–16). According to the Incentive Salience hypothesis13, 
reward-related DA signals in the mesolimbic system are assumed to strengthen the perceptual salience assigned 
to the neural representations of reward-associated objects; thereby, incentive motivation directs attention towards 
incentivized, though not necessarily task-relevant, stimuli (e.g., task-irrelevant features associated with reward 
during visual search)17. In a different vein, reward-induced perceptual enhancement has also been considered to 
stem from the impact of endogenous, top-down attentional regulation, which biases perception. The detection 
or discrimination of anticipated reward cues is facilitated through such processes10,18–21. In line with these ideas, 
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the present study aimed to examine the potential benefit of reward-related incentive salience on enhancing the 
precision of numerosity representations and thereby improving perceptual discrimination. In so doing, earlier 
studies on incentive-driven attention in visual search can be extended to the domain of numerosity perception. 
To better capture mechanisms underlying incentive motivation, other than behavioural performance we also 
assessed task-related pupil dilation (PD) – a measure that has been linked to activities in the brain’s salience net-
work during reward processing22,23.

In earlier research, pupil size has primarily been used as a proxy to indicate norepinephrinergic activities 
subserving affective (e.g., arousal) and cognitive (e.g., attention or mental load) functions (see24,25 for reviews). 
According to the Adaptive Gain Theory (AGT) of locus coeruleus-norepinephrine (LC-NE) function by 
Aston-Jones and Cohen26, task-evoked (phasic) PD reflects neural activity in the LC that favours the processing 
of task-relevant information over task-irrelevant explorative behaviour in the environment. The AGT proposes 
that the LC receives direct inputs about costs and feedback in the current task from cortical structures, such as the 
anterior cingulate cortex (ACC) as part of the reward system. In line with this postulate, a study by Schneider et 
al.23, which combined pupillometry with functional magnetic resonance imaging (fMRI), found increased activa-
tion in the dorsal ACC to be positively correlated with PD during the expectation of monetary rewards. Another 
study by Manohar and Husain27 further lends support for the roles of the reward network and mesolimbic DA in 
mediating the association between incentive motivation and reward-induced PD. Using a speeded saccade task 
with monetary incentives, it was shown that pupillary reward sensitivity in patients with Parkinson’s disease was 
restored after being treated with a DA agonist. In the present study, we were particularly interested in whether 
phasic PD evoked by a reward cue may reflect effects of incentive modulation during a numerosity discrimination 
task. Furthermore, we examined whether incentive benefits on performance would be related to reward-induced 
phasic increase in pupil size.

One typical paradigm for studying numerosity discrimination is the non-symbolic dot comparison task, in 
which two arrays of dots are presented on each trial and the participants have to decide which array contains 
more dots3,4. In the research on perceptual decision-making, the drift-diffusion model (DDM) has been used 
widely to dissociate the decision process into distinct components28. In recent years, its application in the field 
of numerosity perception has gained increased attention. Park and Starns29 demonstrated that one parameter of 
this model, the drift rate (v), could serve as a measure of the precision of the ANS. It represents the efficiency of 
sensory evidence accumulation about the to-be-compared quantities. Since the DDM allows the decomposition 
of the decision process into subcomponents, it has advantages not only for studying numerical processing at the 
behavioural level with more specificity, but also for examining the mechanisms underlying reward-related mod-
ulations of the ANS. For instance, the drift rate of perceptual decision depends on various stimulus features, such 
as difficulty or perceptual salience. Further, it can also be affected by the person’s attentional focus28. Consistent 
with the Incentive Salience hypothesis, Spaniol et al.30 observed greater drift rates (i.e., more efficient information 
accumulation) in the reward condition as compared to a neutral condition of a perceptual discrimination task.

Besides the drift rate, DDMs have another parameter that reflects the decision criterion (threshold) at which 
point the necessary amount of evidence is reached for a given decision to be taken. This decision threshold, also 
known as the boundary separation (a) parameter, can be adapted to optimize accuracy per unit of time based on 
feedback favouring response speed over the accuracy or vice versa31 (cf. optimal-decision theories32). In a new 
reinforcement learning-based DDM, Fontanesi et al.33 recently observed a lower decision threshold for highly 
attractive options in a value-based decision-making task. This is in accordance with the findings by Cavanagh 
et al.34, who showed a reduced decision threshold in the most appetitive condition of a probabilistic selection 
task. Interestingly, in this latter study, which combined a hierarchical Bayesian DDM with pupillometry, larger 
PD was associated with increased response caution (i.e., a higher decision threshold) in high-conflict situations 
(i.e., appetitive conflict in the most appetitive and aversive conflict in the most aversive condition, respectively). 
Furthermore, the non-decision time (tER) parameter of DDMs captures response time (RT) that is not directly 
related to the decision process (e.g., sensory encoding or response execution)35. Due to its broad definition, this 
parameter theoretically reflects all non-decision related processes, which makes it – in terms of the meaning – less 
specific. It has been associated with various psychological constructs including attention and may thus be subject 
to reward-related modulation as well.

Taken together, the twofold purpose of the present study was to investigate the impact of incentive motivation 
on numerosity discrimination and to examine the underlying mechanisms by combining pupillometric measures 
with the application of a simplified version of the DDM, the EZ-diffusion model36. To this end, we developed a 
new incentivized dot comparison task (see Fig. 1 and the Methods section for more details). We expected that 
reward incentive would improve task performance by increasing the salience of the representations of different 
numerosities13. Relatedly, we assumed task-evoked PD to be larger during reward anticipation and when process-
ing stimuli in rewarded trials compared to unrewarded trials. Moreover, we expected that a stronger reward mod-
ulation effect at the psychophysiological level would be associated with reward-induced performance outcomes 
(i.e., higher levels of bonus won in the task)23. Other than effects related to reward anticipation, we hypothesized 
that larger PD would reflect increased discrimination difficulty, that is, smaller differences between the quantities 
of the to-be-compared dot arrays in our paradigm (e.g., a ratio between the two arrays of 10:9 vs. 5:4).

Regarding the subcomponents of the decision process, we hypothesized that reward would lead to an increase 
in drift rate (v)30, indicating enhanced precision of the ANS29 as well as affecting the decision threshold (boundary 
separation a) and the non-decision time (tER)35. To date, findings on the effects of reward on boundary separation 
are still somewhat mixed and studies on non-decision time are still underrepresented. Thus, it is harder to make 
clear predictions about these two parameters. In contrast, evidence of the effects of task difficulty or cognitive 
demand is more unequivocal. For instance, in conditions with higher processing conflicts that are subsequently 
cognitively more demanding, information accumulation should be slowed and the individuals probably would 
raise their response caution, while responses may generally also take more time (e.g., longer non-decision time)28. 
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We thus anticipated drift rate (v) to decrease and boundary separation (a) and non-decision time (tER) to increase 
with greater task difficulty.

As for potential interactions between the effects of incentive and task difficulty on performance or pupillary 
response, conceptually we expected the difficulty effect to be attenuated under the reward condition if the effect 
of reward is in sharpening the representation of numerosity. Empirical evidence on this interaction in other 
domains of functioning is still mixed. In a study on speech processing, for instance, performance improvement 
under reward was only observed in the more demanding tasks. Further, in these tasks, PD was reduced for high 
but not low reward levels37. The authors interpret these findings in terms of strategic effort control to achieve a 
rewarding goal. By contrast, in the perceptual domain, a fMRI study investigating the influence of reward on 
visual discrimination showed the opposite pattern, with reward yielding a larger performance enhancement in 
easier tasks than in the most difficult one38.

Results
Behavioural performance. Analysing RT data using a linear mixed-effects model revealed main effects of 
Incentive, F(1,217) = 117.00, p < 0.0001, ηp² = 0.35, and Ratio, F(3,217) = 59.64, p < 0.0001, ηp² = 0.45. Reward 
and more difficult numerosity discrimination (smaller differences between the two dot arrays) slowed partici-
pants’ decision time. Pairwise t-tests showed no significant difference between the two easiest (ratio 4:3 vs. 5:4; 
p = 0.32, one-tailed) and the two hardest (ratio 8:7 vs. 10:9; p = 0.32, one-tailed) ratio conditions, respectively 
(all other ps < 0.04, one-tailed; see Fig. 2a). The linear mixed-effects model for accuracy also revealed main 
effects of Incentive, F(1,217) = 23.44, p < 0.0001, ηp² = 0.10, and Ratio, F(3,217) = 251.02, p < 0.0001, ηp² = 0.78. 
Participants’ answers were more often correct in rewarded trials than in the control condition as well as in trials 
with larger differences between the two dot arrays, i.e., the easier discriminations (all ps < 0.02, one-tailed; see 
Fig. 2b). The Incentive × Ratio interaction effect was not significant, neither for RTs (p = 0.22) nor for accuracy 
(p = 0.94).

Parameters of the drift diffusion model. Analysing the drift rate (v) of the EZ-DDM using a linear 
mixed-effects model revealed main effects of Incentive, F(1,217) = 19.30, p < 0.0001, ηp² = 0.08, and Ratio, 
F(3,217) = 262.33, p < 0.0001, ηp² = 0.89. The information accumulation rate was higher in trials with reward 
compared to the control trials as well as in trials with a larger difference between the two dot arrays (all ps < 0.003, 
one-tailed; see Fig. 3a). The linear mixed-effects model for boundary separation (a) also revealed main effects of 
Incentive, F(1,217) = 14.10, p = 0.0002, ηp² = 0.06, and Ratio, F(3,217) = 54.57, p < 0.0001, ηp² = 0.43. The value 
of the boundary separation parameter was larger – reflecting a more conservative response criterion – in tri-
als with reward compared to the control trials as well as in trials with larger differences between the two dot 
arrays (all ps < 0.03, one-tailed; see Fig. 3b). This latter finding seems to contradict the frequently reported pos-
itive correlation between the decision threshold and RTs, which, by contrast, were larger in trials with smaller 
differences between the two dot arrays. However, computing Pearson’s product-moment correlations between 
RTs and boundary separation (a) separately for each condition yielded the expected positive correlations 
(with 0.57 ≤ r ≤ 0.79, all ps < 0.01; Holm-correction for multiple testing). The linear mixed-effects model for 
non-decision time (tER) revealed main effects of Incentive, F(1,217) = 70.56, p < 0.0001, ηp² = 0.25, and Ratio, 
F(3,217) = 51.37, p < 0.0001, ηp² = 0.41. The value of tER was larger (indicating slower non-decision time) in trials 
with reward as well as in trials with smaller differences between the two dot arrays. Pairwise t-tests showed no 

Figure 1. Schematic representation of the experimental task: (a) Trial scheme of the incentivized dot 
comparison task depicting the three phases (i.e., incentive cue, stimulus, feedback) of a correctly answered trial 
for both the reward (top) and the control (bottom) condition; (b) Scoring scheme shown after each block giving 
an overview about the points the participant collected in reward trials during the last block (white number) and 
the accumulated total points (red number and white bar) as well as the obtained bonus winning level (levels 
1–15) and the corresponding items (pencil or vouchers; right panel) the participant had already won (see 
Methods section for more details about the task).
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significant difference between the two easiest (ratio 4:3 vs. 5:4; p = 0.12, one-tailed) and the two hardest (ratio 8:7 
vs. 10:9; p = 0.12, one-tailed) conditions (with all other ps < 0.03, one-tailed; see Fig. 3c). For all three parameters 
of the DDM, no significant Incentive × Ratio interaction effect was observed (p = 0.68 for v, p = 0.17 for a, and 
p = 0.36 for tER).

pupillometry measures. The mean courses of the pupil response over a trial for the different conditions 
are shown in Fig. 4a. Linear mixed-effects models for peak PD in the three trial phases revealed main effects of 
Incentive during reward anticipation (cue phase), F(1,217) = 96.37, p < 0.0001, ηp² = 0.31, numerosity discrim-
ination (stimulus phase), F(1,217) = 192.09, p < 0.0001, ηp² = 0.47, and feedback processing (feedback phase), 
F(1,217) = 150.98, p < 0.0001, ηp² = 0.41. The PD was larger for trials with reward compared to the control con-
dition in all three phases of the task, reflecting incentive modulation effects during reward anticipation, stimu-
lus, and feedback processing. The main effects of Ratio were only observed during numerosity discrimination, 
F(3,217) = 4.58, p = 0.004, ηp² = 0.06, and feedback processing, F(3,217) = 9.67, p < 0.0001, ηp² = 0.12 (p = 0.22 
during reward anticipation). Pairwise t-tests showed no significant difference between the four ratio conditions, 
neither during the stimulus (all ps > 0.51, one-tailed) nor during the feedback phase (ps > 0.08, one-tailed). 
Nevertheless, polynomial contrasts testing the linear component of the main effect Ratio (using the aov function 
of the stats package in R39) revealed increased peak PD during feedback processing the smaller the difference 
between the two dot arrays, F(1,252) = 6.33, p = 0.01, ηp² = 0.02 (see Fig. 4b). The polynomial contrast for the 
linear component of the Ratio effect during stimulus processing did not reach significance (p = 0.13). Further, no 
significant interaction between Incentive and Ratio was observed, neither for peak PD during reward anticipation 
(p = 0.84) nor during numerosity discrimination (p = 0.83) or feedback processing (p = 0.45).

The analyses of the correlation between incentive modulation of the peak PD and the level of winning bonus 
obtained in the task showed a positive relationship between the two. Greater increases in PD during reward 
anticipation was associated with a higher level of win at the end of the experiment (ρ = 0.39, p = 0.04, one-tailed). 
This relation was not observed during the phase of numerosity discrimination (p = 0.77, one-tailed) or feedback 
processing (p = 0.77, one-tailed). For further details regarding descriptive statistics of all dependent variables, see 
Table S1 in Supplementary Results.

Discussion
Math achievements depend on non-symbolic numerical abilities3,4 and can be improved by training the pre-
cision of the ANS5. While early theories of numerosity discrimination suggest reward as a potent modifier of 
numerosity perception40, to the best of our knowledge, the present study is the first to systematically investigate 
whether incentive motivation can enhance the precision of the ANS during a novel incentivized dot comparison 
task designed by us. We expected incentive salience to facilitate numerical representations and thus improve 
numerosity discrimination13. To scrutinize mechanisms underlying effects of incentive modulation, we recorded 
phasic PD, a measure known to be associated with the activity of the brain’s salience network23. Furthermore, we 
fit the EZ-diffusion model36 to the behavioural data to separate the decision process into subcomponents. The 
main findings of this study are that reward enhanced numerosity discrimination as indicated by higher accuracy 
and more efficient information accumulation (i.e., higher drift rate). Moreover, reward slowed the discrimination 
process, which was accompanied by raised response caution as reflected in an increased decision threshold (i.e., 
greater boundary separation). The duration of non-decision time, partly reflecting sensorimotor processes, was 
also extended by reward. Of note, the pupillary response was modulated by reward as well: the PD was larger in 
rewarded compared to non-rewarded trials, both during numerosity discrimination and feedback processing. 
Moreover, the increase of PD was already observed during the phase of reward anticipation when the reward cue 

Figure 2. Behavioural performance: Mean and standard error (SE) for (a) response times (RT) in milliseconds 
and (b) accuracy in per cent, both separated for the two incentive conditions (reward vs. control) and the four 
ratio conditions.
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Figure 3. Model parameters of the decision-making process: Mean and standard error (SE) for (a) drift rate 
(v), (b). boundary separation (a), and (c) non-decision time (tER), separately for the two incentive conditions 
(reward vs. control) and the four ratio conditions.

Figure 4. Pupillometry measures: (a) Mean pupil dilation (in millimetres) across the time course of the trial 
(in milliseconds), stimulus-locked to the onset of the cue (zero point in time), and separately for the different 
conditions (incentive condition: reward vs. control; four ratio conditions); arrow at the top indicates the 
associated phase of the trial; (b) mean and standard error (SE) for the pupil dilation (in millimetres) measured 
at the peak of the pupil response during reward anticipation (cue phase; left), numerosity discrimination 
(stimulus phase; middle), and feedback processing (feedback phase; right), separately for the two incentive 
conditions and the four ratio conditions.
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was presented. This reward-evoked PD correlated positively with the level of bonus wins that the participants 
obtained at the end of the experiment. We discuss these main findings in more detail below.

This study shows that incentive motivation manipulated by monetary rewards enhances non-symbolic 
numerical discrimination as assessed with our incentivized dot comparison task. This finding replicates and 
extends earlier evidence on reward-related enhancements of perceptual and cognitive processing10 to the domain 
of numerosity perception. The better numerosity discrimination under reward (i.e., higher accuracy) suggests 
that incentive motivation facilitates perceptual representations of the to-be-compared quantities and thereby 
increases the precision of the ANS. At the same time, it needs to be kept in mind that slowed decision speed – as 
observed in the present study – could also be indicative of an effect of speed-accuracy trade-off. By fitting the 
data to an EZ-diffusion model that takes into account both performance accuracy and RTs, we were able to shed 
light on the effects of incentive motivation on different components of the decision process. The drift rate of the 
model constitutes a measure of the precision of numerosity representation29. We observed greater drift rates 
in rewarded compared to unrewarded trials, which supports the interpretation of more distinctive numerical 
representations due to incentive motivation. Reward-related modulations of the drift rate during perceptual dis-
crimination have been observed before by Spaniol et al.30. They compared the effects of incentives on perceptual 
efficiency in younger and older adults during colour perception. Likewise, the attentional DDM by Krajbich and 
Rangel41 illustrates that the value assigned to an object seems to be reflected in the drift rate of their model, which 
was increased in favour of attended objects. Following the Incentive Salience hypothesis13, in the present study we 
assumed that the reward cue would increase attention during rewarded trials and thus enhance the salience of the 
numerical representations. Results of the pupillary data are well in line with this notion of incentive salience being 
an underlying mechanism of reward-evoked enhancement of numerosity perception.

In particular, first, during the reward anticipation phase we observed increased PD during rewarded relative 
to the control trials. This may reflect enhanced resource allocation due to incentive motivation. In a recent com-
bined pupillometry/fMRI study, PD associated with the anticipation of monetary rewards turned out to be cou-
pled with neuronal activity in the salience network of the brain, particularly in the dorsal ACC23. The ACC plays a 
crucial role in performance monitoring (for a review, see42). According to the AGT by Aston-Jones and Cohen26, 
the ACC regulates the allocation of attentional resources and has direct projections to the LC to optimise the level 
of task-engagement and related outcome. Further, together with other regions of the salience network, the ACC 
has been widely discussed as being a key player in the bottom-up detection of salient information, given its effects 
in triggering attentional processes and motor preparation (for a review, see43). Besides, the consistency of our 
findings with the Incentive Salience hypothesis supports previous evidence indicating that pupil response meas-
ures can capture the interplay between the dopaminergic reward system and the LC-NE system27,44. Interestingly, 
the extent to which PD was enhanced by the presence of reward cues correlated with the level of bonus won 
by the participants at the end of the experiment. Consequently, the interplay between the dopamine reward 
and the LC-NE attention systems may play an important role in promoting numerosity perception for optimal 
goal-directed behaviour26. Admittedly, the effect observed in the current study was weak and our interpretation 
needs to be verified in future studies that examine the relationship between the pupillary and behavioural effects 
in more detail and their underlying neural mechanisms directly. For instance, the correlations between PD data 
and diffusion model parameters will need to be investigated in larger samples. Multi-modal approaches that 
integrate positron-emission tomography (PET) receptor imaging with fMRI or electroencephalography (EEG) 
measures as well as methods for modelling neurophysiological data as a diffusion process (for a review, see45) 
would need to be considered.

Second, other than effects during reward anticipation, we showed that incentive motivation also elevated 
PD during the phases of numerosity discrimination and feedback processing. Moreover, besides the effects of 
reward, we observed a ratio-dependent modulation of PD, with PD being larger when the difference of the two 
to-be-discriminated dot arrays was smaller. This effect is in line with findings from previous studies showing 
impacts of feedback and cognitive conflict on PD (e.g.,34,46). Of note, given the established roles of the ACC, this 
brain region might assess performance-related information like internal conflict during stimulus processing or 
external feedback (e.g., anticipated or received reward)42 to regulate LC activation for task engagements (reflected 
in changes of PD; cf. the AGT26) in the current context of numerosity discrimination. As to be expected from 
previous studies (cf.29), the ratio between the to-be-compared quantities also affected performance: smaller differ-
ences (higher conflicts) between the dot arrays resulted in longer RTs and lower accuracy. One study by Cavanagh 
et al.34 linked conflict-related PD with adjustments of decision threshold in terms of higher response caution 
in high-conflict situations. This could also explain the ratio-dependent RT slowing that was accompanied by 
increased PD in the present study. Nevertheless, we did not find an effect of ratio on increasing response caution. 
Thus, other explanations of this finding may still be necessary.

An earlier study47 fitted RT data by standard and moderately adapted diffusion models in conditions of high 
response or reinforcement conflict and showed that the data can be best accounted for when boundary separation 
(i.e., the decision threshold) and non-decision time increase with response or reward conflict. In agreement with 
these findings, conflict in the present study (i.e., smaller differences between the quantities in the dot arrays) was 
associated with slowed non-decision time. However, as stated above boundary separation decreased with increas-
ing conflict. This seems to contradict the increase in RTs observed here and the frequently reported positive cor-
relation between decision threshold and RTs. Apart from the seemingly reversed impacts of task difficulty (i.e., 
ratio) on both measures in our study, individual differences in RTs and decision thresholds correlated positively in 
our data as to be expected. The observed effect of task difficulty in decreasing boundary separation of the decision 
process resembles the reward-rate optimal boundary values proposed in another study48. This study compared 
younger and older adults’ ability to trade off speed and accuracy to optimize performance in a numerosity task. 
The calculated reward-rate optimal boundary values, representing an objective criterion defining the decision 
threshold for an optimal speed-accuracy trade-off, decreased with increasing difficulty. Although participants 
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typically show wider decision thresholds than this objective criterion, it is known that accuracy feedback and 
extensive task practice can help to bring one’s decision threshold closer to these values. Given the effects reported 
in the earlier study48, the design of our task (performance feedback after every trial, 768 trials in total) might 
explain the atypical result pattern that we observed and reflect a close to optimal decision threshold.

Furthermore, the EZ-diffusion model revealed increases in boundary separation and non-decision time during 
rewarded compared to unrewarded trials and ensuing decreases in response speed. Raising the decision threshold 
in response to reward has also been linked with mesolimbic DA functioning. For instance, a study with attention 
deficit hyperactivity disorder (ADHD) patients showed increased response caution in a reinforcement learning 
task after medication that modulates DA-levels49. As in the present study, non-decision time became longer in 
ADHD patients after DA medication49. It should be noted that our findings appear to contradict recent evidence by 
Fontanesi et al.33, who reported lower decision thresholds for objects with high values. Our results are also incon-
sistent with insights from a modelling approach by Manohar et al.50, who demonstrated reward-related reductions 
of precision costs in fast decisions. Notwithstanding, the current results can be integrated well into the framework 
of optimal-decision theories32. Participants in our study were rewarded for correct decisions, where decision 
speed only played a minor part due to the relatively long durations of stimulus presentation and the response time 
window. It is likely that accuracy was favoured over RT in our numerosity discrimination task for several other 
reasons. Participants received accuracy-related feedback at the end of each trial and incorrect decisions were 
“punished” (bonus points lost). Further, unlike the highly valuable situation in the study by Fontanesi et al.33,  
information in our task was characterized by high uncertainty. Taken together, incentive motivation in our task 
increased the rate of perceptual evidence accumulation (reflected in drift rate), raised response caution (reflected 
in boundary separation), and lengthened non-decision time. We interpret these findings by referring to two 
processes that could underlie the reward-related modulation of the ANS precision: (i) the LC-NE driven gain 
modulation of stimulus processing due to incentive salience that is reflected in the increased drift rate; and (ii) a 
strategic process via top-down control processes of the prefrontal cortex to increase response caution as reflected 
in the increased boundary separation. In light of previous findings, both processes might be triggered by the 
ACC. These interpretations, however, need to be further validated in future studies.

In conclusion, combining pupillometry with drift-diffusion modelling provides insights into mechanisms under-
lying incentive modulation of numerosity perception. We showed that incentive motivation enhances the preci-
sion of ANS in young adults performing an incentivized dot comparison task. This extends earlier evidence on the 
reward-related enhancement of perceptual discrimination10 to the processing of numerical information. These find-
ings are in line with the Incentive Salience hypothesis13 and the AGT by Aston-Jones and Cohen26. In future studies, 
it might be worthwhile to develop an experimental paradigm that also systematically manipulates the valence of the 
outcome. It has been shown that the threat of losses increases arousal compared to the promise of gains (e.g.,51), which 
should be reflected in a more pronounced pupil response. Manipulating the valence of the outcome would provide 
additional information about incentive-related modulations of the precision of the ANS dependent on the type of 
reward. Furthermore, the consideration of reward feedback effects could yield complementary information, as research 
in other domains indicates outcome effects on performance that might even surpass reward anticipation effects (cf.52). 
The EZ-diffusion model, which we combined with the pupillometry measures in the present study, considered the 
central parameters of the DDM. These parameters were also assumed to play crucial roles in modelling perceptual 
efficiency (i.e., drift rate) and performance optimization (i.e., boundary separation) under incentive motivation. Future 
studies might still want to apply a full DDM or modified versions thereof to explore further aspects of the perceptual 
decision process during numerosity discrimination. Such aspects of interest may be attention in an attentional DDM41 
or modulatory effects on the decision threshold by allowing the parameter of the boundary separation to collapse 
over time47. A full DDM can also account for drift rate variability, which is not considered by the EZ-diffusion model 
applied here and may have resulted in an underestimation of the drift rate36 in the present study (see Supplementary 
Methods). Moreover, it might be worthwhile to examine whether adjustments of the decision threshold still occur in 
a task that emphasizes processing speed. If this adjustment is also one mechanism underlying the performance mod-
ulatory effects of incentive motivation, it should be present even when the allowed response time interval is limited. 
Besides, an independent effect of reward on the drift rate in a task design with a response deadline would lend further 
support to the notion that the enhanced precision of ANS is due to incentive salience of the numerical representations. 
These open questions notwithstanding, the present study identified incentive motivation as a promising modifier of 
numerosity discrimination, with potential implications for mathematical education. To put these lab-based results 
into educational practice, further studies on the impact of incentive motivation are necessary. They would need to take 
age-related changes in the ANS3, brain maturation and their interplay into account. Here, the role of developmental 
trajectories of the dopaminergic system during childhood and adolescence53 might be of particular interest.

Methods
participants. Thirty-three students at Technische Universität (TU) Dresden aged 18–33 years took part in 
this study. Due to severe signal loss during pupil tracking in one participant, 32 participants were included in the 
analysis (17 females; age: M = 23.75 years, SD = 4.68). An a priori power calculation indicated sufficient power 
with a reasonably low probability of a type II error and a high likelihood to detect potential effects of reward in a 
sample of this size (required sample size of N = 16). The power calculation was based on prior knowledge of the 
following: (i) the impact of reward on the performance in an earlier version of the incentivized non-symbolic dot 
comparison task that we validated in a pilot study; and (ii) reported changes in peak PD in response to reward 
for relevant cognitive functions (e.g., decision-making, number processing) in young adults54–57. Only one study 
specified the effect size of such a change54, which was smaller than the effects observed in our behavioural pilot 
study. Thus, the power calculation using G*Power 3.158 was based on this one effect size of f = 0.70 with two 
measurements (reward vs. control), a zero correlation between these two (r = 0.00, which is the most demanding 
case), a significance level of α = 0.05, and the statistical power 1-β = 0.95.
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All participants had normal or corrected-to-normal vision, no history of neurological or psychiatric diseases, 
and were not taking any medication. The study was approved by the ethics committee of the TU Dresden (EK 
55022017) under the Declaration of Helsinki and performed following the relevant guidelines and regulations. All 
participants gave informed written consent before the investigation. After testing, they received 15 Euro for their 
participation plus the bonus they had earned during the incentivized non-symbolic dot comparison task (prizes 
with a value of 9.12 Euro on average).

experimental paradigm. We developed an incentivized non-symbolic dot comparison task (see Fig. 1a), in 
which numerosities of two quantities in different ratios were presented. Reward was manipulated to explore the 
effects of incentive motivation on the precision of the number sense. In this task, we instructed the participants 
to decide which of two arrays has more dots by pressing the left or the right control key on a keyboard. Each trial 
started with an incentive cue – a pink or blue fixation cross (luminance: 1.17 cd/m²) – displayed in the centre of a 
computer screen for 1,500 ms, followed by the presentation of the two arrays of dots flanking a grey fixation cross 
(luminance: M = 0.97 cd/m²). Participants were asked to make their decision as quickly and accurately as possi-
ble. The dot arrays were presented for 1,200 ms and the participants’ responses were allowed until 3,000 ms after 
stimulus onset. The response was followed by emoticon-based accuracy feedback (smiley vs. sad emoticon; lumi-
nance: 1.17 cd/m²) for a period of 1,500 ms. Besides, numbers indicating points earned (or lost) on that trial were 
shown below the feedback symbol. The two incentive conditions (reward vs. control) were signalled by the colour 
of the cue at the beginning of each trial. In trials of the reward condition, each correct or erroneous response 
resulted in gaining or losing, respectively, three points. In trials of the control condition, correct or erroneous 
responses did not result in points gained or lost, thus the value below the feedback symbol was zero. The allo-
cation of the colour of the cue to one of the two conditions was counterbalanced across participants. Trial types 
(reward vs. control) were randomized within a block. Each block consisted of 24 trials and the task included 32 
blocks, with a short 10-second break between blocks. In the first 5 seconds of each break, the thus far accumulated 
points from reward trials were shown along with the current bonus level obtained and the distance to the next 
level (see Fig. 1b). In total, there were 15 levels; higher levels were associated with a higher bonus level, which cor-
respond to one of five possible win options at the end of the experiment: a pen (1) or a voucher for a local shop-
ping mall worth 10 Euro (2), 15 Euro (3), 20 Euro (4), or 25 Euro (5). All instructions of the task were presented 
in white letters on a black background. The dot arrays and the feedback at the end of each trial were displayed in 
grey on a black background as well. The maximum field area of the dot arrays encompassed 7.5° visual angles in 
diameter. The number of dots in each array varied between 12 and 32, with a ratio between the two arrays of 4:3 
(3:4), 5:4 (4:5), 8:7 (7:8) or 10:9 (9:10). For further details on stimulus generation and procedures of experiment 
controls, see Supplementary Methods. The task took about 50 min to complete. RTs, error rates and PD during 
the task were recorded as dependent variables (see Supplementary Methods for more details on data acquisition).

Data analyses. The behavioural data (RTs, accuracy) were analysed with the statistical software packages 
SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY, USA) and R (Version 3.4.3)39 in R Studio 
1.1.414 (RStudio, Inc.). First, an outlier analysis was conducted: correct trials for which RTs were 3.5 standard 
deviations (SDs) above or below the individuals’ mean, as well as items for which the RTs were 3.5 SDs above or 
below the sample mean of the respective condition (reward vs. control for the different ratios), were removed. 
Using these criteria only 0.89% of the trials were eliminated. By and large, condition did not affect the number of 
outliers, except for significantly more outliers in the ratio condition of 10:9 compared to 8:7 in rewarded trials or 
in the ratio condition of 10:9 in unrewarded trials. Afterwards, the responses were averaged for each condition 
and participant. To further characterize the perceptual decision process during numerosity discrimination, we 
applied the EZ-diffusion model36 to our data separately for each condition and participant. It estimates three 
parameters, i.e., drift rate (v), boundary separation (a) and non-decision time (tER), based on the individual’s 
decision accuracy as well as the mean and variance of RTs of the correct responses. Following recommendations 
by Ratcliff and McKoon28, trials with RTs under 250 ms or above 1,500 ms were excluded. Thus, another 1.66% 
of the trials were eliminated for the model-based analysis. The suitability of the data for the application of the 
EZ-diffusion model was checked36, which indicated that the drift rate might be underestimated in all conditions 
but one (i.e., unrewarded trials with a ratio of 4:3 between the two arrays). Since this concerned most conditions, 
the comparisons of effects across conditions would not be affected. Nevertheless, we considered this point when 
interpreting the results (see also Supplementary Methods for more details).

For the processing of the pupillary data, Matlab 9.3, R2017B (The MathWorks, Inc., MA, USA), SPSS 25 and R 
packages in R Studio 1.1.414 were used. Before the statistical data analysis, pupillary data (average pupil diameter 
across the left and right eye) was cleaned following standard procedures59,60: trials with excessive blinking were 
discarded. There were no systematic differences in the distribution of pupillary artefacts across the experimental 
conditions. Small blinks were replaced by cubical interpolations. After discarding outliers and artefacts, 72.96% of 
all trials remained for the separate analyses of the three different phases of trials (reward anticipation, numerosity 
discrimination, feedback). For each condition and participant, we computed a stimulus-locked pupillary response 
for the reward anticipation and the feedback phase (duration: 1500 ms after cue or feedback presentation) and a 
response-locked pupillary response for the numerosity discrimination phase (duration: 1500 ms until 200 ms after 
button press). Pupillary responses were smoothed by an unweighted 5-point moving-average filter and baseline 
corrected for each trial subtracting the average pupil diameter of a 200 ms period before phase onset. On average, 
pupillary responses were calculated from 70 trials per condition per participant with a minimum of 10, which 
was assumed to constitute a reliable measurement with sufficiently reduced noise for the statistical analyses on 
the peak PD of each phase. Due to the missing inter-trial-interval and the ongoing recovery of the pupil at the 
beginning of a trial, baseline correction resulted in negative values during the cue phase. Therefore, the dilation 
relative to the minimum of the pupil diameter was chosen to define the peak in this phase (cf. Fig. 4a).
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Linear mixed-effects models with maximum-likelihood estimation and participants as random intercepts 
were conducted using the lme function from the nlme package in R61. These models considered within-subject 
effects of the factors Incentive (i.e., reward vs. control condition) and Ratio (i.e., the four different ratios between 
the dot arrays) on (i) performance measures (RTs, accuracy), (ii) the parameter estimates of the EZ-diffusion 
model (v, a, tER) and (iii) the peak PD separately for the three different trial phases (cue, stimulus, feedback). 
Post-hoc multiple comparisons were carried out using pairwise t-tests (Holm-correction for multiple testing62). 
Effect sizes are reported using partial eta squared (ηp²) following the approach and recommendations by Fern and 
Monroe63 and Maxwell et al.64. In case the Saphiro-Wilk-test or the visual inspection using Q-Q-plots revealed 
that the models’ residuals were not normally distributed, permutation tests using the lmer function from the lme4 
package65 and permanova from the predictmeans package in R66 were performed. Since the analyses showed 
comparable results for the permutated models, we only report results from analyses using the linear mixed-effects 
models. We also analysed correlations between incentive modulation of pupil response and a behavioural meas-
ure of the overall performance on the rewarded trials. For this, we calculated Spearman’s rank correlation coeffi-
cient for the reward-related peak PD modulation in the three different trial phases and the bonus winning level at 
the end of the experiment (achieved win option 1 to 5; Holm-correction for multiple testing). The reward-related 
peak PD modulation was defined as the relative change in peak PD according to the formula 

− +peak PD peak PD peak PD peak PD( )/[( )/2]reward control reward control . For all analyses, a significance criterion of 
p ≤ 0.05 (two-tailed) was chosen (one-tailed only for tests with clear directional hypotheses based on findings 
from prior studies). The datasets generated and analysed in the present study (i.e., anonymous behavioural and 
pupillometric data) will be made available for research purposes by the corresponding author upon request.
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