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Quantum-Optically Enhanced 
STORM (QUEST) for Multi-Emitter 
Localization
Marc Aßmann   

Super-resolution imaging has introduced new capabilities to investigate processes at the nanometer 
scale by optical means. However, most super-resolution techniques require either sparse excitation of 
few emitters or analysis of high-order cumulants in order to identify several emitters in close vicinity. 
Here, we present an approach that draws upon methods from quantum optics to perform localization 
super-resolution imaging of densely packed emitters and determine their number automatically: 
Quantum-optically enhanced STORM (QUEST). By exploiting normalized photon correlations, we 
predict a localization precision below 30 nm or better even for closely spaced emitter up to a density of 
125 emitters per μm at photon emission rates of 105 photons per second and emitter. Our technique 
does not require complex experimental arrangements and relies solely on spatially resolved time 
streams of photons and subsequent data analysis.

The development of super-resolution microscopy resulted in a drastic improvement of optical imaging capabili-
ties by breaking the diffraction limit which restricts the resolution of traditional wide-field or confocal micros-
copy techniques to approximately half of the emitted wavelength. Besides technologically challenging techniques 
like stimulated emission depletion microscopy (STED)1,2 and structured illumination microscopy (SIM)3, sto-
chastic localization techniques such as PALM4, FPALM5 or STORM6 have found widespread usage. However, they 
suffer from long acquisition times due to the requirement that only few fluorophores may emit light at any instant 
because simultaneous overlapping emission prevents correct localization of the individual emitters. This limita-
tion has been overcome by fluctuation-based techniques such as independent component analysis7 and tech-
niques based on dedicated multi-emitter fitting procedures8,9, which require a good initial estimate of the number 
of emitters involved and other parameters, or SOFI10, which relies on the calculation of temporal cumulants or 
spatio-temporal cross-cumulants. For the latter technique, using the nth-order cumulant results in an effective 
point spread function (PSF) scaling as the n-th power of the original PSF, results in a significant n  improvement 
of the resolution, but shows non-trivial brightness scaling with n, which tends to mask dim emitters and becomes 
computationally expensive for large n. It is also not a localization technique. Therefore, it would be desirable to 
have a localization technique that is sensitive to fluctuations, but not directly sensitive to the emitted intensity. 
This question has been addressed before in different context. In fact, the idea of being able to characterize the 
nature of a light field in terms of coherence and independent of its intensity, wavelength components or polariza-
tion was a basic idea driving the field of quantum optics and the theory of optical coherence11. Here, we propose 
an alternative approach towards localization super-resolution imaging of emitters with spatially overlapping 
emission spectra based on an quantum-optical approach that relies on normalized correlation functions. Our 
technique is tailored for the next generation of super-resolution detectors based on single photon avalanche diode 
arrays12 or single photon fiber bundle cameras13 instead of CCD cameras. This new kind of detector allows for a 
modular approach towards super-resolution imaging that makes it possible to use different algorithms for differ-
ent parts of the image or different times. The technique demonstrated here is tailored to be such a module for 
small regions, where presumably a large number of overlapping emitters is located and the emitted photon num-
ber is locally large. It can still be used as a standalone module to perform imaging under standard conditions, but 
for imaging spatially extended regions conventional high density localization techniques can achieve similar 
precision already at signal levels that are smaller by two orders of magnitude. Still, as a proof of principle, to high-
light the complementarity to techniques like SOFI and to demonstrate the mode of operation of QUEST without 
having to add a different technique as a basis module, it will be used as a standalone module in the following. 
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However, the reader should be reminded that this is not its designated mode of operation. The next section 
describes the theory underlying our approach.

Results
Theory.  In quantum optics, the conditional probability to detect a second photon at a delay τ after a first 
photon has been detected is given by the normalized second-order correlation function of the total light field:

τ
τ
τ

=
〈 + 〉
〈 〉〈 + 〉

g n t n t
n t n t

( ) : ( ) ( ):
( ) ( )

,
(1)

(2)

where the double stops denote normal ordering of the bosonic field operators underlying the photon numbers. 
This normal ordering ensures that the destructive nature of the photon detection process is respected: A single 
photon cannot be detected twice. g(2) (τ) can be interpreted as the count rate of photon pairs at a delay τ divided 
by the product of the mean photon count rates at the corresponding times. The latter equals the photon pair 
count rate expected if photons were emitted completely independent of each other. This allows one to distinguish 
three basic cases. For g(2) = 1, photons are indeed emitted independent of each other. For g(2) < 1 the detection of 
the first photon results in a reduced probability to detect a second photon. This antibunching is typical for single 
photon emitters, where the emission of a photon blocks this emitter until it has returned to the excited state and 
can emit a photon again. g(2) > 1 corresponds to strong fluctuations of the photon number. At times where the 
emitted intensity is larger than the mean photon number, the photon pair detection rate increases superlinearly 
with the photon number and thus results in statistically correlated photon emission. This behavior is typical for 
blinking emitters14,15, which switch back and forth between a dark and a bright state. Many fluorophores used in 
microscopy such as single molecules or colloidal quantum dots are single photon emitters16–18 and their emission 
shows all of these effects. At short timescales τ0, the emission of a second photon is suppressed, at intermediate 
timescales of the order of the typical scale of blinking τb, correlated emission occurs, while the emission for very 
long delays τu and for photons emitted from different emitters consists of statistically independent photons. A 
typical g(2) (τ) trace of a single emitter acquired at a certain spatial position is shown in Fig. 1.

The antibunching at short delays τ0, blinking at intermediate delays τb and independent emission at large 
delays τu can be seen clearly. For comparison, g(2) (τ) for a light field to which two emitters contribute equivalently 
is also shown. As can be seen, the antibunching and blinking effects are reduced in magnitude. Only photon pairs 
from the same emitter are correlated. Instead, those coming from different emitters are usually uncorrelated, 
which pushes the values of g(2) (τ) closer to 1. In contrast to the emitted intensity or the unnormalized correlation 
function, g(2) (τ) is thus directly sensitive to the overlap of different emitters. It should be noted that in order to 
determine the distribution of time delays of photon pairs, all photons detected at a certain pixel are taken into 
account and considered as pairs, not just consecutive ones.

QUEST is based on recording a spatially resolved map of g(2) (τ, x, y) which yields detailed information about 
the spatial position of the emitters. One can then apply appropriate fitting of the second-order correlation func-
tion to recover the position of the emitters with high resolution. In order to apply QUEST, the following condi-
tions must be met:

	 1.	 The fluorophore should either be a single photon emitter or show fluorescence blinking or both.
	 2.	 The pixels of the detector used should be smaller than the spatial extent of the point spread function of the 

imaging system used.

Figure 1.  Normalized second-order intensity correlation traces for a single emitter (blue line) and a 
superposition of two distinguishable emitters (red line). For the simulations, a power law blinking model with 
exponents of αon = 1.7 and αoff = 1.78 have been used. Details on the chosen model can be found in the methods 
section. Vertical dashed lines mark the borders between delay ranges where antibunching (τ0, g(2)(τ0) < 1), 
blinking (τb, g(2)(τb) > 1) and uncorrelated emission (τu, g(2)(τu) ≈ 1) become predominant. The inset shows a 
close-up view of the region marked by the black rectangle.
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	 3.	 The fluorophores are independent emitters.
	 4.	 The detector used should be fast enough to resolve the antibunching timescale or see several on/off-cycles 

of the fluorophore during a frame.

In principle, both the antibunching signature g(2) (τ0, x, y) and the blinking signature g(2) (τ0, x, y) contain the 
full information about the spatial distribution of the emitters. In the following we restrict ourselves to a discussion 
of the blinking signature, as it usually shows larger photon count rates. Still, in experiments it will be most sen-
sible to evaluate both quantities simultaneously. The combined information from both independent localization 
signatures will result in reduced localization error. In Fig. 2 we compare a standard optical fluorescence image to a 
g(2) (τb, x, y) blinking image for two emitters placed at a distance of 150 nm and assuming a point spread function 
that is Gaussian with a standard deviation of σPSF = 100 nm, which corresponds to one Airy unit of about 290 nm. 
The positions of the emitters are marked by black crosses. The left panel shows the emitted intensity. The emission 
from both emitters overlaps strongly and their individual position cannot be identified directly. The right panel 
shows the g(2) (τb, x, y) blinking image. A strong directional dependence is apparent. In the middle between the 
emitters, the value of g(2) (τb, x, y) is reduced significantly, while it increases in the region beyond the emitters.

This peculiar shape can be explained as follows: g(2) (τb, x, y) quantifies the normalized fluctuations of the 
intensity of the light and is independent of the mean intensity of the light field. For an individual emitter in the 
absence of any external noise, g(2) (τb, x, y) will thus take the same constant value for any position in space. In the 
presence of background noise or a second emitter, the distribution will change. g(2) describes a conditional prob-
ability distribution for photon pairs. For N emitters, it will now consist of the individual second-order autocorre-
lations gi

(2) of the emitters and the second-order crosscorrelations gij
(2) between the emitters weighted by the 

relative probability that these two emitters contribute to a photon pair. Based on these assumptions a model fit 
function for g(2) (τ, x, y) can be found. We assume N contributions to the fluorescence signal, where the signal for 
the first N − 1 emitters at each position (x, y) is given in terms of their brightness Ii and location (xi, yi) and a 
Gaussian point spread function:
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describes the background noise, which we treat as an emitter with a flat point spread function. The spatially 
resolved total fluorescence signal intensity amounts to:
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Figure 2.  High-resolution correlation imaging of the emission of two emitters placed at a distance of 150 nm. 
Black crosses mark the position of the emitters. (a) Emitter fluorescence. (b) g(2)(τb, x, y) blinking image. The 
antibunching image g(2)(τ0, x, y) looks exactly the same, but the deviations from the value of one have the 
opposite sign. (Scale bars: 200 nm).
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The total second-order correlation function consists of the second-order autocorrelations gi
(2) of the individ-

ual emitters and the second-order crosscorrelations gij
(2) between the emitters, both weighted by the ratios ri:
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This is the fitting function. Here, we assume the background noise to be uncorrelated, so =g 1N
(2) , and all 

emitters to be independent, so =g 1ij
(2) . Within this work, we assume all emitters besides the noise to have the 

same brightness I0 and the same value of =g gi
(2)

0
(2), but this assumption can be dropped for real systems. It 

should be noted that the fit formula is valid both for τ0 and τb.
Knowledge of the fitting function for g(2)(τb, x, y) is a necessary prerequisite for successful position reconstruc-

tion, but also a good estimate of the total number of emitters present within a certain area of interest will simplify 
reconstruction significantly. QUEST is able to automatically determine this number by first evaluating the total 
antibunching signature g(2)(τ0) integrated over all pixels within a region of interest. It is well known that the 
equal-time second-order correlation function = −g (0) 1

N
(2) 1  for N-photon states19. This property of the light 

field is routinely used to identify single photon sources20. In very good approximation, the same value of g(2)(0) 
holds true for N single-photon emitters even if blinking is present21. Therefore, the value of the equal-time corre-
lation function at zero delay may be used to estimate the number of emitters present, provided that the temporal 
resolution of the detector is sufficient to resolve the correct behavior at short delays. It should be noted that num-
ber estimation becomes unreliable for large numbers of fluorophores as the values g(2)(0) become close to one. 
Therefore, for wide field imaging, QUEST can be performed using iterative segmented spatial mapping of g(2)(0) 
such that the QUEST algorithm estimates the number of emitters inside a region of interest and if it is too large to 
yield reliable results automatically subdivides it into two smaller regions of interest containing fewer emitters. 
Repeating this procedure until each segment contains a small number of emitters and consecutive reconstruction 
of the emitter locations in each individual segment will then provide the full list of emitter positions. It should be 
noted that this segmented approach can be used to automatically investigate several region which contain the 
same emitters, but are slightly shifted with respect to each other. This technique allows for more robust emitter 
localization for emitters of varying brightness.

Results of simulations.  We first test the QUEST localization technique on simulated data for two emitters placed 
at varying distances. For the simulation, we again assume a Gaussian point spread function with σPSF = 100 nm 
corresponding to one Airy unit of about 290 nm and simulate a time-tagged stream of photons over a duration of 
15 seconds. In order to show the robustness of QUEST to noise, we choose a large dark count rate of about 200000 
counts per second that is comparable to the photon emission rate per emitter. We investigate distances both larger 
and shorter than the diffraction limit. Figure 3 shows the results of simulations for emitters placed at distances of 
about 350 nm, 150 nm and 50 nm apart. The color plots show the total emitted fluorescence as acquired in typical 
experimental approaches such as total-internal-reflection fluorescence microscopy. White crosses mark the real 
positions of the emitters and black crosses show the reconstructed positions using QUEST for 20 imaging cycles. 
Magnified views of the boxed sections are shown in the right panel.

For the larger distances, the mean position localization error per emitter as defined by the mean absolute 
distance between the emitter position used in the simulations and the reconstructed emitter position amounts to 
about 10 nm with a standard deviation of 5.5 nm per dimension. For the smallest distance, we find a slightly larger 
mean absolute position localization error of 20 nm per emitter with a standard deviation of 14.5 nm. It is worth 
noting that for small emitter distances, the reconstructed fluorophore positions are not distributed symmetri-
cally around the real position, but show a bias towards the outward direction. This effect is clearly demonstrated 
in Fig. 3D and is a consequence of the strongly asymmetric shape of the fitting function. As the normalized 
second-order correlation function depends non-linearly on the distance between the emitters, shifting two 
emitters closer together changes the resulting g(2)(τ, x, y) more strongly than shifting them further apart by the 
same amount. This effect can in principle be avoided by specialized fitting procedures or maximum likelihood 
approaches.

In order to evaluate the validity of our approach for densely placed emitters with strongly overlapping point 
spread functions and present the detailed operating principle of QUEST, we have also simulated 5 emitters placed 
within a 2σPSF × 2σPSF square region, which would correspond to a local emitter density of ρ = 125 emitters μm−2 
in the central region. The total emitted fluorescence is shown in Fig. 4a. Only a single large spot can be seen, from 
which the positions of individual emitters cannot be identified reliably. In contrast, the g(2)(τb, x, y) map displayed 
in Fig. 4b shows a more complicated behavior. In the central region, where the emission of all the emitters over-
laps, g(2)(τb, x, y) shows small values, but at several positions away from the peak of the intensity distribution large 
values of g(2)(τb, x, y) can be found. In analogy to the case of two emitters shown in Fig. 2, at these positions, one 
emitter provides the main contribution to the detected intensity. The direction and magnitude of this increase in 
g(2)(τb, x, y) are good indicators of the emitter positions.

We now perform a simulation for this geometry based on individual emission events for a detector with 
an effective resolution of 50 nm per pixel and apply QUEST in order to reconstruct the fluorophore positions. 
Simulation results are shown in Fig. 4c–e. Figure 4c shows the spatially integrated g(2)(τ), which we use to deter-
mine the number of emitters present in the image. The antibunching value of g(2)(τ = 0) amounts to 0.853. Taking 
the dark count rate of 14.5% into account results in a corrected g(2)(τ = 0) of 0.798, which directly translates into 
an emitter number estimate of 4.95 and correctly indicates the real number of five emitters. We now use the g(2)(τ, 
x, y) map shown in Fig. 4e as input for QUEST and reconstruct the fluorophore positions indicated by the black 
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crosses. The positions are determined well with a mean localization error of 26.9 nm. As can be seen in Fig. 4e, 
we have included a significance threshold in determining the map of g(2)(τb). We disregard photon pairs with a 
delay larger than 50 μs and consider pixels with a photon pair count rate of less than 100 Hz as strongly dominated 
by background noise which do not yield a reasonable estimate of the second-order correlation function at that 

Figure 3.  Reconstruction of two emitter positions at varying distances using QUEST. (A,C) and (E) show the 
total emitted fluorescence of two emitters placed at distances of 350, 150, and 50 nm, respectively. White crosses 
mark the real positions of the emitters. Black crosses show the positions of the emitters reconstructed using 
QUEST for 20 different imaging cycles (scale bars: 200 nm). (B,D) and (F) show magnified views of the boxed 
regions in the left panel (scale bars: 20 nm).
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position. These points have been set to a value of 1 in the map and are not considered during the fitting procedure. 
Accordingly, it is interesting to investigate whether it is beneficial to have longer integration times and include 
regions with low photon count rates while applying QUEST. To this end, we again investigate the mean localiza-
tion error for the two fluorophores at varying distances already shown in Fig. 3 for different total photon numbers 
per localization image. Each of the emitters and the background noise contribute approximately the same number 
of detection events to the photon number. Results are shown in Fig. 5. All curves show a clear onset of efficient 
position reconstruction marked by a significant decrease of the mean localization error towards values on the 

Figure 4.  Reconstruction of multiple emitters demonstrated for five emitters placed in a small area of 
2σPSF × 2σPSF. (a) and (b) show theoretical high-resolution images of total fluorescence and g(2)(τb). White 
crosses denote the real positions of the fluorophores. (c,d) and (e) show simulation results and corresponding 
position reconstruction. (c) represents the spatially integrated g(2)(τ) that allows us to determine the number of 
emitters present. (d) and (e) show the simulated intensity and g(2)(τb). Black crosses represent the reconstructed 
fluorophore positions. Scale bars: 100 nm.
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order of 10 to 20 nm in the range between photon numbers of 300,000 and one million. The onset shifts to smaller 
photon numbers for larger distances. Increasing the photon number to even larger values does not improve the 
reconstruction significantly. The results may even become worse. This behavior may seem surprising, but can be 
explained by the fact that additional pixels reach the threshold value of 100 Hz photons for larger count rates. The 
errors of the values of g(2)(τb) at these pixels may still be moderately large, which results in reduced localization 
accuracy. Dedicated statistical approaches may improve the treatment of these pixels, but are out of the scope of 
the present manuscript.

Another factor to consider is the influence of the background noise level on localization accuracy. An exact 
treatment is way beyond the scope of this manuscript, but the general effect can be explained well qualitatively. As 
an example, Fig. 6 shows the localization error per emitter for two emitters placed 350 nm apart in the presence of 
noise. For all data points, the same basic simulation of one million signal photons has been used and superposed 
with different noise datasets with a total number nNoise of noise counts and the same total duration as the signal 
datasets. 30 realizations of noise have been used for each data point. It is striking that in contrast to most other 
approaches to super-resolution imaging, the localization precision initially increases in the presence of noise 
roughly up to the point where the noise count rate equals 2  times the signal count rate and deteriorates when 
increasing the noise count rate even further. In order to understand this kind of effect, it is important to keep in 
mind that QUEST does not map the absolute emitted intensity, but the overlap of the emission of different emit-
ters and their relative intensities at different points. In the simplest case, background noise can be considered as 
an additional homogeneous emitter. Considering for example a single isolated emitter, one immediately sees that 
background noise may even enhance localization accuracy. The normalized second-order correlation function for 
a single emitter is uniform all over space and thus yields no information about the emitter position at all. Adding 
some constant background noise will result in spatially varying relative contributions of signal and noise and thus 

Figure 5.  Mean localization error in dependence on the number of photons used as an input for QUEST for 
two fluorophores placed at varying distances. A clear threshold for efficient reconstruction can be identified for 
every distance. Its onset is marked by dashed lines.
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Figure 6.  Mean localization error per emitter for 106 total signal photons originating from two emitters at a 
distance of 350 nm superposed with varying numbers of randomly distributed noise photon numbers nNoise. With 
the exception of 0 noise photons, all data points are averaged over 30 realizations of different noise distributions. 
The peak signal intensity at a single pixel amounts to 19242 counts. For comparison the red line shows the ideal 
single emitter shot-noise limit that can be achieved using STORM in the absence of background noise.
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result in a second-order correlation function that shows a peak at the emitter position and enhanced localization 
precision. Similar considerations apply for larger numbers of emitters.

Finally, it is instructive to discuss the performance of emittter number estimation based on the normalized 
second-order correlation function. We performed simulations using a varying number of emitters placed ran-
domly inside an area of 1 μm2 and considered an average photon number of 6000 per emitter. 100 simulations 
were performed for each fixed emitter number. The columns in Fig. 7 show the distribution of emitter number 
estimates for each fixed emitter number. Recognition is close to optimal for small emitter numbers, but even up to 
10 emitters, the emitter number estimate distribution is moderately narrow and still centered on the real number 
of emitters. However, there is a slight trend towards overestimated emitter numbers for many emitters, which can 
be traced back to the range of values of the second-order correlation function that corresponds to a certain emit-
ter number becoming smaller when placing more emitters. However, this problem can in principle be overcome 
by using tailored sectioning approaches.

Discussion
We have proposed a quantum optics based super-resolution technique suitable for localization of multiple simul-
taneously emitting fluorophores with overlapping point spread functions that still works for local emitter den-
sities on the order of 100 emitters μm−2 and is strongly sensitive to the relative orientation of the emitters. Our 
approach is tailored for having low experimental requirements, is robust with respect to the experimental data 
acquisition process and is computationally efficient as it does not require an underlying grid. The experimental 
procedure amounts to recording a spatially resolved time-stream of photons under standard optical excitation 
conditions and the choice of fluorophores and optics used is not critical as long as the fluorophores are bright 
enough. The critical difference to standard STORM setups lies in replacing the CCD detector with a single pho-
ton fiber bundle camera, which requires no further changes to the experimental setup. The method identifies 
the number of emitters present and does not require a priori knowledge of this number. The precision and speed 
of the method, however, strongly depend on the specific implementation of the recovery algorithm used and 
we want to emphasize that we only present the basic technique here which leaves plenty of opportunities for 
improvement in terms of data analysis. First, the least-squares fitting approach here is easy to implement, but for 
real detectors with possibly asymmetric point spread functions a maximum-likelihood approach9 also taking the 
total intensity distribution into account might be more suitable. We expect that a more specialized reconstruc-
tion approach may result in improved localization precision. For example, as can be seen in Fig. 3 the strongly 
asymmetric shape of the g(2)(τb, x, y)-map for two emitters with overlapping point spread function results in 
a position estimate that is not centered on the emitters, but systematically shifted away from the region of the 
overlap. This deviation may be corrected by tailored algorithms using weighted data. Further optimization might 
also be achieved by utilizing deep learning22 to find optimal reconstruction parameters or by using compressive 
sensing23 or other sparsity based algorithms with24 or without25 using an underlying grid. Also the photon count 
threshold used is a degree of freedom that may be optimized. For example approaches using weights depending 
on the photon count rates per pixel or using spatial regions of variable sizes for analysis are likely to outperform 
the basic least square fitting approach described here. It should also be noted that the completely symmetric 
Gaussian point spread functions used in the simulations are the worst possible case for emitter localization. Any 
asymmetry in the point spread function will make it easier to reconstruct the position of the fluorophores. Along 
the same lines, although we have only discussed 2D-imaging, intentionally added astigmatism could be used to 
render our method capable of 3D imaging in analogy to 3D STORM26, which should in principle allow for a depth 
resolution of at least 50–60 nm.

QUEST has the potential to perform super-resolution imaging at high frame rates up to real time imaging. 
The required integration times for QUEST will depend on the brightness and density of the fluorophore used. 
Acquisition times of few seconds seem reasonable for typical experimental parameters and sub-second data 
acquisition may become feasible for low background noise. However, due to the complex data analysis involved, 
achieving such fast acquisition rates will require hardware based online data analysis e.g. by applying field pro-
grammable gate arrays for fast real-time on chip coincidence counting and analysis27 such as on-chip fitting of 

Figure 7.  Performance of emitter number recognition for emitters placed randomly in an area of 1 μm2. Each 
column gives the relative frequency distribution for a fixed emitter number. For the simulations, an average 
photon number of 6000 photons per emitter has been assumed.
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the g(2)(τ)-curve for every pixel. Building upon such an architecture, further extensions might be considered. For 
example higher-order correlations are supposed to be even more sensitive to the emitter positions and taking 
cross-correlations between different pixels into account in a similar manner to SOFI10 may result in reduced 
noise and acquisition times. It should also be noted that QUEST is not necessarily limited to biological imaging 
and organic dyes. In some respects, quantum dots may be a better choice as the fluorescent emitter as tailoring 
their parameters allows some limited control over the blinking behavior and can reduce the disadvantageous 
low-frequency blinking28. Further, in order to utilize the fast frame rates available with ultrafast imagers, using 
emitters with matching photon emission rates would be advantageous. Therefore, QUEST lends itself rather to 
imaging in fields such as semiconductor physics, where quantum dots may be used rather than biological imag-
ing. Along the same lines, one drawback of QUEST is that its usefulness depends strongly on the detector archi-
tecture employed and for standard detectors such as CCD cameras, it will not be overly useful as it does not 
perform well compared to established techniques in the limit of very small photon count rates.

It is instructive to compare our approach to other super-resolution techniques. It provides a tradoff between 
localization techniques such as STORM and super-resolution techniques based on unnormalized emitter noise 
properties. Regardless of whether the latter techniques rely on antibunching29,30 or blinking such as SOFI, they are 
usually not localization techniques like STORM, but may be cautiously called imaging techniques because they 
provide wide field images of quantities such as cumulants, which allow for better resolution than fluorescence 
images. Both kinds of techniques are known to have advantages and disadvantages31. Localization techniques 
typically yield higher resolution, but also have more strict requirements. The point spread function of the imaging 
system must be known in detail and simultaneous emission from overlapping emitters must be avoided, which 
renders data acquisition slow for large emitter densities. SOFI, on the other hand, has less strict requirements on 
knowledge of the imaging system and emitter properties. Further, simultaneous emission from densely packed 
emitters is not a problem for SOFI, so it has the potential for substantially faster data acquisition rates compared 
to STORM and for straightforward implementations of 3D imaging. However, as SOFI is based on higher-order 
cumulants, the intensity scale in SOFI images is necessarily strongly non-linear which may result in emitters with 
low intensity not being recognized. QUEST takes a position in the middle between these techniques. As the most 
important difference to SOFI, instead of cumulant images, QUEST records spatially resolved images of normal-
ized second-order or higher-order correlation functions. Normalized correlation functions avoid the problem 
of emitters of weak intensity as is known from similar correlation-based super-resolution techniques that rely 
on confocal scanning32. Besides the effects of noise, every isolated emitter with the same emission profile will 
form exactly the same QUEST image. The normalization ensures that weak emitters also leave a significant trace 
for densely packed emitters that will show up as an anisotropy in the QUEST image. However, this advantage 
comes at the drawback that the QUEST image does not directly provide information about emitter positions. The 
positions of emitters do not correspond directly to maxima or minima in the QUEST image and must be recov-
ered via fitting procedures which require information about the imaging system. However, due to the usage of 
normalized correlation functions, it requires little information about emitter properties such as emitter number 
or brightness. As a first approach, one may use iterative sectioning and include these quantities as fitting param-
eters, more sophisticated and precise strategies for emitter number estimation exist33,34 and may be optimized for 
QUEST images. QUEST is therefore similar to localization techniques, but has the additional advantage that it 
does not require only a sparse subset of all emitters to be active at any time, which promises significantly faster 
data acquisition rates.

In order to further understand the strengths and weaknesses of the present proposal and the differences com-
pared to other super-resolution techniques, it is worthwhile to revisit the performance of QUEST in the presence 
of noise. As shown and discussed in Fig. 6, background noise may actually enhance the localization precision. 
The reason for this is that QUEST utilizes the normalized second-order correlation function, which is ideally 
completely independent of the intensity at any pixel. However in order to achieve good emitter number esti-
mation and precise results at the fitting stage, information about the value of g(2) at every pixel is required. This 
is a huge drawback for situations with strongly inhomogeneous illumination, such as having few emitters and 
regions in between with almost no signal intensity. In this case, a reasonable measurement of the value of g(2) is 
achieved quite quickly at the emitter positions, but it takes very long for the pixels with low count rates to accu-
mulate enough statistics to achieve low-error measurements of g(2). As can be inferred from Fig. 6, a noise count 
rate between 500 and 1000 photons per pixel provides good results, which means that the signal peak count 
of 19242 photons is much more than what is required in order to achieve reasonable results. This also puts the 
quite large number of above 300000 photons needed to achieve good localization accuracy into perspective. For 
smaller regions or homogeneously illuminated detector pixels, the performance will improve significantly. These 
non-standard effects on the localization accuracy already show that the signal-to-noise ratio is not an ideal quan-
tity in order to estimate how well QUEST performs, not only because of the non-standard interplay between noise 
and localization accuracy, but also because the temporal properties of the background noise distribution are more 
important than its mean value or variance. Considering a realistic implementation of the proposed technique, it 
will be necessary to find a suitable way to avoid the problem of regions with low intensity having a negative influ-
ence on localization accuracy. Neglecting pixels below some threshold intensity or using the mean intensity as a 
weight function are some basic possibilities, but their usefulness will depend strongly on the experimental con-
ditions and are not optimal. It seems to be a more suitable approach to use QUEST in combination with another 
technique, using an algorithm which first applies the standard super-resolution technique and provides estimates 
of the spatially resolved emitter density and then applies QUEST selectively to these areas, in order to determine 
whether the high-density areas consist of several overlapping emitters. However, due to the huge number of possi-
ble combinations of techniques and ways to implement them, this is a problem best solved by machine learning or 
similar techniques. In order to visualize how QUEST works in general and to point out at which steps the addition 
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of other techniques would be most beneficial, Fig. 8 shows a summarized schematic flowchart of the whole data 
analysis process. The steps, where optimization should take place are labeled as optional.

Still, the performance of QUEST is based on photon pairs and should therefore be inferior to other standard 
techniques in the limit of low count rates. Accordingly, at current it seems to be most promising to apply QUEST 
as an extension to other imaging techniques, which work well for isolated emitters, but have problems with dis-
tinguishing overlapping emitters at larger count rates. To this end, one would construct a superresolution image 
using a standard technique, use real-time statistical analysis on this image in order to identify regions, which 
are likely to have unidentified overlapping emitters and then apply QUEST to these regions. In order to be able 
to apply both the standard technique and QUEST to the same dataset and to achieve the temporal resolution 
necessary to identify the single emitter antibunching and estimate the number of emitters present, we suggest 
to use hardware based on the fiber-coupled single-photon avalanche detector array architecture, which has been 
introduced first for calorimetric purposes in particle physics35. Recently, the detector array technology has been 
improved significantly in terms of array size, readout rates and on-chip data processing36,37. In turn these tech-
nological advances have already led to first demonstrations of optimized super-resolution imaging by means of 
utilizing antibunching and postselection via a fiber bundle camera13. It offers low noise and negligible cross talk 
among pixels along with a large fill factor in conjunction with independently working detectors that can operate 
at a variable synchronized frame rate. Single photon avalanche diode arrays12 without fiber coupling are also a 
viable option, but typically suffer from rather large pixel sizes and small fill factors. We envision that by combining 
novel approaches in terms of detector hardware development, on-chip data processing and statistical analysis and 
optimized algorithms and by combining QUEST with other techniques, real-time super-resolution imaging may 
become feasible.

Methods
Simulation parameters.  In order to model the emission of quantum dots, we adopted a standard pow-
er-law blinking model, where the on- and off-times are distributed with the probability p(t) = t−α with exponents 
of αon = 1.7 and αoff = 1.78. During on-times, waiting times for the next emitted photon are drawn randomly from 

Figure 8.  Schematic flowchart for QUEST including the steps where optimization or application of 
complementary technique seems appropriate.
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an exponential distribution with a mean spontaneous emission time of 9 μs. The position of detection for each 
photon on a grid with 1 nm resolution is modeled by a normalized symmetric two-dimensional Gaussian proba-
bility distribution with σ of 100 nm centered at the emitter which serves as the point spread function. To model 
the antibunching effect, we add another probability for the transition being blocked that depends on the time τ 
that has passed since the emission of the last photon: = − − τ

τ( )p t( ) 1 expblock block
 with a blockade time of 

τblack = 30 ns. This total high-resolution image is then binned to pixels with a width of 50 nm each. To model the 
noise background, noise photons are added using an exponential distribution with a decay time of 5.5 μs and 
assigned to a random pixel. For the noise series, we vary this decay time, but keep the total simulated duration 
constant.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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