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Subwavelength hyperspectral THz 
studies of articular cartilage
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Terahertz-spectroscopy probes dynamics and spectral response of collective vibrational modes in 
condensed phase, which can yield insight into composition and topology. However, due to the long 
wavelengths employed (λ = 300 μm at 1THz), diffraction limited imaging is typically restricted to spatial 
resolutions around a millimeter. Here, we demonstrate a new form of subwavelength hyperspectral, 
polarization-resolved THz imaging which employs an optical pattern projected onto a 6 μm-thin silicon 
wafer to achieve near-field modulation of a co-incident THz pulse. By placing near-field scatterers, 
one can measure the interaction of object with the evanescent THz fields. Further, by measuring 
the temporal evolution of the THz field a sample’s permittivity can be extracted with 65 μm spatial 
resolution due to the presence of evanescent fields. Here, we present the first application of this new 
approach to articular cartilage. We show that the THz permittivity in this material varies progressively 
from the superficial zone to the deep layer, and that this correlates with a change in orientation of 
the collagen fibrils that compose the extracellular matrix (ECM) of the tissue. Our approach enables 
direct interrogation of the sample’s biophysical properties, in this case concerning the structure and 
permittivity of collagen fibrils and their anisotropic organisation in connective tissue.

In the last two decades, THz radiation has attracted a lot of attention due its unique properties1–3. For example, 
there have been non-invasive inspections of semiconductor surfaces4, space shuttle panels5, electronics6, paint-
ings7 and pharmaceutical tablets8. Unlike X-rays, the photon energies are non-ionizing, hence the great interest 
in using THz for biological tissue evaluation9,10 and also for cancer diagnosis3,11. Moreover, many low-frequency 
vibrational modes of biological molecules in aqueous media lie in this frequency range, allowing THz spec-
troscopy to identify and characterize inter-molecular bonding in amino acids12, sugars13, DNA14 and proteins15, 
as well as dynamics at biomolecule-water interfaces16 and in photoactive proteins17. There are also the THz 
investigations of corneal diseases by Taylor et al.18 and the diabetic foot studies by Hernandez-Cardoso et al.19. 
Furthermore, long-range collective vibrational modes, which mediate structural changes and the reaction coor-
dinates critical to the function of active proteins20, normally manifest themselves at THz frequencies.

Whilst THz spectroscopy can readily identify such collective vibrational modes21 there are several difficulties, 
in addition the broadband nature of the resonances, in determining structural features of these systems. Firstly, 
samples have to be kept hydrated for normal biological function to be maintained, which is problematic due to 
the large THz absorption of water22. Secondly, owing to the long wavelengths employed (λ = 300 μm at 1 THz), 
near-field approaches are generally required to get sub-mm resolution. However, invasive imaging techniques 
such as those involving scanning tips or apertures23–25 are not suited for biological applications. Furthermore, it 
is usually necessary to encapsulate biological samples to maintain hydration, severely restricting the resolution 
achievable by scanning tips or apertures, and the apertures themselves typically have a very strong frequency 
response26 making them unusable for spectroscopic applications. For these reasons, subwavelength spectroscopic 
THz measurements of biological samples27–29 have been plagued by problems, and biological imaging has, for the 
most part, been restricted to large structures such as organs30,31.

Apertureless near-field THz measurements offer an intriguing solution to many of these problems. In the 
approach previously described by refs29,32 by placing a sample directly onto a crystalline electro-optic crystal THz 
detector, the near-field THz radiation can be observed via a femtosecond optical detection pulse incident from 
the rear of the crystal. This strategy is highly advantageous for biological imaging as the crystal detector itself 
can be used to encapsulate the sample29, and an image is readily obtained by raster scanning the detection pulse. 
However, a major shortcoming of this approach29,32 is that the electro-optic crystal must be transparent for optical 
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detection, hence the sample is exposed to the intense femtosecond visible pulse. Moreover, since the sample is in 
contact with the detector, this latter influences the reflection of the detection pulse, hence a measured image can 
be composed of both optical and THz responses, which may be of comparable magnitudes in biological samples.

An alternative apertureless approach involves the use of a photoconductive modulator to spatially modify a 
THz beam33. Here, an optical pump beam is projected simultaneously with a THz beam onto a thin photoconduc-
tive modulator such as a semiconductor wafer (see below; Fig. 1), switching the THz material response from die-
lectric to conductor through electron-hole pair photoexcitation34. The photoconductive regions generated by the 
pump behave as scatterers for THz radiation in the vicinity of a sample, which is placed on the rear interface of the 
modulator. This approach offers several clear advantages: firstly, there is no mechanical raster scanning involved. 
Moreover, the spatial resolution of a sample placed directly after the modulator is determined primarily by the 
thickness of the photo-modulator35, and such sub-wavelength THz measurements have been achieved in a vari-
ety of solid state systems35–37. Furthermore, this approach enables Hadamard transform imaging, where binary 
intensity patterns spatially modulate a beam of radiation allowing the formulation of an image by analysis of the 
transmitted or reflected light38,39. Hadamard approaches can significantly improve image quality and acquisition 
times35, which proves particularly advantageous for imaging biological samples due to the rather problematic 
THz absorption of water therein.

Articular cartilage is a connective tissue composed of a dense extracellular matrix (ECM) rich in water, col-
lagen and proteoglycans, with sparse specialised cells called chondrocytes40. It provides a smooth and lubricated 
surface for articulation and facilitates the transmission of loads through the distinctive regional orientation of 
the collagen fibrils, showing a change in alignment going from the articular surface through to deeper within 
the tissue. For this reason, cross-sections of articular cartilage are suitable candidates to test the capabilities of 
the THz imaging technique with polarization resolution. The thin superficial zone is made primarily of collagen 
fibrils aligned parallel to the articular surface, whilst the middle zone is composed of thicker collagen fibrils with 
an oblique alignment, and the deep zone consists of collagen fibrils aligned orthogonal to the articular surface41. 
Clinical conditions such as osteoarthritis and rheumatoid arthritis are characterized by degradation of the car-
tilage matrix, resulting in a disruption of the organised collagen structure42. Techniques that are able to detect 
changes in structure at the fibril level have potential for diagnosis of these pathologies.

In this article, we present a subwavelength THz measurement technique, based on the photoconductive 
modulator approach from refs35–37 which is applicable to histological sections of biological tissues. We project 
binary intensity patterns from a femtosecond laser source onto an ultrathin (6 μm-thick) photoconductive sil-
icon wafer in order to modulate a coincident picosecond THz pulse. Cross-sections of healthy articular carti-
lage are placed on the rear interface of a silicon wafer for maximal near-field interaction. By varying the arrival 
time of the incident THz pulse and using time domain detection, we measure the full temporal evolution of 
the THz field. With both amplitude and phase of the scattered THz pulse determined, we are able to extract the 
frequency-dependent complex THz permittivity of our sample with subwavelength resolution. We show that 
the THz permittivity of articular cartilage, made essentially of type-II collagen, varies across tens to hundreds 
of micrometres depending on the protein fibril orientation. This demonstrates the advantage of our approach in 

Figure 1.  The experimental scheme: an optical pump pulse is spatially modulated and used to photoexcite 
a thin silicon wafer, which, in turn, transfers the spatial encoding mask onto a coincident THz pulse. The 
subsequent THz pulse is then passed through a biological sample onto a time-gated, single-element detector. 
By varying the arrival time of the electro-optic sampling pulse, we measure the full temporal trace of our THz 
waveform.
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mapping the micro-structure of anisotropic samples, previously unattainable using far-field approaches. Note that 
this technique, in transmission geometry, is only applicable to histologically sectioned samples and hence is only 
suitable for ex-vivo studies. However, we do point out that it may be possible to apply similar principles to study 
THz reflection from surfaces such as skin.

Experimental Technique
Figure 1 illustrates the experimental setup (a more detailed schematic is presented in ref.35). We use a typical THz 
time domain spectrometer (THz-TDS) to launch and subsequently detect a THz pulse. Briefly: an amplified 
800 nm (90 fs) Ti-Sapphire femtosecond laser running at a repetition rate of 1050 Hz, is used to power the 
THz-TDS using optical rectification and electro-optic sampling in ZnTe crystals for generation and detection of 
our terahertz pulses, respectively43,44. The femtosecond pulses also provide a third optical excitation beam with a 
fluence of μ~ J cm100 / 2. This pump pulse is spatially modulated via a digital micromirror device (DLP3000 with 
the DLP Lightcrafter from Texas Instruments) and a single lens so as to project an optical intensity pattern on the 
surface of a highly resistive silicon wafer (8000 Ω.cm, 6 μm thick). This projection is coordinated at the sample 
with the arrival of a THz beam. The biological sample, articular cartilage composed mainly of type II collagen 
fibrils, consists of 40 μm-thick histological cryosections of bovine cartilage (see Materials and Methods). The 
hydrated sample is placed on the rear interface of the photomodulator, which is in turn sandwiched between two 
optically transparent polystyrene coverslips to maintain sample hydration and structural integrity. The photocon-
ductive properties of the silicon wafer allow one to optically render some regions opaque to THz radiation34, and 
scatter the incident THz light in the vicinity of the sample. Then, by measuring the far-field THz transmission for 
different spatial photo-excitation patterns, the near-field THz response of the object at different spatial locations 
can be obtained. Optimal signal-to-noise ratio is achieved via the use an orthogonal set of binary patterns derived 
from Hadamard matrices38,39 (see Materials and Methods). Moreover, by varying the relative arrival time of our 
electro-optic sampling pulse, we measure the full temporal evolution of the transmitted THz field with 100 fs 
temporal resolution. Combined with a reference scan taken in the absence of a sample, we are able to extract the 
frequency-dependent complex THz permittivity (see Materials and Methods for mathematical details) of the 
sample with a spatial resolution determined by the optical pattern on the photomodulator. We find that scatterers 
of size 65 μm to be sufficient to resolve the spatial variations of interest in the cartilage sample.

Plane Wave Analysis
A standard approach to analyzing THz-TDS spectra is to extract the complex permittivity (or equivalent) via 
analysis of the Fresnel transmission equations44. However, this approach assumes a plane wave approximation, 
something that is questionable for the near field. In this section, we test the validity of such an approximation to 
our experimental approach.

We analytically model a system similar to that in our experiment (full mathematical details in supplementary 
information). In brief, we analyze the transmission through a single aperture in a conducting film in contact with 
a lossy dielectric layer of thickness h, as represented in Fig. 2a. Here, the region with the aperture is tailored to 
have similar transmissive properties to those of the experimental photomodulator, while the lossy dielectric is 
given a permittivity ε. We set the permittivity of the incident and transmitted regions to εs = 2.5, i.e. similar to that 
of the plastic coverslips encapsulating our sample. Using a modal matching model37 which assumes an incident 
THz plane wave, we simulate experiment by finding the transmitted far field for the two cases where ε = 7.5 + 2i  
(i.e. similar to our cartilage sample discussed below) and ε = 1 (representing our reference). To replicate the 
multi-aperture approach used in our experiment, we carry out a complex summation of fields transmitted 
through different sized apertures (see supplementary information). We then analyze the total transmitted fields 
via the approach outlined in the Materials and Methods section in order to extract the permittivity of the lossy 

Figure 2.  (a) Side view of the modelling geometry; a plane wave is incident upon a single aperture placed on 
top of a dielectric. (b) The permittivity recovered from our model for three different dielectric thicknesses of 
30, 50 and 125 μm. The fields processed for the permittivity are due to the complex summation of the far fields 
transmitted through apertures of sizes from 40 to 700 μm.
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dielectric layer. By comparing the extracted permittivity to that introduced in the model, we can assess the valid-
ity of the plane wave approximation.

In Fig. 2b, we plot the real and imaginary parts of the recovered permittivity versus frequency for three differ-
ent sample thicknesses. We see that at higher frequencies, the recovered permittivity is generally very close to the 
input value used in the model. However, a greater discrepancy is found at lower THz frequencies, pronounced in 
both real and imaginary parts of the permittivity. This discrepancy arises from the presence of near fields, which 
are neglected in the plane wave approximation made to extract the permittivity. The longer decay lengths of the 
low frequency evanescent field components45 lead to a greater discrepancy than the high frequency fields. We 
also see that the thin samples exhibit greater discrepancy: for thinner samples, the amplitude of evanescent field 
components at the exit interface is larger. We discuss in more detail the origin of these effects in the supplemen-
tary information.

One should note that discrepancies due to the plane wave approximation are expected to be less severe in 
our experiment, owing to the much lower, finite conductivity of the photomodulator35,37, which will act to relax 
the aperture boundary conditions46 and reduce the amplitude of evanescent field components. Nevertheless, for 
sample thicknesses on the order of μm (such as those used in the experiment), one has to question the validity of 
the plane wave approximation at low THz frequencies. For this reason, we do not consider the very low frequency 
part of our spectra, below ~0.6 THz. Note that for higher resolution images or thinner samples, one needs to 
develop a more elaborate analysis procedure, incorporating all near field effects, in order to reliably extract values 
of local permittivity.

Results and Discussion
Figure 3a shows a photomicrograph of a cross-section of articular cartilage taken with a polarized visible light 
microscope. The sample contains three main regions with distinct orientations of the collagen fibrils, similar to 
samples studied previously with other imaging techniques47,48. In the superficial zone, collagen fibrils are aligned 
parallel to the articular surface. In the middle zone, the fibrils have an oblique arrangement, then ending orthog-
onal to their starting alignment in the deep zone, which presents high intensity of the transmitted polarized 
light. While articular cartilage has a collagen ultrastructure with spatial dimensions ~100 nm49 which cannot be 
resolved here, we concern ourselves primarily with resolving orientation of the collagen fibrils which also occurs 
on a subwavelength scale for THz radiation.

Figure 3b–e show the subwavelength THz response of cartilage measured with polarization parallel and per-
pendicular to the articular surface. Measurements were performed at discrete locations, from the superficial 
through to the deep zone, encompassing the different orientations of the collagen fibrils indicated in Fig. 3a. As a 
comparison, we also plotted the permittivity of the sample measured in the far field (i.e. a spatial average meas-
ured through the entire sample) and the permittivity of pure water (taken from ref.22). Note that water alone 
accounts for nearly 80% of the wet weight of articular cartilage40, and that, due to the THz diffraction limit, the 
far-field spatially averaged measurement is carried out over a sample length of ~0.5 mm, a length scale over which 
both the protein concentration and fibril orientation can be expected to vary substantially, owing to the heteroge-
neity of the biological sample on a micro-scale. The water spectral response shows a decreasing permittivity with 
increasing frequency22. However, both the spatially averaged and subwavelength THz response at all points across 
the depth of the cartilage exhibit broad features that are not apparent in the spectrum of pure water. Here, the 
broad peak at . −~ THz cm1 5 (50 )1  in the real part of the permittivity spectrum ( .~ THz1 7  in the imaginary part) is 
not due to bulk water and hence, is a feature associated with hydration water and the fibrils themselves (note that 
the smaller oscillatory peaks in the spectrum are artefacts of the finite Fourier transform used in the analysis, 
depending on the temporal length of the THz measurement). Finally, the observation that the far-field permittiv-
ity is not the average of the near-field permittivities exists. Finally, we note that the far-field measured permittivity 
is not characteristic of the spatial average of the near-field permittivities. We believe there are two origins to this 
effect. Firstly, in a spatially inhomogeneous sample, the coherent averaging of transmitted fields is not expected to 
be representative of the spatially average permittivities themselves. Moreover, the THz spot size is larger than the 
sample itself, which makes any far-field measurement unreliable.

When we compare the cartilage’s local permittivity, measured as a function of the distance from the superficial 
zone to the deep layer, to the spatially averaged measurement, we see a number of striking traits. Firstly, for hori-
zontal THz polarization (Fig. 3b,c), the real part of the THz permittivity increases going from the superficial to the 
deep zone (top to bottom in Fig. 3a), whilst the imaginary part decreases. This indicates that the sample is most 
polarizable when the THz field is oriented along the fibril direction, i.e. in the superficial zone, and suggests that 
the collagen fibrils have a THz frequency dipole moment oriented along their principal axis. This assignment is 
corroborated by measurements with THz polarization rotated by 90 degrees (Fig. 3d,e): here the spatial depend-
ence of the permittivity is essentially reversed and the sample is most polarizable at a deep location where the THz 
field is oriented along the fibril axis. It is important to note that the variation between the two sets of measure-
ments in Fig. 2 most likely arises from the response of two slightly different areas of the sample, and is indeed 
representative of the variation when measuring day to day in the lab, a problem arises due to an inherent difficulty 
in positioning the sample on such small length scales. Hyperspectral measurements of a second sample are shown 
for comparison in supplementary section S3, which exhibits similar features to the results presented here. It is 
important to note that slight variations in sample thickness or hydration level will lead to slightly different values 
for the extracted for the real and imaginary parts of the permittivity. This is a well-known problem in phase 
resolved measurements, since the optical thickness of a sample will determine to a large degree the phase of the 
transmitted wave. Nevertheless, we again observe a clear resonance at 1.6 THz in regions where the polarisation 
is aligned to the collagen fibril axis. It has been shown that proteins have low-frequency vibrational modes in the 
far-IR region50, as well as coupled solute–“solvent modes from the solvated solute51. For a biological tissue such as 
cartilage, both fibrous type-II collagen and water in proximity to the protein (i.e. hydration water), may contribute 
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to the total THz response. Markelz et al. have shown that collagen (lyophilised powder) has a rapidly increasing 
absorbance with increasing frequency in the range 0.3 to .~ THz1 25 14. Our data are in line with those findings, 
and we speculate that this broad absorption band is associated with the intermolecular structure of collagen. The 
strong dependence of the spectral response upon the THz field polarization may be associated with 
(water-mediated) collagen interstrand coupling14, which is stronger when the fibrils are aligned parallel to one 
another. It is possible that such interstrand coupling could play an important role in stabilizing the collagen struc-
ture52. Alternatively, the alignment of the water network in the direction of the fibrils gives rise to the polarisation 
effect observed, and further studies of the localized polarization-sensitive THz response observed here could 
provide greater insight.

Conclusions
We have demonstrated for the first time subwavelength hyperspectral THz imaging of articular cartilage using 
the photoconductive properties of a silicon photomodulator. We study articular cartilage, composed of collagen 
which is the most abundant structural protein in the human body, and find that its THz dielectric function varies 
on a sub-THz wavelength scale depending on collagen fibril orientation, which could be due to the presence of a 
THz dipole moment along the primary axis of the fibril or the collagen is birefringent. We point out that such a 
detailed observation is impossible to deduce from far-field measurements, demonstrating the value of this sub-
wavelength approach in regards to the diagnosis of pathologies that alter the collagen structure. It is interesting 

Figure 3.  (a) Photomicrograph and schematic diagram of a cross-section of bovine articular cartilage taken 
with polarization microscope (Nikon Elclipse E200) at 45° to the articular surface. Boxes of different colour 
indicate locations from which THz measurements were taken. (b–e) Real and imaginary part, respectively, of 
the sample’s dielectric function for horizontally (vertically) polarized incident THz beam. Bulk water data from 
fit parameters of ref.22. Note the colour coding of the lines correlates with in part (a), indicating the location on 
the sample from where THz measurements were performed. The raw THz data as well as absorption maps at 
1 THz can be seen in the supplementary information section S2.
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to note that, since the fundamental imaging resolution limit of our measurement is determined by the diffraction 
of the optical pump pulse, we believe that our approach, where sub-micron resolution may even be possible, 
holds promise as a future microscopy tool with potential for applications in the biomedical sciences, even on 
subcellular scales. However, while the presence of a THz resonance in oriented regions of articular cartilage is 
certainly a promising observation, we acknowledge that it is as yet unclear whether this additional information 
could potentially be useful for diagnosis. Moreover, to implement such a THz imaging technique in real-world 
applications, improvements to both the data acquisition rates as well as the current costs of THz measurement 
systems will be required.

Methods
Sample preparation.  Bovine metacarpophalangeal joint cartilage was obtained from a local abattoir and 
washed in phosphate-buffered saline (PBS; pH 7.4) before cryosectioning. A cartilage segment was immersed 
in Bright cryo-m-bed compound and frozen before cryosections were cut. Cross-sections of cartilage were cut 
perpendicular to the articular surface and analyzed. The geometry of the section was recorded in polarized light 
microscope images, obtained using a 10X objective on a standard polarized light microscope and a CCD camera 
(QImaging Retiga 2000R).

Orthogonal patterns.  We observe THz transmission via a single-element detector in the far-field. Hence, 
as mentioned in the main text, our sub-wavelength resolution is achieved by modulating our THz beam with 
different encoding patterns in the near-field of our sample. To achieve optimal signal-to-noise ratio, we use an 
orthogonal set of binary patterns derived from Hadamard matrices38,39. We now consider the construction of an 
N-pixel image Ψ; our ith measurement, φi, is the dot product of the object transmission function and the ith mask 
configuration, mathematically expressed as

∑φ ψ=
=

w ,
(1)

i
j

N

ij j
1

where wij holds the spatial information of the ith mask and ψj is the jth pixel of the image. This can be represented 
by the matrix equation Φ = WΨ, where the rows of matrix W are reformatted into the projected masks. For 
invertible matrices W, the image vector Ψ can be obtained through matrix inversion Ψ = W−1Φ, which then has 
to be reshaped into a 2D matrix of pixel values. Further, the matrix equation Φ = WΨ represents the image being 
expanded in some basis given by W. For this study, we use Hadamard matrices as the basis expansion, i.e. W is 
a Hadamard matrix of order N. A Hadamard matrix Hn is defined as an n × n matrix of +1 s and −1s with the 
property that the scalar product between any two distinct rows is 0 (each row is orthogonal to every other one). 
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where Hn
T is the transpose of Hn. This allows for easy image reconstruction based on =−H H n/n n

T1 . Moreover, a 
Hadamard basis minimizes the mean square error of each pixel in the image38. Here, masks are created via the 
photoexcitation of silicon, thereby rendering some pixels opaque and leaving the rest transmissive. This means 
that the physical masks are composed of 1 s and 0 s whereas Hadamard matrices are made of +1 s and −1s. This 
prevents us from doing a fully orthogonal measurement. However, as is outlined in39, we can still perform such a 
measurement with our system. For this, we carry out sequential measurements of a mask directly followed by its 
inverse and record the difference in THz transmission via a lock-in amplifier. The signal acquisition time for each 
mask and its inverse is 100 ms. Note that the THz transmission is recorded within a 5 ps window after photoex-
citation to minimize electron diffusion in the silicon photomodulator(see supplementary of ref.35) and subse-
quent smearing and broadening of spatial features.

Calculating The Permittivity.  To obtain the permittivity of a sample using THz-TDS, one typically per-
forms two measurements: one measuring the temporal waveform transmitted through a sample and the other 
to obtain a reference waveform without the sample. However, we cannot assume a homogenous beam. For this 
reason, our reference is recorded for each pixel, performing the same measurement on the same system without 
the sample in place. After Fourier transformation of the time axis, one can divide signal by reference to obtain the 
frequency dependent amplitude transmission coefficients. These are then equated to the transmission functions 
of the system, calculated using the transfer matrix method44:
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where β ω ε= l c/j j j  is the phase delay associated with light propagation inside the jth layer. By equating the exper-
imental amplitude transmission coefficients with (3), we can then solve for the permittivity of the sample as a 
function of space and frequency.
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