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Electrostatic quantum dots in 
silicene
B. Szafran, D. Żebrowski & Alina Mreńca-Kolasińska

We study electrostatic quantum dot confinement for charge carriers in silicene. The confinement is 
formed by vertical electric field surrounding the quantum dot area. The resulting energy gap in the 
outside of the quantum dot traps the carriers within, and the difference of electrostatic potentials on 
the buckled silicene sublattices produces nonzero carrier masses outside the quantum dot. We study the 
electrostatic confinement defined inside a silicene flake with both the atomistic tight-binding approach 
as well as with the continuum approximation for a circularly symmetric electrostatic potential. We find 
localization of the states within the quantum dot and their decoupling from the edge that makes the 
spectrum of the localized states independent of the crystal termination. For an armchair edge of the 
flake removal of the intervalley scattering by the electrostatic confinement is found.

Silicene1,2 is a material similar in crystal and electron structure to graphene3 but with enhanced spin-orbit coupling4–6 
that makes this two-dimensional medium attractive for studies of anomalous-5, spin-6 and valley- quantum Hall 
effects7, giant magnetoresistance8,9 and construction of spin-active devices10,11. The crystal structure of a free-standing 
silicene is buckled12 with a relative shift of the triangular A and B sublattices in the vertical direction. The shift allows 
one to induce and control the energy gap near the charge neutrality point13,14. The silicene was first successfully formed 
on metallic substrates15–20. For the studies of electron properties of systems based on silicene non-metallic substrates21 
are needed. Theoretical studies have been performed for the silicene on insulating AlN22, and semiconducting transi-
tion metal dichalcogenides (TMDCs)1,23–25. An operating room-temperature field effect transistor was recently real-
ized26 with silicene layer on Al2O3 insulator. Al2O3 only weakly perturbs the band structure of free-standing silicene 
near the Dirac points27. The silicene islands have also been grown on graphite28 by van der Waals heteroepitaxy.

In this paper we study formation of an electrostatic quantum dot within the silicene. The electrostatic quan-
tum dots29 allow for precise studies of the carrier-carrier and spin-orbit interaction. In graphene the electro-
static confinement is excluded since the carriers behave like massless Dirac fermions that evade electrostatic 
confinement due to the lack of the energy gap in the dispersion relation and chiral Klein tunneling that prevents 
backscattering30. A local electrostatic potential in graphene can only support quasibound states31,32 of a finite 
lifetime and cannot permanently trap the charge carriers. Carrier confinement and storage can be realized by 
finite flakes of graphene33–37. However, the electron structure of states confined within the flakes depends strongly 
on the edge33,34 that is hard to control at the formation stage and cannot be changed once the structure is grown. 
The electrostatic confinement29 is free from these limitations. Finite flakes of silicene as quantum dots were also 
discussed38–40. For the graphene, the energy gap41 due to the lateral confinement or mass modulation by eg. a 
substrate allows for formation of quantum dots by external potentials42–45. Confinement by inhomogeneity of the 
magnetic field has also been proposed for graphene46,47 which removes the edge effects.

The electrostatic quantum dots studied below are formed by an inhomogeneous vertical electric field. We 
consider a system in which the confinement of the carriers is induced within a region surrounded by strong 
vertical electric fields [see Fig. 1]. The inhomogeneity of the electric field is translated into position-dependence 
of the energy gap. Localized states are formed within a region of a small energy gap surrounded by medium of a 
larger gap. A similar confinement mechanism has previously been demonstrated for bilayer graphene48, which 
also reacts to the vertical electric field by opening the energy gap. The vertical electric field produces potential 
variation at the A and the B sublattices of the buckled silicene [Fig. 1(b)]. In this way the system mimics the idea 
for potential confinement of neutrinos introduced by Berry and Mondragon49. A potential of a different sign for 
the components of spinor wave function was applied49 that produces a so-called infinite-mass boundary in the 
limit case of a large potential. The infinite-mass boundary condition is applied for phenomenological modeling 
of graphene flakes with the Dirac equation33,34,45,49,50. The proposed device is a physical realization of this type of 
the boundary condition. Note that for monolayer TMDCs51, materials with hexagonal crystal lattice, the valley 
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degree of freedom and strong spin-orbit coupling, formation of electrostatic quantum dots52 is straightforward 
due to the wide energy gap of the system. However, these systems are far from the Dirac physics for massless or 
light carriers. On the other hand the buckled germanene grown by heteroepitaxy on graphite with the linear Dirac 
band structure53 should allow for formation of electrostatic confinement in a manner described below.

Theory
Model system. We consider silicene embedded in a center of a dielectric layer sandwiched symmetrically 
between metal gates [Fig. 1(a)]. The distance between the gates is 2h = 2.8 nm outside a circular region of radius 
2R = 40 nm, where the spacing is increased to 2H = 28 nm. The model device is a symmetric version of an early 
electrostatic GaAs quantum dot device54. The electrostatic potential near the charge neutrality point can be esti-
mated by solution of the Laplace equation with the Dirichlet boundary conditions at the gates. The solution on the 
A and B sublattices is shown in Fig. 1(b) for the gate potential Vg = 10 V. A potential difference between the sublat-
tices presented in Fig. 1(b) appears as a result of the buckled crystal structure with the vertical distance d = 0.046 nm; 
between the sublattices [see Fig. 1(a)]. The difference is large outside the central circular area. Beyond this area the 
potential is UA = eVgd/2h for the A sublattice and UB = −eVgd/2h for the B sublattice [Fig. 1(b)]. Near the center of 
the circular area the potential is UA = eVgd/2H, UB = −UA with the gate potential lever arm increased by the larger 
spacing between the gates. The bottom of the electrostatic potential in the center of the dot in Fig. 1(b) is flat. The 
electrostatic potential can be approximated by a formula = − − +V eV exp r R eV[1 ( ( / ) )]exact g
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and UB = −UA, where r is the in-plane distance from the center of the system. The model potential is plotted with 
the dotted lines in Fig. 1(b). The results for the exact electrostatic potential are also discussed below. For the dis-
cussion of the confinement potential profile depending on the geometry of the gates see ref.55.

Note that the gate voltage to confinement potential conversion factor depends not only on the spacing between 
the gates but on the buckling distance1 which varies for different substrates. The silicene on graphite is character-
ized by the lattice parameters including the buckling to the free-standing silicene, with the buckling found close 
to 0.05 nm28. On the other hand, for silicene on MoS2 the buckling can be as large as 0.2 nm25. In order to illustrate 
the dependence on the buckling, the confinement potential at the A sublattices was plotted in Fig. 1(c) for varied 
values of the buckling distance d.

Atomistic Hamiltonian. For the atomistic tight-binding modeling we apply the basis4 of pz orbitals, for 
which the Hamiltonian reads4,5,56

 H t e c c i e c c

U r c c
g B

c c

3 3

( )
2

,
(2)

k l

i e A d l
k l

SO

k l

i e A d l
kl k

z
l

k
k k k

B

k
k

z
k

, , ,

, ,
,

rk

rl

rk

rl

⟨ ⟩

†

⟨⟨ ⟩⟩

†

† †

∑ ∑

∑ ∑

∫ ∫λ
ν σ

μ
σ

= − +

+ +

α
α α

α β
α αβ β

α
α α

α
α α α α

⋅ ⋅→

→
→ →

→

→
→ →

Figure 1. (a) Schematics of the quantum dot device. The silicene layer is embedded within a dielectric inside a 
symmetric double gate system. The distance between the A and B sublattice planes is d = 0.046 nm. The spacing 
between the gates within the central circular region of diameter 2R = 40 nm is 2H = 28 nm and 2h = 2.8 nm 
outside. (b) The solid lines show the electrostatic potential for Vg = ±10 V applied to the gates at the A and 
B sublattices as calculated from the Laplace equation. The dashed lines indicate a rectangular quantum well 
approximation used in the calculations (see text). The cross section of the electrostatic potential in (b) is taken 
at y = 0 and z = ±d/2. (c) The potential on the A sublattice for the parameters of (b) for varied buckling, i.e. 
the vertical offset between the A and B sublattices with the values of d given in the plot in nanometes. The 
calculations in this work are performed for d = 0.046 nm.
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where σz is the Pauli spin matrix, α
†ck  is the electron creation operator at ion k with spin α, the symbols 〈 〉k l,  and 

〈〈 〉〉k l,  stand for the pairs of nearest neighbors and next nearest neighbors, respectively. The first term of the 
Hamiltonian accounts for the nearest neighbor hopping with t = 1.6 eV4,5. The second term describes the intrinsic 
spin-orbit interaction57 with the sign parameter vkl = +1 (vkl = −1) for the counterclockwise (clockwise) 
next-nearest neighbor hopping and λso = 3.9 meV4,5. The exponents in the first and second sum introduce the 
Peierls phase, with the vector potential 

→
A . The term with U introduces the model electrostatic potential given by 

Eq. (1). The last term is the spin Zeeman interaction for perpendicular magnetic field, where μB is the Bohr mag-
neton and the electron spin factor is g = 2. The applied Hamiltonian is spin diagonal in the basis of σz eigenstates. 
We consider the states confined within the confinement potential that is defined inside a finite silicene flake con-
taining up to about 72.5 thousands ions.

Continuum approximation. The continuum approximation to the atomistic Hamiltonian provides the 
information on the valley index and angular momentum of the confined states. The continuum Hamiltonian (3) 
near the K and K′ valleys written for the spinor functions Ψ = Ψ Ψ( , )A B

T is56
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 is the Fermi velocity with the nearest neighbor distance 
a = 0.225 nm.

For the isotropic potential U(r) and the symmetric gauge 
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which is solved numerically using a finite difference approach. The continuum Hamiltonian eigenstates have a 
definite z component of the spin, the valley index, and the angular momentum. Below we label the Hamiltonian 
eigenstates of K [K′] valley with the j [j′] angular momentum quantum number, with j = m + 1/2 [j′ = m′ − 1/2].

In the continuum approach we look for the states localized within the confinement potential of radius R 
within a finite circular flake of radius R′. We are interested in the influence of the type of the flake on the states 
localized within the electrostatic potential well. In the continuum approximation at the edge of the flake we apply 
two types of boundary conditions: the infinite-mass boundary condition =

| = ′
i

f

f
B

A r R

33,34,49 and the zigzag boundary 

condition for which one of the components of the wave function vanishes at the end of the flake r = R′. The zigzag 
edge supports localized states with zero energy at Vg = 0. With the infinite mass boundary conditions the zero 
energy states38 are missing and the low-energy states are extended over the interior of the flake. The infinite mass 
and zigzag boundary conditions preserve the valley index as a quantum number. The maximal mixing of the 
valleys appears with the armchair edge of the flake. The latter is considered with the atomistic tight-binding 
approach.

Results
Figure 2 shows the energy spectrum and the localization of energy levels obtained with the atomistic tight bind-
ing [Fig. 2(a)] and with the continuum approach [Fig. 2(b–d)] as functions of the gate voltage. In this plot the 
spin-orbit interaction was switched off. A vertical magnetic field of 0.5 T is applied, for which splitting of energy 
levels with respect to the valley but not with respect to the spin is visible on the scale of Fig. 2. One observes the 
splitting of the energy levels with respect to the orbital angular momentum in the external magnetic field.

In the atomistic tight-binding approach [Fig. 2(a)] a hexagonal flake of side length 43 nm and an armchair boundary 
were taken. For the continuum approach a circular flake of radius R′ = 2R = 40 nm (b,c) and R′ = 4R = 80 nm (d) were 
studied. In Fig. 2(b,d) the infinite mass boundary condition is applied at the end of the flake and in Fig. 2(c) the zigzag 
boundary condition is assumed. The energy levels get localized inside the quantum dot–see the color of the points that 
indicate the localization of the electron probability density inside the quantum dot. The zigzag edge applied in Fig. 2(c) 
supports the edge-localized energy levels which correspond to zero energy in the absence of external fields. The edge 
energy levels for the zigzag flake in Fig. 2(c) are split by the gate potential38,40. The energy of the edge states38 follow 
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Figure 2. Energy levels of a silicene flake with a circular quantum dot of radius R = 20 nm defined in its center 
by the inhomogeneous vertical electric field as functions of the gate voltage applied as in Fig. 1. The plot (a) 
shows the results of the atomistic tight binding approach for the armchair hexagonal flake of side length 43 nm 
without the spin-orbit coupling. Plots (b–d) were obtained with the continuum approach for the confinement 
potential defined of radius R = 20 nm within a circular flake of radius R′ = 40 nm (b,c) and R′ = 80 nm (d). The 
infinite mass boundary conditions were applied at the edge of the flake in (b) and (d) and zigzag boundary 
conditions in (c). The color of the lines indicates the part of the probability density that is localized at a distance 
of 1.1 R from the center of the dot. The thick gray lines show the electrostatic potential energy at the A (the 
upper gray line with positive energy) and B (the lower gray line) outside of the quantum dot. The results are 
obtained for perpendicular magnetic field B = 0.5 T and the spin-orbit coupling is neglected.
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the potential energy at the separate sublattices outside the quantum dot. The edge states are missing for the armchair 
edge of the hexagonal flake adopted for the tight-binding calculations in Fig. 2(a) and for the infinite-mass boundary 
condition adopted in the continuum model in Fig. 2(b,d). For the larger circular flake [Fig. 2(d)] the spacing between 
the energy levels localized outside of the dot is decreased, but the same spectrum of the localized states is found. We 
can see in all the panels of Fig. 2 that the energy spectra of localized states obtained by the atomistic and continuum 
approaches with varied boundary conditions become similar for larger Vg. The localized states are found in between 
the two thick gray lines that show potential energy at the A and B sublattices outside the quantum dot U = ±eVgd/2h. 
A perfect agreement between the energies of the localized states in the tight-binding and Dirac models is obtained for 
the energy levels that are the closest to the charge neutrality point (E = 0). For the energy levels that are closer to edge 
states energy [cf. Fig. 2(a) and (b) for E > 100 near Vg = 10 V], the wave functions of the localized states penetrate into 
the region outside of the quantum dot. The external region is different in all the plots of Fig. 2, hence the resolvable 
difference of the energy levels. The spectrum of the zigzag flake [Fig. 2(c)] indicates that the confinement of subsequent 
states within the quantum dot area appears with the crossing of the confined energy levels with the edge states38 which 
shift linearly with the external potential. The edge states and thus the crossings are missing in the results obtained with 
the armchair edge [Fig. 2(a)], and the infinite-mass boundary conditions [Fig. 2(b,d)].

The effects of the spin-orbit coupling and the results for the exact confinement potential are given in Fig. 3. 
The plot of Fig. 3(b)–with the external field 0.5 T and without the spin-orbit interaction is the zoom of Fig. 2(b). 
The Zeeman spin splitting is still not resolved at this energy scale, but the splitting of the energy states with respect 
to the valley is evident. The K (K′) valley states with the indicated angular momentum quantum number m (m′) 
for the A sublattice is given in the Figure. In Fig. 3(b) all the energy levels are nearly degenerate with respect to 
the spin. For comparison the result for 0 T is plotted in Fig. 3(a), where all the energy levels are strictly degen-
erate. The degeneracy is fourfold: with respect to both the spin and the valley. The results with the intrinsic spin 
orbit coupling are displayed in Fig. 3(c) for B = 0. The intrinsic spin-orbit interaction introduces an effective 
valley-dependent magnetic field which forms spin-valley doublets. The energy effects of the splitting is compara-
ble to the external magnetic field of 0.5 T given in Fig. 3(b).

The results of the present manuscript were obtained with the rectangular quantum well potential [Eq. (1)] 
approximation to the actual electrostatic potential [see Fig. 1(b)]. The results for the rectangular potential 
[Fig. 3(b)] can be compared to the ones with the exact potential [Fig. 3(d)]. The energy levels for the exact poten-
tial are shifted up on the energy scale–since the rectangular potential well is a lower bound to the exact potential 
[cf. Fig. 1(b)]. However, the order of the energy levels and the relative spacings obtained with the exact potential 
are close to the ones obtained for the quantum well ansatz.

Figure 2 demonstrates that the dot-localized states are insensitive to the type of the edge and the size of the flake, 
which results from their decoupling from the edge. In particular, the valley mixing by the armchair edge is removed. 
The removal of the valley mixing has distinct consequences for the electron wave functions as described within  
the atomistic approach. Figure 4 shows the absolute value of the probability amplitude at the A (left column) and B 
(right column) sublattices for varied values of the gate voltage and the lowest-energy conduction-band state  
for B = 0.5 T. For Vg = 0 the electron density at both the sublattices undergoes rapid oscillations which result  

Figure 3. The solution of the Dirac equation for the quantum dot of radius R = 20 within a circular flake 
with R’ = 40 nm and infinite mass boundary conditions at the flakes edge. The color of the lines shows the 
localization of the electron within 1.1R from the center of the system and the scale is given to the right of (b). 
In the figure we mark the angular momentum quantum number for the A component, m for the energy levels 
belonging to the K valley and m′ for the ones in K′ valley. In (a) and (b) the spin-orbit coupling is absent, the 
applied magnetic fields are B = 0 (a) and B = 0.5 T (b). Plot (b) is a zoom of parameters of Fig. 2(b). In (c) B = 0 
and the spin-orbit coupling is switched on. In (c) ↑, ↓ stand for the z component of the spin. In (a) the energy 
levels are fourfold degenerate: with respect to the valley and the spin. In (b) the valley and spin degeneracy is 
lifted, but on the plot one resolves only the valley splitting, the Zeeman effect energy is too small to resolve the 
splitting of the lines. In (d) we plot the results obtained for the exact electrostatic potential of Fig. 1(b). Other 
plots (a–c) are obtained for the rectangular potential well of Eq. (1) as elsewhere in this work.
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Figure 4. The absolute value of the tight-binding wave function at A (left column) and B (right column) for the 
lowest conduction band energy level at B = 0.5 T for Vg = 0 (a,b), Vg = 1.875 V (c,d), Vg = 5 V (e,f) and Vg = 10 V 
(g,h). The results are obtained for a hexagonal armchair flake of side length 43 nm. In the continuum approach 
the localized ground-state is a K′ valley j′ = −1/2 state with orbital angular momentum 0 and −1 for the A and B 
sublattice components, respectively.
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from contributions from both valleys–distant in the wave vector space–to the electron wave function in the real 
space. In presence of the valley mixing the low-energy wave function for sublattice A can be written as a superposi-
tion φ φΨ = ⋅ + ′ ⋅ ′i ir( ) exp( K r) (r) exp( K r) (r)A A A . The probability density is then (r) (r) (r)A A A

2 2 2φ φ| | + Ψ | = | | +′
i2 ( (r) (r)exp( (K K) r))A AR ⁎φ φ ′ − ⋅′ . Due to the large distance between K and K′ in the reciprocal space the exponent 

term induces rapid variation of the density from one atom to the other even when φ| |A
2 and φ| |′A

2 densities are 
smooth. A smooth |Ψ |A  amplitude can only be obtained provided that one of the valley components φA or φ ′A  is zero. 
Figure 4 shows that indeed as the gate voltage is increased the rapid oscillations of the density disappear. The valley 
mixing disappears along with the coupling to the edge.

In Fig. 4 a circular symmetry of the confinement potential is reproduced by the electron density for larger Vg. 
In the lowest-energy conduction band state that we plot in Fig. 4 the density is locally maximal in the center of 
the quantum dot in the A sublattice. For the B sublattice a zero of the density is found. In the continuum approach 
the ground state at B > 0 corresponds to K′ valley with the total angular momentum j′ = −1/2 or m′ = 0 in Eq. (4). 
The A component of the wave function corresponds to an s state and the B component to a p state, which agrees 
with the results of Fig. 4(g,h). For Vg = 10 V the electron density far from the dot disappears. A penetration of the 
electron density outside the nominal radius of the dot is still present, but short range.

In Fig. 5(a) we plot the absolute value of the wave function for the same state as obtained with the continuum 
approach with the infinite-mass boundary condition at the end of the flake R′ = 80 nm. The vanishing derivative 
of the probability amplitude at r = 0 is found for the A sublattice and a linear behavior for the radial function 
on the B sublattice. Equations (5, 6) translate the potential step into a jump in the derivative of the radial func-
tions. Vg shifts most of the probability amplitude of the lowest-energy conduction band states to the A sublattice 
(see also Fig. 4). However, for large Vg the radial functions for both sublattices tend to the same amplitude (see 
Fig. 5(a)), since in the limit of infinite Vg the variation of the electrostatic potential at the outside of the dot 
induces an infinite-mass boundary at r = R, which implies equal amplitudes of the wave functions therein33,34,49. 
The results obtained with the exact potential are given in Fig. 5(b). The derivatives of the wave function are con-
tinuous for the smooth potential variation. The maxima of the wave function amplitude on the B sublattice no 
longer exactly coincide with R for the exact potential. Also, Fig. 1(b) shows that the energy difference between the 
sublattices is larger for the exact potential than in the rectangular quantum well approximation.

Summary and Conclusions
We found formation of states localized by external electrostatic potential within a silicene flake. The potential 
used for this purpose results from the inhomogeneity of the vertical electric field that induces an energy gap 
outside the quantum dot and the buckling of the silicene surface. The energy spectrum for a finite flake can be 
separated into quantum-dot localized states and the states delocalized over the rest of the flake. The localized and 
delocalized states appear in separate parts of the energy spectrum limited by the electrostatic potential on the sep-
arate sublattices of silicene. We have demonstrated that the states localized within the quantum dot are separated 
from the edge and independent of the boundary condition applied therein. A very good agreement between the 
atomistic tight-binding and continuum model results have been obtained. The electrostatic confinement opens 
perspectives for studies of localized states in the anomalous, spin and valley quantum Hall effects conditions.

Data availability. All data generated or analysed during this study are included in this published article.

Figure 5. Absolute value of the radial functions for the K′, j′ = −1/2 state at 0.5 T for Vg = 10 V (solid lines) and 
Vg = 1.875 V (dashed lines) for the continuum Hamiltonian. The A (B) sublattice component is plotted with the 
red (blue) line. The vertical solid line indicates the radius of the quantum well R = 20 nm defined within the 
flake of 80 nm. The applied normalization condition is ∫ Ψ Ψ| | + | | =r dr( ) 1A B

2 2 . The infinite mass boundary 
conditions are applied at the end of the flake at r = R′ = 80 nm. Panel (a) shows the results for the rectangular 
potential well [Eq. (1)] and (b) for the smooth electrostatic potential of Fig. 1(b).
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