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Directional subradiance from 
helical-phase-imprinted 
multiphoton states
H. H. Jen   

We theoretically investigate the far-field scattering properties of multiphoton super- and subradiant 
states which can be prepared by multiphoton excitations with orbital angular momentum (OAM). Due 
to multiphoton interference, the far-field patterns of the subradiant modes show directional scattering 
along the excitation direction or transverse scattering with number of peaks equal to the number of 
atoms. When more atoms are involved, we consider structures of stacked and concentric rings, which 
respectively show enhanced directional scattering and smoothed emission patterns. Our scheme gives 
insights to prepare many-body subradiant states, and is potentially applicable to quantum storage 
of multiphoton with OAM. By designing atomic spatial distributions, these cooperative states can 
tailor the far-field emission properties, which is useful for light collections and quantum information 
manipulations.

Superradiance1,2 results from cooperative light-matter interactions, which typically radiates directionally3 with 
a shortened time scale. This enhancement of the spontaneous emission comes from the resonant dipole-dipole 
interactions (RDDI)4 induced by rescattered photons between atoms. In such strong coupling regime, subra-
diance on the other hand also becomes evident5 in the afterglow6 of the superradiance. The remnant radiation 
with slow decay rates signifies the presence of subradiant states, and at the same time, indicates that the initially 
excited superradiant state is not the eigenstate of the dynamically interacting system. This is due to the long-range 
nature of RDDI which couples every other atom in the system, and thus in general all Hilbert space of super- and 
subradiant states are involved in the dissipation process. This offers an opportunity to manipulate light-matter 
interacting systems7,8 and to deterministically access these subradiant states, for example, in one-dimensional9–12, 
two-dimensional (2D)13, or three-dimensional (3D) atomic arrays14,15 and 2D metamaterial16,17. In addition to 
neutral atoms, subradiant states can also be excited and prepared in two trapped ions18, molecules19–21, plasmonic 
nanocavities22, and atomic arrays in a cavity23.

In addition to the obvious linewidth broadening (superradiance) along with cooperative frequency shifts24–29 
or narrowing (subradiance)5 in fluorescence experiments, collective light scattering in a dense atomic medium30–32 
also provides useful information of cooperative light-matter interacting systems. Aside from well-known direc-
tional light scattering of superradiance, recently we propose to use helical-phase-imprinted (HPI) single-photon 
subradiant states33 on a ring array to investigate the far-field emission patterns. This subradiant state can be pre-
pared by absorption of single-photon carrying the orbital angular momentum (OAM)34–38 and becomes the alter-
native candidate for storage of light quanta with OAM39–41. Similar ring-shaped lattice has been proposed to excite 
high-lying Rydberg states42 which lead to nonclassical collective photon emissions.

In this paper, we investigate the far-field scattering properties of HPI multiphoton subradiant states in the 
ring arrays, which are less studied systematically. The HPI multiphoton states can tailor and modify the radiation 
properties by controlling and engineering the atomic configurations and light polarizations. Thus, this is poten-
tially useful in generating and detecting entangled multiphoton states43, and also offers opportunities in manipu-
lating multiphoton resource in quantum network7.

Helical-phase-imprinted multiphoton states
When a resonant multiphoton source of M photons is absorbed by N two-level atoms (|g〉 and |e〉), a symmetric 
state can be formed, and such that M excited and N − M ground states are symmetrically distributed in all atoms 
with equal probabilities −C( )M

N 1 where C denotes the binomial coefficients. To access the other possible 
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multiphoton super- and subradiant states, we have proposed to use phase-imprinting methods to unitarily trans-
form the system into15,
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i1  indicates the linear increases of the imprinted phases in a 3D atomic array. 
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 with μ→ = (μ1, μ2, …, μM). Note that this specific construc-

tion of Hilbert space is not unique, and there are many ways to create such multiple excitations space. This phase 
imprinting method dynamically controls the incrementally increasing phases either by Zeeman field or a Stark 
field gradient pulse, but demands large field gradient strengths or long interaction time.

Nevertheless, this linearly increasing phase can be also imprinted in an azimuthal direction by light with OAM33 
without external field gradients. We consider Laguerre-Gaussian modes of light excitations, which carries a phase 
dependence of eilφ with a quantized OAM of lħ. For Nφ equidistant atoms sitting on a single ring in Fig. 1, the light 
imprints the phase of φ π μ= ∑ − φ= N2 ( 1)/m

M
m1  on the atoms for M excitations. To label the ring structures of 

concentric or stacked rings in Fig. 1(b) and (c), we raise up atomic indices to superscripts and denote μj = 
μ − φN( 1)r

j  + μφ
j or μ − φN( 1)z

j  + μφ
j, respectively. The number of integrated rings is μr z

j
,  ∈ [1, Nr,z] where Nr,z rep-

resents the rings along r̂ z( ) direction, and the total number of atoms becomes N = Nr,zNφ. For each atom labeled as 
j, μφ

j is within [1, Nφ]. Therefore, the light with OAM absorbed by the ring array forms HPI multiphoton states
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1 . Here we propose to 
use Laguerre-Gaussian modes of φ=u r( , )p

l
0  with an arbitrary OAM eilφ and zero radial index (p) to prepare HPI 

multiphoton states. For more technical details on excitation and preparation of the states, we explain in 
Supplemental Information.

Comparing Eq. (1), the HPI multiphoton states of Eq. (2) has limited imprinted phases by OAM of light since 
it puts phases along φ̂  direction only. Thus, equation (2) forms only a subspace of multiply-excited states of equa-
tion (1). However, HPI multiphoton states can expedite the preparation protocols by simply using light with 
OAM, which removes the requirement of external addressing fields and makes the proposed scheme here more 

Figure 1.  Schematic helical-phase-imprinted multiphoton state preparation. (a) A multiphoton source carrying 
orbital angular momentum (OAM) is absorbed by the atoms on a single ring, where two excitations (dash 
circles) are shown here for demonstration and as one possibility out of the complete excitation space. The atomic 
system is then prepared into one of multiphoton super- or subradiant states, depending on OAM lħ; of light. The 
scattered light property out of these multiphoton states depends on the ring geometry of radius r and φ. Other 
atomic configurations of (b) concentric or (c) stacked rings can be the candidates for creation of helical-phase-
imprinted multiphoton states.
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efficient and dominant in generating multiphoton subradiant states. In the next subsection, we further derive the 
general expression for far-field emission properties of HPI multiphoton states, which we use to investigate the 
effect of multiphoton interference and atomic configurations on the emission patterns in the next section.

Far-field scattering.  The far-field scattering patterns can provide a unique characterization of the HPI mul-
tiphoton states. The general expression of the far-field scattering from uniformly-polarized two-level atoms is4
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where ωeg is the energy difference, R̂//kR denotes the observation direction, rαβ = rα − rβ denotes mutual atomic 
separations, and the dipole orientation p̂ is determined by the polarization of excitation field. Since the far-field 
scattering concerns the observation point way distant from the atoms, the radiation phase is then contributed by 
the retarded ones − ⋅ αe ik rR  and |kR| = ωeg/c. At equal time of equation (3), we obtain the far-field radiation patterns 
from the HPI multiphoton states φ| 〉t( )l
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where I0 (t) is the time-evolving fluorescence intensity and depends on the eigenvalues of the coupling 
matrix10,14,15. The multiphoton coupling matrix elements from RDDI can be seen in Methods and ref.15. An 
implicit dependence of multiply-excited configurations is in the spatial and imprinted phases respectively. equa-
tion (4) characterizes the far-field scattering property from the HPI multiphoton states created by an excitation 
field with lħ OAM, which involves the interplay of the atomic distributions μr j and the helical phases ∝ π φei l N2 / . In 
the next section, we investigate the far-field scattering properties for the atomic configurations in Fig. 1 and vari-
ous OAM of light.

Light scattering from HPI multiphoton states
Here we focus on HPI two- and three-photon states prepared in a single, stacked, and concentric rings. For M 
excitations, there are in general CM

N  possible HPI multiphoton states. Before we investigate the case of many atoms, 
a few atoms study can illuminate the interplay between imprinted phases, atomic spatial distributions, and mul-
tiphoton interference.

Three- and four-atom case.  For three atoms on a ring with the same arc length, we have the far-field scat-
tering from HPI two-photon states from x̂-polarized light,
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where = | |r rkR  and c.c. means the complex conjugate of counterparts in the parenthesis. This far-field pattern is 
exactly the same as HPI single photon states, since the traveling phases contributed from atomic configurations 
in equation (4), −R RM

m
M
j , involve only pairwise atoms. This is also the case for the difference of imprinted helical 

phases, μ→φf ( )j m( ) . Therefore, the far-field patterns of HPI multiphoton states with M = N − 1 exactly correspond 
to HPI single photon states on a ring33.

The unique emission pattern of HPI multiphoton states then emerges in two-photon states of a ring with four 
atoms. In Fig. 2, we show the scattering patterns Ωf (θ, φ) with associated fluorescence intensity I0 (t). Since the 
HPI multiphoton states are not the eigenstates of the system in general15, their fluorescence results from several 
eigen decay rates which we show in Fig. 2(c) for the specific atomic configuration with six C( )M

N  eigenstates. We 
then distinguish the sub- (l = 1, 2) from superradiant (l = 4) states by comparing I0 (t) with the intrinsic decay 
function e−2Γt. A clear signature of the subradiant far-field pattern is the side scattering30,31,33 in the mode of l = 1, 
while the superradiant mode of l = 4 typically shows a forward and backward scattering along the excitation 
direction ẑ.

Interestingly, the most subradiant state of l = 2 shows not only small side scattering peaks at φ = π/2 and 3π/2, 
but also enhanced forward and backward scatterings, bearing both signatures of single-photon sub- and superra-
diance. This is in contrast to HPI single-photon subradiant states33 which allow only side scatterings. In addition, 
this illustrates the multiphoton interference in the HPI states, which carries an extra degree of freedom in 
phase-imprinting other than atomic configurations (traveling phases) and excitation modes (various l). We note 
that discrete C4 rotational symmetry in Ωf (θ, φ) is preserved for linear polarizations in the atomic system of  
N = 4 n with integers n. This can be seen as we change φ to φ + π/2 in the prefactor of equation (4), which changes 
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x̂-polarized emission pattern to ŷ-polarized one. Also l ↔ −l symmetry in Ωf (θ, φ) is sustained for all N as r → 
0. In general for all r, even N preserves this mode symmetry. This mode symmetry emerges due to the regular 
convex polygon geometry which we assume for atoms forming a ring and incremental helical phases we apply, 
and as such the far-field scattering in equation (4) does not change as l → −l (or equivalently N − l). Therefore, Ωf 
(θ, φ) of l = 3 is the same as l = 1 in Fig. 2. For another example of N = 6 with M = 2, one of the far-field scattering 
contributions, cos [kR ⋅ (r1 + r2 − r3 − r4) + 2lπ × 4/6], pairs up with cos[kR ⋅ (r4 + r5 − r1 − r6) + 2lπ × (−2)/6], 
which interchanges to each other as l → −l.

Single ring.  Here We take N = 12 on a ring as an example and investigate the far-field scattering patterns of 
HPI two-photon subradiant states. This N has C4 rotational symmetry so we use x̂-polarized light without loss of 
generality. In Fig. 3(a1), we show the side scattering of the subradiant modes with l = 3, 4 and 5. The specific 
two-dimensional plot of l = 3 mode is illustrated in Fig. 3(b), which reveals N side scattering peaks. This specific 
mode corresponds to the number of atoms, similar for l = 1 mode in Fig. 2(a) and thus can be used to characterize 
the atomic configuration. The l = 6 subradiant mode in Fig. 3(a1), also similar to the l = 2 mode in Fig. 2(a), 
shows forward and backward scattering, but radiates in a rate only second to the most subradiant mode of l = 5. 
This can be seen in the time evolutions of the subradiant modes in Fig. 3(c) where l = 5 state evolves longer than 
the other subradiant modes since it occupies the most subradiant eigen decay rate. The HPI states of l = 3, 4 and 
5 drop rapidly initially due to partial overlaps with the superradiant eigenmodes while later they still evolve past 
the intrinsic decay e−2Γt, indicating a subradiant afterglow. In the insets of Fig. 3(c), we show the effect from the 
fluctuations of atomic positions along the arc length on the fluorescence intensity. The oscillation peaks at a later 
time are smoothed out as the fluctuation increases, and the fitted exponential decay rates Γ−e( )tf  of the mean radi-
ation envelopes are Γf/Γ = 0.419, 0.655, 0.663, respectively for free of, 5%, and 10% position fluctuations. This 
leads to the decrease of the effective lifetime of the HPI subradiant state, similar to the suppression of linewidth 
narrowing in the subradiant eigenmodes of 2D arrays with position fluctuations13. The averaged emission pat-
terns are shown for l = 3 and 6 respectively in Fig. 3(a2) with 5% position fluctuations. The mode of l = 3 also 
shows the smoothing feature in the side peaks along with finite but less significant forward and backward scatter-
ings, in contrast to Fig. 3(b) without position fluctuations. On the contrary for the mode of l = 6, the forward and 
backward scattering pattern is more resilient to the fluctuations. The clear side peaks of l = 3 can be restored as 
the fluctuation is reduced below around 1%.

For far-field scattering patterns of HPI three-photon subradiant states, we show in Fig. 4 with N = 8. We note 
that as N increases, the total Hilbert space goes up as N( )3 , so here we only focus on the feature of directional 
subradiance instead of multi-atom effect. For larger N on the other hand, we will investigate the effect of stacked 
and concentric rings in the next subsection. In Fig. 4, we show the effect of multiphoton interference on the far-field 
scattering, where the subradiant mode of l = N/2 encodes the information of N side scattering peaks, in contrast to 
forward/backward scattering l = N/2 modes in Figs 2 and 3. Furthermore, the subradiant mode at l = 3  
in Fig. 4 shows an oblique scattering, instead of forward and backward directions.

The HPI multiphoton subradiant states show quite rich far-field scattering patterns. Except for side scatterings, 
the subradiant emission also allows along or near the excitation direction. In addition, the oscillation of time 
evolutions manifests the beating frequency from the differences of cooperative frequency shifts10. This shows 
flexibility to tailor and manipulate the emission time and directions of multiphoton states, and enables the one to 
one correspondence between the atomic configurations and the far-field scattering patterns.

Figure 2.  The far-field Ωf (θ, φ) of x̂-polarized HPI two-photon states for four atoms on a ring. (a) Three-
dimensional plots of Ωf (θ, φ) at r/λ = 0.2 with l = 1, 2 and 4, respectively. Corresponding two-dimensional 
plots are shown in (b). (c) The spontaneous decay rates, Re [−λn]/(Γ/2) in an ascending order, are numerically 
calculated from the eigenvalues λn for this given atomic configuration. A horizontal line guides the eye for 
natural decay rate Re [−λn] = Γ/2. (d) The fluorescence intensity I0 (t) of the HPI two-photon states with l = 1 
(dash), 2 (solid), and 4 (dash-dot), compares with e−2Γt (dot).
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Stacked and concentric rings.  Finally we investigate the far-field scattering properties of HPI multipho-
ton subradiant states in the stacked and concentric rings. We have investigated these two configurations of HPI 
single-photon states33 which show enhanced forward scattering and narrowing effect on side scattering peaks 
in the stacked and concentric rings respectively. In Fig. 5, we show the far-field scattering properties of HPI 
two-photon subradiant states with l = 2 and 4, in the stacked and concentric rings respectively. Similar to HPI 
single-photon states, the forward scattering is enhanced in Fig. 5(c) and (e) as Nz increases. On the contrary, 
comparing Figs 3(a) and 5(a), the transverse scattering peaks are smoothed out due to multiphoton interfer-
ence. This smoothing effect is even more significant in the concentric rings of Fig. 5(d) as Nr increases, and the 
states of l = 2 and 4 become superradiant for a larger Nr. In Fig. 5(f), the effect of concentric rings weakens the 
forward-backward scattering along with emerging side scattering. Therefore, in the perspective of preparing mul-
tiphoton subradiant states in a large atomic system, the stacked rings are better than the concentric ones since the 
former allows a more directional emission pattern which is better for light collection and detection.

Figure 3.  The far-field Ωf (θ, φ) of x̂-polarized HPI two-photon states for N = 12 on a ring. (a1) Three-
dimensional plots of Ωf (θ, φ) with l = 3–6 with a specific two-dimensional plot of l = 3 in (b). (a2) Averaged 
three-dimensional plots of Ωf (θ, φ) with l = 3 and 6, with 5% atomic position fluctuations. The viewing angle 
and r are the same as in Fig. 2(a). (c) The fluorescence intensity I0 (t) of the HPI two-photon states for l = 3–6, 
compares with e−2Γt. The insets of (c) show the plot of l = 6 with fluctuations of atomic positions in the left and 
right, respectively with 5% and 10% uniformly distributed deviations around the fixed positions. The shaded 
areas represent 1σ standard deviation of the mean curve (solid).

Figure 4.  The far-field Ωf (θ, φ) of x̂-polarized HPI three-photon states for N = 8 on a ring. (a) Three-
dimensional plots of Ωf (θ, φ) of subradiant states with l = 3 and 4. Corresponding two-dimensional plots are 
shown in (b). (c) The fluorescence intensity I0 (t) of the HPI three-photon states with l = 3 and 4, compares with 
e−3Γt. The viewing angle and other parameters are the same as in Fig. 2(a).
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For HPI three-photon subradiant states, we show the results of Ωf (θ, φ) of two stacked rings in Fig. 6 as a 
comparison to Fig. 4. We find the enhanced oblique scattering toward the backward direction for l = 3 mode and 
narrowing side scattering peaks for l = 4 in polar angles θ. The small peaks at θ ≈ 3π/4 for l = 4 is also a signature 
of enhanced oblique scattering which breaks the mirror symmetry of the emission patterns in Fig. 4 with respect 
to −^ ^x y  plane. We note that the clear Nφ number of transverse scattering peaks disappear due to multiphoton 
effect. The time evolutions of these states in Fig. 6(c) shows the subradiant fluorescence, and the mode for l = 3 is 
more subradiant than the one in Fig. 4(c), which indicates the cooperative enhancement in subradiance when 
more atoms are stacked up. For more atoms, for example of Nz = 3, we find similar enhancement in oblique scat-
tering and narrowing polar angle distribution for l = 3 and 4 modes respectively. For concentric rings, these 
three-photon modes do not show significant subradiance, similar to Fig. 5(c) and (d).

Discussion
Recently there is a huge advance in precisely controlling atomic separations in waveguide44 or integrated 
color centers45 and in assembling discrete atoms by optical microtraps46,47, which has enabled fine tunings of 
light-matter interactions. These experimental techniques have promised an ultimate quantum control in quantum 

Figure 5.  The far-field Ωf (θ, φ) of x̂-polarized HPI two-photon states for Nφ = 8 and Nr,z = 1, 2 and 3 in the 
stacked and concentric rings. For single ring, we plot two subradiant states (a) l = 2 and (b) l = 4 for 
comparisons. For stacked rings, the subradiant states with (c) l = 2 and (e) l = 4 are illustrated with Nz = 2 and 3 
from left to right. Similarly for concentric rings, the subradiant (left) and superradiant (right) states respectively 
with (d) l = 2 and (f) l = 4 are illustrated with Nr = 2 and 3 from left to right. The viewing angle and other 
parameters are the same as in Fig. 2(a), and stacked ring separation dz/λ = 0.35, concentric inter-ring distance 
dr/λ = 0.2.

Figure 6.  The far-field Ωf (θ, φ) of x̂-polarized HPI three-photon states for Nφ = 8 and Nz = 2 in the stacked 
rings. The subradiant states with (a) l = 3 and l = 4 are illustrated from left to right with corresponding two-
dimensional plots in (b). (c) The fluorescence intensity I0 (t) of the HPI three-photon states compares with e−3Γt 
(dot). The viewing angle and other parameters are the same as in Fig. 5.
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optical systems. With well control of atomic configurations, we can manipulate RDDI of the spontaneous emis-
sion process. This controls the timescale of the emission, which makes subradiant states a resource for quantum 
memory. Subradiant far-field scattering, on the other hand, provides additional information for light collection 
and specific characterization of atomic geometry. This helps prepare genuine quantum states and makes quantum 
state engineering more efficient.

In conclusion, we propose to prepare the multiphoton subradiant states by imprinting the helical phases from 
OAM of light on the atoms in the stacked and concentric rings, and investigate their far-field scattering patterns. 
The directional scattering of the helical-phase-imprinted multiphoton subradiant states allows for light colli-
mation, and their small spontaneous decay rates are preferential to quantum storage of light quanta with orbital 
angular momenta. We find enhanced forward (oblique backward) emission for HPI two (three)-photon subradi-
ant states which can also support transverse scattering peaks. Therefore, we can tailor and control the scattering 
properties by engineering the atoms spatially, which essentially can facilitate quantum control of the many-body 
subradiant states and is useful in manipulating entanglement of large orbital angular momenta48 or operating 
quantum gates49.

Methods
Lindblad form of dissipation with resonant dipole-dipole interactions.  The coupling matrix is 
based on the Lindblad forms of the spontaneous emissions. The general spontaneous emission process involves 
the dipole-dipole interaction4 which results from the rescattering events in the dissipation. For a quantum oper-
ator Q̂, the Heisenberg equation in a Lindblad form reads
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2 2

2 3

ξ ξ
ξ

ξ
ξ

ξ
ξ

≡
Γ 





− − ⋅ + − ⋅






+










μν μν μνˆ ˆˆ ˆG r rp p( ) 3

4
[1 ( ) ]cos [1 3( ) ] sin cos ,

(9)
2 2

2 3

where Γ is the single-particle intrinsic decay rate of the excited state, ξ = |kL|rμν, and the interparticle distance rμν =  
|rμ − rν|. The above expressions are valid for uniformly polarized excitations of the dipole p.
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