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Global Similarity Method Based 
on a Two-tier Random Walk for the 
Prediction of microRNA–Disease 
Association
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microRNAs (miRNAs) mutation and maladjustment are related to the occurrence and development 
of human diseases. Studies on disease-associated miRNA have contributed to disease diagnosis 
and treatment. To address the problems, such as low prediction accuracy and failure to predict the 
relationship between new miRNAs and diseases and so on, we design a Laplacian score of graphs to 
calculate the global similarity of networks and propose a Global Similarity method based on a Two-
tier Random Walk for the prediction of miRNA–disease association (GSTRW) to reveal the correlation 
between miRNAs and diseases. This method is a global approach that can simultaneously predict the 
correlation between all diseases and miRNAs in the absence of negative samples. Experimental results 
reveal that this method is better than existing approaches in terms of overall prediction accuracy and 
ability to predict orphan diseases and novel miRNAs. A case study on GSTRW for breast cancer and 
conlon cancer is also conducted, and the majority of miRNA–disease association can be verified by our 
experiment. This study indicates that this method is feasible and effective.

MicroRNAs (miRNAs) refer to numerous evolutionarily conserved single-strand endogenous noncoded RNAs 
widely found in eukaryotes, and their length is equivalent to 20–25 nucleotides. miRNA accounts for 1% to 
4% of the human genome1–4. In some cases, miRNAs participate in target gene regulation. They can identify 
and target an mRNA solution through base pairing after transcription, thereby controlling gene expression. An 
miRNA generally targets one or numerous mRNAs. MiRNA also plays an important role in many life processes, 
such as cell growth5,6, histological differentiation7, cell proliferation8, embryonic development9, apoptosis10 and 
metabolism11,12.

MiRNAs are closely related to cancers. For example, miR-21 and miR-223 are highly expressed in plasma 
samples of patients with gastric cancer compared with those in normal samples, and miR-218 has a significantly 
low expression13. The expression of miR-21 is closely associated with prostate cancer14, and this miRNA favors the 
replication of hepatitis B virus15. Toffanin et al.16 found that liver cancer has three subtypes, namely, proliferation 
correlation, interferon and Wnt signal. miR-517a performs a carcinogenic role in proliferation-related tumour 
subtypes and can promote the formation and development of subtype tumour. Different subtypes of breast cancer 
can be correctly classified by analysing miRNAs based on their expression spectrum17. Biotechnology involv-
ing locked nucleic acid is adopted to inhibit the miRNA activities of miR-21, miR-122 and miR-155 and effec-
tively treat breast cancer in mice18. This technology has a clear targeting mechanism, so it is stable and weakly 
toxic. Thus, miRNAs may be useful for future clinical cancer treatment and drug design. The identification of 
disease-related miRNAs can also enhance studies on biomarker detection for the prognosis, diagnosis and treat-
ment of complex human diseases.

Disease-associated miRNA mining methods based on biological experiments can accurately reveal 
disease-associated miRNAs. However, this method involves a long cycle and entails a high cost. In many methods, 
only one experiment can determine one disease-associated miRNA19,20. Thus, bioinformatics methods should 
be developed to identify disease-associated miRNAs quickly and accurately. In computational methods, com-
puter technology based on existing biological experimental data is used to obtain multiple candidate miRNAs 
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associated with a specific disease from a large number of miRNAs and thus provide reliable and comprehensive 
candidate miRNAs19,21. Given that an increasing number of disease-associated miRNA databases have been estab-
lished22–26, computational methods can be effectively applied to predict the potential correlation between miRNA 
and diseases27–33 Bioinformatics prediction methods of miRNA–disease association can be generally divided into 
two categories: one is based on machine learning, and the other one is based on biological networks. In this study, 
the prediction method of miRNA–disease association is discussed on the basis of these two categories.

Many calculation methods based on the hypothesis that function-associated miRNAs are likely correlated with 
diseases exhibiting a similar phenotype have been proposed to predict the potential association between diseases and 
miRNAs22,34,35. In 2009, Jiang et al.19 developed a hypergeometric distribution calculation model to predict miRNA–
disease association. They used the relationship between target genes to regulate miRNA and establish an miRNA 
similarity network. They also obtained special disease-associated miRNAs by using the human disease phenotype 
and miRNA function similarity. Li et al.36 introduced a method of gene function consistency to predict carcinogenic 
miRNA, used the functional consistency score of cancer-associated gene sets and miRNA target set to measure 
the similarity between diseases and miRNAs and showed the probability of the correlation between disease and 
miRNA. Xu et al.37 established a disease-associated miRNA prediction method that integrates the expression spec-
trum of miRNA and mRNA associated with a disease exhibiting phenotypic similarity. This method does not also 
rely on the known miRNA–disease association. With this method, the association probability between an miRNA 
and a disease is converted to the functional similarity between an miRNA target and a disease-associated gene for 
calculation. The known disease–gene association and the interaction with the miRNA target are used to calculate 
the correlation between miRNAs and diseases. This score is utilised to predict the ranking. However, these methods 
are highly dependent on the prediction of miRNA–target association. The false-positive result of target genes is high. 
As such, these methods cannot achieve a highly predictive performance. Rossi et al.38 designed a method named 
OMiR to predict the association between miRNA and diseases in OMIM. The overlapping degree of an miRNA 
locus with a disease gene locus in OMIM is calculated and used as miRNA–disease association. In this method, 
information regarding miRNA–disease association, miRNA target, pathogenesis and other aspects are unnecessary 
to determine miRNA–disease association. Pasquier et al.39 revealed the information on the disease-related miRNA 
through semantic distribution. According to a case study on breast cancer, this method can be applied to determine 
new miRNA–disease association and identify pseudocorrelation in the database.

Xuan et al.40 proposed a prediction method, namely, HDMP, based on its most similar k neighbours. The 
functional similarity of miRNA, the phenotypic similarity of disease, the semantic similarity of disease and the 
unknown association between miRNAs and diseases are used to establish a similar network and to predict the 
potential miRNA–disease association by using the k neighbours and miRNA functional similarity. With this 
method, only the information of the miRNA’s neighbour is considered in its ranking system, and a local similarity 
measure instead of a global measure is used. Thus, this method cannot be applied to some diseases without the 
known related miRNA. Many studies have shown that global network similarity can effectively improve predic-
tion performance. In 2012, Chen et al.41 introduced a method named RWRMDA to predict miRNA–disease asso-
ciation based on global network similarity. They predicted a pathogenetic miRNA through a restarted random 
walk. Firstly, they integrated the miRNA–miRNA functional similarity and the known miRNA–disease associated 
information. Secondly, they initialised each miRNA as the probability of the starting node to execute a random 
walk algorithm in an integrated network until the algorithm is converged. A stable probability is obtained to rank 
the candidate miRNAs. Compared with the local similarity network, the global similarity network can improve 
the prediction accuracy. However, this method cannot predict new diseases without the known association. Chen 
et al.42 created a method, namely, Net-CBI, to predict the miRNA–disease association by considering the net-
work conformance of disease. Chen et al.43 further calculated the global network similarity by determining the 
Laplacian score of graphs and proposed an miRNA–disease association prediction method based on random 
walk, namely, NetGS. However, too many parameters are present in these two methods. Gu et al.44 designed a 
network conformance method, which is called NCPMDA, to predict miRNA–disease association. This method is 
nonparametric, and it can simultaneously predict the miRNA–disease association among all diseases. No negative 
samples are needed in this method, and it can be applied to predict isolated diseases and new miRNAs.

Xuan et al.45 designed a computation model named MIDP based on random walk algorithm. This algorithm 
walks in a two-tier network composed of the disease similarity, miRNA similarity, and known miRNA–disease 
association. This model can predict diseases without the known association with miRNA. Liu et al.46 established a 
new prediction model by conducting a random walk algorithm on the heterogeneous networks of multisource data. 
Chen et al.47 also developed a new computation method named WBSMDA, which is mainly used to integrate the 
known miRNA–disease association, miRNA functional similarity, semantic disease similarity and Gaussian interac-
tion profile kernel similarity of disease and miRNA. This method can predict new diseases without known associated 
miRNA, and it can predict any non-disease-associated MiRNA. However, the performance of WBSMDA is still 
unsatisfactory. Chen et al.48 established a heterogeneous graphics method named HGIMDA to predict miRNA–dis-
ease association. They also revealed the potential miRNA–disease association by establishing a heterogeneous graph 
composed of miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity 
and miRNA–disease association verified by experiments. You et al.49 also introduced a new path-based miRNA–dis-
ease association prediction method named PBMDA. This method can be used to predict new diseases without the 
known associated miRNA and the new miRNA without the known associated disease by integrating different types 
of heterogeneous biological data sets. This method can be used to prioritise unknown miRNA in all of the diseases. 
Chen et al.50 introduced a model based on the Super disease and Super miRNA to predict SDMMDA, which is 
the miRNA–disease association method. They integrated the known miRNA–disease association, disease semantic 
similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity SDMMDA can be used to 
predict new diseases and miRNAs without any known association.
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However, the disease-associated miRNAs verified by these experiments are insufficient. The comprehensive con-
sideration of protein, target gene and other biological information can help predict miRNA–disease association. In 
2013, Shi et al.51 used a miRNA–disease associated computation model. They established a complex network by inte-
grating miRNA–target interactions, disease–gene associations and PPI. They used a random walk algorithm for pre-
diction. Mork et al.52 also proposed a method called miRPD. This model integrates the protein–disease association and 
miRNA–protein interaction to further predict new miRNA–disease association. With this method, disease-associated 
miRNAs can be analysed, and disease-associated proteins can be predicted. Shi et al.53 proposed a method to integrate 
various types of genome data and predict miRNA–disease association, CHNmiRD. They also identified miRNA–dis-
ease association by integrating protein–protein data, gene noumenon data, experimentally verified miRNA–target data, 
phenotypic information of disease, the known miRNA–disease association, and other genome and phenotypic data.

Machine learning-based methods have been widely used in bioinformatics research54–56, including predicting 
miRNA–disease association. In 2010, Jiang et al.57 introduced a new method based on genomic data integration. 
A naive Bayesian model is used to integrate substantial data resources and to establish a functional prediction 
model among genes. Jiang et al.58 also proposed positive sample data from negative sample data by using a sup-
port vector machine. With this method, features are extracted from miRNA–target and phenotypic similarity 
data. Xu et al.59 proposed a method involving an miRNA target topology disorder network, which is used to 
predict prostatic cancer-associated miRNAs by using prostatic cancer as an example. Qabaja et al.60 also proposed 
a protein network based on a Lasso regression model to excavate the miRNA–disease association. Lasso regres-
sion model is utilised to identify disease-associated miRNAs. Zeng et al.61 also predicted the association between 
miRNAs and diseases by using two kinds of multipath methods. Unfortunately, these machine-based learning 
methods require known disease-associated miRNA-negative sample information. Thus, negative miRNA–disease 
association information is difficult to obtain. In 2014, Chen et al.62 introduced a semi-supervised algorithm based 
on a regularised least square method (RLSMDA) to predict potential miRNA–disease association. This method 
is used to predict potential miRNA–disease association based on a semi-supervised learning framework. No 
negative miRNA–disease-related information is needed in this method. Thus, RLSMDA can be used to predict 
a disease without any known associated miRNA. Chen and Huang63 proposed a computational model named 
LRSSLMDA,based on Laplacian Regularized Sparse Subspace Learning. The model integrated statistical feature 
profile of miRNAs and diseases and graph theoretical feature profile into a common subspace. Experimental 
results showed that the proposed method outperformed ten previous models and indicated the model’s superior 
performance. Chen et al.64 developed an miRNA-disease association prediction appoach called EGBMMDA by 
integrating Extreme Gradient Boosting Machine with miRNA functional similarity, disease semantic similarity, 
and known miRNA–disease associations into a unified framework. The framework was the first decision tree 
learning-based method to predict miRNA–disease associations.

Against miRNA similarity data deficiency, scarcely known relationship between miRNAs and diseases, and 
almost no negative sample, based on miRNA-miRNA network and disease-disease network, Zeng et al.65 pro-
posed a method for predicting miRNA–disease association by suing a matrix completion algorithm. This method 
provides a new method to solve deficiency in miRNA–disease association data. This method can also be used 
to predict new diseases and pathogenic miRNAs. Peng et al.66 predicted miRNA–disease association by using 
an improved low-rank matrix recovery algorithm. Li et al.67 also introduced a method (MCMDA) to predict 
miRNA–disease association by using a matrix completion algorithm. Compared with previous methods, this 
algorithm is effective in low-level miRNA–disease matrix completion.

In 2014, Li et al.68 developed a toxicology framework of computation system by using the recommendation 
system. This framework can predict new associations among environmental factors, miRNAs and diseases by inte-
grating the structural similarity of environmental factors and phenotypic similarity of disease. Considering social 
network analysis, Zou et al.69 introduced a method to predict miRNA–disease association based on social network 
analysis. They used two kinds of social network analysis methods, namely, KATZ and CATAPULT, to analyse a 
heterogeneous network. However, the disadvantage that there are only positive and unmarked samples in miRNA–
disease association are overcame, Chen et al.70 also designed a new K-nearest neighbour algorithm (KNN)-based 
disease association sorting algorithm named RKNNMDA and integrated the functional similarity of miRNA, 
semantic similarity of disease, Gauss’s nuclear spectrum interactions and known miRNA–disease association. KNN 
is used to search the KNN of miRNAs and diseases and resorted K nearest neighbours based on the SVM sorting 
model. Chen et al.71 also introduced a method named restricted Boltzmann machine (RBM), which is used to pre-
dict different types of miRNA–disease association, including RBMMMDA. RBMMMDA can predict miRNA–dis-
ease association and obtain this associated type. However, the parameters of this method are difficult to know.

In summary, these methods have various limitations in predicting miRNA–disease association. Firstly, some 
methods strongly depend on incomplete and incorrect data sets, such as miRNA–target methods. Secondly, some 
machine learning methods require negative samples. However, these negative samples are difficult to obtain. 
Thirdly, some methods do not use information regarding the miRNA family or cluster. Finally, some methods 
cannot be applied to predict the isolated diseases and new miRNAs. Therefore, new methods should be developed 
and modified. In this study, a hypothesis is examined. This hypothesis states that the global network similarity 
measure is more suitable to identify the association between diseases and miRNAs than the local network simi-
larity measure. The main contributions of this paper are as follows:

 (1) Global network similarity, fully used disease network and miRNA network information.
 (2) No negative sample is needed.
 (3) The miRNA family information and various biological data are integrated to capture new potential asso-

ciation information.
 (4) This method can be used to predict the isolated disease and new miRNA with good cross validation 

performance.
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Results
Parameter selection and performance evaluation. To validate the prediction performance of the pro-
posed algorithm, we tested the gold benchmark data set and validate its performance by using leave-one-out cross 
validation. The specific process is as follows: a known miRNA–disease relation pair is used as the test sample in 
each experiment, and other relation pairs are used as training samples; after the model training is completed, 
all known relation pairs are used as the testing sample to test once to predict the testing sample; To evaluate the 
leave-one-out cross validation result, we use the ROC curve, AUC and other indices. For the ROC curve, the true 
positive rate is set as the ordinate, and the false positive rate is utilised as the abscissa. After numerous pairs of the 
true positive and false positive rates are obtained by changing the threshold, the ROC curve is obtained through 
plotting. The AUC value is the area under the ROC curve. If the ROC curve is closer to the upper left corner, the 
area under the curve is large, and the prediction performance is enhanced.

The method proposed in this study mainly involves four parameter categories, namely, the restart parameters 
γ and θ for the restarted random walk algorithm, equilibrium parameters α and β for Laplacian score of graphs, 
disease and miRNA seed initialization weight parameters λ and η, and miRNA space weight parameter w. The 
selection of the four categories of parameters and their influences are discussed in this study.

In the restarted random walk algorithm, γ and θ refer to the probability that random walk is conducted again 
after randomly backing to the source node. If γ and θ are high, the probability of going back to the node for each 
step is higher. For simplicity, γ and θ are set to be the same. To validate the effects of γ and θ on the performance 
of prediction algorithm, we fix the other parameters (α = β = 0.3, λ = η = 0.9, w = 0.5) and change γ and θ. In this 
process, 0.1 is set as a step length, and 0.1 is changed to 0.9 to cross validate and calculate the AUC value. The 
experimental result is shown in Fig. 1. As shown in Fig. 1, when γ and θ increase from 0.1 to 0.2, the AUC value 
increases. Using the maximum value, we obtain the best prediction performance. When γ and θ increase from 0.2 
to 0.9, the AUC value decreases slowly.

The equilibrium parameter α for the Laplacian score of graphs in the miRNA network and the equilibrium 
parameter β for the Laplacian score of graphs are the same. To validate the effects of these parameters on the per-
formance of the prediction algorithm, we firstly fix the other parameters (γ = θ = 0.2, λ = η = 0.9, w = 0.5), and 
we change the α and β values by considering 0.1 as a step length, and 0.1 is changed to 0.9. As shown in Fig. 1, the 
AUC value increases slowly as α and β increase. When α = β = 0.8, the maximum AUC is achieved, with a good 
prediction performance.

To predict the isolated disease and new miRNA and to improve the prediction accuracy, we initialise the dis-
ease and miRNA seeds. The initialisations of the weight parameters λ and η determine the contributions of other 
diseases and miRNAs to the initial vector. To validate its influence on the performance of the algorithm, we fix the 
values of the other parameters (γ = θ = 0.2, α = β = 0.8, w = 0.5) and change λ and η (starting from 0 to 0.9) for 
cross validation. As shown in Fig. 1, the AUC value is the highest, and λ and η are 0.2. With the increase in λ and 
η, it is slightly reduced; however, this reduction is not evident.

The similarity information on miRNAs and diseases should be fully used to obtain the best prediction perfor-
mance. Using the two-tier random walk algorithm, we use the walk of the disease seed in the miRNA network to 
obtain a stable vector. The Pearson coefficients of this stable vector and miRNA global similarity are calculated as the 
prediction score of the disease in the miRNA global similarity network. The walk of miRNA seed in the disease 
network is utilised to determine a stable vector, and the Pearson coefficient of this stable vector and disease global 
similarity is calculated as the miRNA prediction score in the disease global similarity network. Finally, these two 
scores are weighted to obtain the final miRNA–disease association score. The miRNA network weight parameter is 
set to be ≤ ≤w w(0 1), and 1−w is the weight of the disease network. When w is greater, the weight of the miRNA 
network is higher. It indicates that, we hope the prediction result will consider more miRNA information. At this 
moment, the miRNA-based functional similarity plays a key role in the prediction of disease-associated miRNA. If 
w is smaller, then the prediction result more considers the prediction result of the disease-related information.

Figure 1. The effect of parameters on the GSTRW performance.
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According to the previous discussion, the values of the other parameters are fixed (γ = θ = 0.2, α = β = 0.8, 
λ = η = 0.2), and w is changed from 0 to 0.9. When w is increased from 0.1 to 0.6, AUC gradually increases. When 
w is increased from 0.6 to 0.9, AUC gradually decreases. When w is 0.4, the prediction result is the best. These 
results indicate that our prediction results are dependent on the miRNA similarity.

Our proposed method not only makes use of diseased seeds to walk in the miRNA network, but also utilizes 
the miRNA seeds to walk in the diseased network. In order to illustrate the superiority of our method, we analyze 
the following situations in the experiment: 1) Prediction performance in miRNA networks and disease bi-level 
networks; 2) Prediction performance in miRNA networks only; 3) Prediction performance of walking in disease net-
works. Using a cross validation in the gold benchmark dataset validation, the experimental results shown in Fig. 2.

Obviously, GSTRW showed satisfactory predictive performance with a AUC value of 0.8479, whereas AUC 
was only 0.7914 in the miRNA network and 0.7468 in the diseased network, mainly due to GSTRW not only 
walking in the miRNA global similarity network but also walking in the global similarity network of the disease, 
the global similarity between the miRNA and the disease is taken into full consideration. Only walking in a single 
network only considers the global similarity of the miRNA or the disease.

Comparison with other methods. So far as we know, there are some methods with better prediction per-
formance of miRNA-disease association, including HDMP40, RLSMDA62, NetCBI42 and an algorithm based on 
network global information proposed by Shi et al.51. HDMP cannot be used to predict the relationship between 
isolated diseases and miRNAs. Thus, no other method can be compared with the method proposed in this paper.
The method developed by shi et al.51 integrated the information of disease gene associations, miRNA target inter-
actions, and protein interactions which were totally different from the information used in this paper, so the 
method predicted by Shi et al. cannot be fairly compared with GSTRW. The information used by RLSMDA and 
NetCBI is similar to that discussed in this study. Moreover, these three methods can be used to predict the isolated 
miRNA–disease association. Therefore, we compare these three methods in the present study.

On the basis of the previous section, we set the parameters as follows: γ = θ = 0.2, α = β = 0.8, λ = η = 0.2, 
w = 0.6. The experimental result is shown as Fig. 3. As shown in Fig. 2, the method proposed in this paper is better 
than RLSMDA and NetCBI in terms of the prediction performance.

The AUC values obtained from the experiments by RLSMDA and NetCBI are different from the given value 
in the original paper,The main reason for this difference is that the data sets adopted are different. This difference 
is attributed to the following: in the data set adopted by RLSMDA in the original paper, each miRNA is related to 
an average of 5.147 diseases, and each kind of disease is associated with an average of 10.18 miRNAs. However, 
the gold benchmark data set is adopted in this paper, and each miRNA is related to an average of 2.27 diseases. 
Each kind of diseases is associated with an average of 4.41 miRNAs. Thus, the available known information in the 
present study is much less than that in the original. Therefore, the prediction results are different. NetCBI adopts 
the same data set as we have used in this paper. However, redundancy removal is not performed in NetCBI, so 
the available known information in this paper is reduced, and the corresponding prediction result is changed. 
Therefore, this method exhibits good performance in the prediction of miRNA–disease association.

To validate the insensitivity of the proposed method to the data set in this paper, we carried out the compara-
tive experiment on the predictive dataset. The experimental method is also leave-one-out cross validation.

The experimental result is shown in Fig. 4. As shown in Fig. 4, the prediction accuracy of several methods is 
slightly improved. This phenomenon is attributed to the following: the known miRNA–disease information is 
increased more than the benchmark data set information in the predictive dataset. However, the available known 
information likely increases. Moreover, the prediction performance of GSTRW is better than those of the two 
other methods in this data set.

Figure 2. ROC curves and AUC values of GSTRW based on LOOCV in different situations.
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The accuracy, recall rate and accuracy–recall curve are also common indices. In this paper, on the basis of this 
standard, we adopt leave-one-out cross validation to compare RLSMDA, NetCBI and GSTRW. In Fig. 5, GSTRW 
is better than the existing method.

Orphan disease refers to a type of diseases with completely unknown miRNA-associated information. We sim-
ulate the isolated disease by removing the known relationship between the disease to be inquired and all miRNAs. 
To predict by using the proposed method in this paper, we use each disease as a test sample. The leave-one-out 
cross validation is adopted to test the gold data set. The prediction result is evaluated by the ROC curve and 
the AUC value. The prediction result is shown in Fig. 6. The AUC value is 0.7740, indicating that the proposed 
method elicits a certain effect on the prediction of the relationship between the isolated disease and miRNA.

In the recent years, an increasing number of miRNAs have been found, but their relationship with diseases is 
mostly unknown. This problem poses a challenge to the prediction algorithm. At present, many prediction meth-
ods cannot solve these problems. To validate the effectiveness of the proposed method in this paper in predicting 
the new miRNA–disease association, we remove the predicted association between miRNAs and all diseases. The 
proposed method is used to predict the removed association information. In addition, the leave-one-out cross 
validation is adopted to verify the gold benchmark data set. The AUC value reaches 0.7768, indicating that the 
proposed method has good performance for the prediction of the association between new miRNAs and diseases.

Case study. According to the previous section, the proposed method in this paper has good prediction per-
formance. On the basis of the predicted data set, we conduct a case study on breast cancer and liver cancer to 
evaluate the independent predictive ability of GSTRW.

Figure 3. The ROC curves and AUC values of RLSMDA, NetCBI and our method(GSTRW).

Figure 4. The prediction results of RLSMDA, NetCBI and GSTRW on the predictive dataset.
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Firstly, the GSTRW method is adopted to predict these two diseases. Afterwards, the prediction result is 
searched in the update of HMDD, miR2disease and dbDEMC datasets and other data sets to determine whether 
it is found or not. Tables 1 and 2 show the top 50 miRNAs associated with breast cancer and colon cancer that are 
predicted by our method, respectively.

Breast cancer is a major fatal disease that threatens the life and health of women at present. Breast 
cancer-associated miRNAs should be identified to further understand the pathogenesis, treatment and prognosis 
of breast cancer.

In the prediction data set, 78 miRNAs are associated with breast cancer. As shown in Table 2, among the 
top 50 miRNAs associated with breast cancer predicted by GSTRW, 46 are verified by the three databases. 
The first 20 associations were all confirmed and only 2 of the first 40 MiRNAs were unconfirmed which are 
hsa-mir-30e ranked 23rd and hsa-mir-532 ranked 40th. However, Lin et al.72 demonstrated that hsa-mir-30e is 
down-regulated in breast cancer tissues. Ben-Hamo et al.73 found that breast cancer patients target the GATA3 
pathway via hsa-miR-532 whereas GATA3 regulates hormone-sensitive breast cancer phenotype. The third key 
factor, hsa-mir-491, was not identified, but Shi et al.74 found that hsa-mir-491 is down-regulated in gastric cancer 
patients and has an inhibitory effect on cell proliferation. The fourth unproven has-mir- 142, Isobe et al.75 found 
that miR-142 regulates the tumorigenicity of human breast cancer stem cells via the WNT signaling pathway.This 
result indicates that the proposed method in this paper has a good practical value.

Colon cancer has a high malignant degree, and it develops rapidly without any symptoms in an early stage. If 
a certain explanation can be given on the basis of molecular perspectives, then it surely helps diagnose and treat 
diseases. Thus, colon cancer-associated miRNA should be identified.

Figure 5. The Precision-recall curves of RLSMDA, NetCBI and GSTRW.

Figure 6. The ROC curve and AUC values of NetGS for new miRNA and orphan disease.
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In the prediction data set, 37 miRNAs are associated with the occurrence and development of lcolon cancer. 
GSTRW is used to sort miRNAs that are unknown to associate with colon cancer.

GSTRW finds colon cancer-associated miRNAs in which 42 miRNAs can be found in updated data sets 
such as HMDD, miR2disease and dbDEMC(Table 2). The first unverified miRNA is hsa-mir-199a ranked 5 
and the second is hsa-mir-92b ranked 8 and hsa-mir-200a ranked 12 and hsa-mir-373 ranked 19. However, for 
these unverified miRNAs in the above three databases, some supportive evidence was obtained by searching 
the relevant literature. Nonaka et al.76 found that miR-199a can be used as a serum biomarker for colorec-
tal cancer. Mussnich et al.77 found that miR-199a and miR-375 affect the sensitivity of colon cancer cells to 
cetuximab by targeting PHLPP1. Niu et al.78 believe that hsa-miR-92b can be used as circulating microRNA in 
colorectal cancer reference gene. Pichler et al.79 found that Mir-200a affects the prognosis of patients with rec-
tal cancer by regulating the expression of genes involved in stromal metastasis of epithelial cells. Tanaka et al.80  
found that the apparent silencing of microRNA-373 plays an important regulatory role in colon cancer cell 
proliferation.

Applicability of GSTRW to predict orphan diseases. In order to verify the ability of GSTRW to 
predict the orphan diseases, we deleted the known association of miRNAs associated with validated diseases, 
which ensures that we only use the similarity information of validated and other diseases as well as those 
associated with other diseases information. We used breast and colon cancer as a case study and the results are 
shown in Tables 3 and 4, respectively. For breast cancer, we removed the association of 78 known breast can-
cers with miRNAs and predicted the association of potential miRNAs with breast cancer using GSTRW. Of the 
top 50 predicted miRNAs, 49 were found in the HMDD, miR2disease, and dbDEMC databases can be found. 
The only one unverified by database was the 46th ranked hsa-mir-184. Yang et al.81 used immunohistochem-
ical methods to study breast tumor subtypes and found that there is expression differences on hsa-miR-365, 
hsa-miR-1238 and hsa-miR-184.

For colon cancer, the association of 37 known miRNAs with colon cancer was removed. Of the first 50 
miRNAs predicted by GSTRW, 46 were validated in the above three databases, and four were unidentified are 
hsa-mir-373, hsa-mir-92b, hsa-mir-199a and hsa-mir-200a, all of which are predicted in previous colon cancer 
examples.Therefore, we believe that GSTRW performs well in predicting the performance of isolated diseases.

All data sets used in this paper are generated before the literature is published. Therefore, it further illustrates 
the reliable performance of the proposed method in this paper.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-16 HMDD, dbDEMC 26 hsa-mir-32 dbDEMC

2 hsa-let-7i HMDD,mir2disease,dbDEMC 27 hsa-mir-196b dbDEMC

3 hsa-let-7b HMDD, dbDEMC 28 hsa-mir-130a dbDEMC

4 hsa-let-7e HMDD,dbDEMC 29 hsa-mir-98 dbDEMC, miR2disease

5 hsa-let-7c HMDD,dbDEMC 30 hsa-mir-199b HMDD,dbDEMC

6 hsa-let-7g HMDD,dbDEMC 31 hsa-mir-335 HMDD,mir2disease,dbDEMC

7 hsa-mir-373 HMDD,mir2disease,dbDEMC 32 hsa-mir-137 HMDD,dbDEMC

8 hsa-mir-92a HMDD 33 hsa-mir-224 HMDD,dbDEMC

9 hsa-mir-92b dbDEMC 34 hsa-mir-192 dbDEMC,

0 hsa-mir-223 HMDD, dbDEMC 35 hsa-mir-182 HMDD,mir2disease,dbDEMC

11 hsa-mir-126 HMDD,mir2disease,dbDEMC 36 hsa-mir-27a HMDD,mir2disease,dbDEMC

12 hsa-mir-101 HMDD,mir2disease,dbDEMC 37 hsa-mir-150 HMDD, dbDEMC

13 hsa-mir-191 HMDD,mir2disease,dbDEMC 38 hsa-mir-124 HMDD,mir2disease,dbDEMC

14 hsa-mir-29c HMDD,mir2disease,dbDEMC 39 hsa-mir-95 dbDEMC

15 hsa-mir-18b HMDD,dbDEMC 40 hsa-mir-532 Unconfirmed

16 hsa-mir-372 dbDEMC 41 hsa-mir-520b HMDD,dbDEMC

17 hsa-mir-181a HMDD,mir2disease,dbDEMC 42 hsa-mir-491 Unconfirmed

18 hsa-mir-203 HMDD,mir2disease,dbDEMC 43 hsa-mir-183 HMDD,dbDEMC

19 hsa-mir-106a dbDEMC 44 hsa-mir-142 Unconfirmed

20 hsa-mir-99b dbDEMC 45 hsa-mir-135a HMDD

21 hsa-mir-15b dbDEMC 46 hsa-mir-22 HMDD,dbDEMC

22 hsa-mir-128b miR2Disease 47 hsa-mir-23b HMDD,dbDEMC

23 hsa-mir-30e Unconfirmed 48 hsa-mir-449a dbDEMC

24 hsa-mir-24 HMDD,dbDEMC 49 hsa-mir-449b dbDEMC

25 hsa-mir-100 HMDD,dbDEMC 50 hsa-mir-31 HMDD,mir2disease,dbDEMC

Table 1. The top 50 breast cancer-related miRNAs candidates predicted by GSTRW and the confirmation of 
these associations. Forty-six of the top 50 potential breast cancer miRNAs candidates have been confirmed 
based on the update HMDD, dbDEMC and mir2disease.
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Discussions
MiRNA is closely related to diseases. More scholars are exploring the use of miRNA in the diagnosis, classification 
and treatment of diseases. The effective computation method that can be used to identify miRNA–disease associ-
ation can contribute to experimental studies on miRNA. In this paper, a miRNA–disease association prediction 
algorithm based on the two-tier global similarity (GSTRW) is proposed to predict miRNA–disease association. 
On the basis of the miRNA–miRNA similarity, miRNA family information and disease similarity, we use the 
Laplacian score of graphs to calculate the global similarity of miRNA and disease. miRNA association informa-
tion of the similar disease (miRNA) is introduced to optimise disease seed nodes. Then, they randomly walk in 
the miRNA global similarity network and the disease global similarity network, respectively. After obtaining two 
stable distributions, we use the Pearson correlation to calculate miRNA–disease association prediction scores. 
Finally, the two scores are weighted to obtain the final miRNA–disease association score. A cross validation and a 
case study reveal that GSTRW is a type of global method that can predict the association between all diseases and 
miRNA compared with those of the most advanced computation method. Moreover, it can be utilised to predict 
the isolated diseases and new miRNA, and negative samples are not needed.

The excellent performance of GSTRW is mainly attributed to the following factors. Firstly, our algorithm inte-
grates many biological information, including miRNA functional similarity, miRNA family information, disease 
similarity and miRNA–disease information, to establish the global similarity network by combining with the 
Laplacian score of graphs. Therefore, the prediction performance is improved. Secondly, the random walk algo-
rithm refers to walking in the miRNA global and disease global similarity networks. Therefore, it fully considers 
the global similarity of miRNAs and diseases and optimises the initial walking operator.

GSTRW is a valuable computing tool that can be used to predict the association of disease and disease. 
This method can be further applied to reveal other biological associations, such as lncRNA–disease, gene–dis-
ease and drug–target associations. Our method has achieved good results, but it also has some limitations. 
Firstly, our method has more parameters. The mechanism of quickly and simply determining the parameters 
in GSTRW has yet to be investigated. Secondly, a reasonable approach to build miRNA similarity and disease 
similarity can help improve our predictive performance. More importantly, the cancer hallmarks82,83 is really 
helpful for predicting tumor clinical phenotypes. In future study, we will do further analysis between miRNAs 
and cancer hallmarks.We plan to integrate more biological information such as cancer hallmark and define 
miRNA and disease similarities.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-125b dbDEMC 26 hsa-mir-429 dbDEMC

2 hsa-mir-16 HMDD,dbDEMC 27 hsa-mir-203 dbDEMC,miR2Disease

3 hsa-mir-15a HMDD,dbDEMC 28 hsa-mir-106b HMDD,mir2disease,dbDEMC

4 hsa-mir-222 dbDEMC 29 hsa-mir-194 dbDEMC,miR2Disease

5 hsa-mir-199a Unconfirmed 30 hsa-mir-196a dbDEMC,miR2Disease

6 hsa-mir-181b dbDEMC,miR2Disease 31 hsa-mir-302b HMDD,dbDEMC

7 hsa-mir-25 dbDEMC,miR2Disease 32 hsa-mir-15b dbDEMC,miR2Disease

8 hsa-mir-92b Unconfirmed 33 hsa-mir-372 dbDEMC,miR2Disease

9 hsa-mir-9 dbDEMC 34 hsa-mir-181a dbDEMC,miR2Disease

10 hsa-mir-29a HMDD,mir2disease,dbDEMC 35 hsa-mir-224 dbDEMC,miR2Disease

11 hsa-mir-451 dbDEMC,miR2Disease 36 hsa-mir-219 Unconfirmed

12 hsa-mir-200a Unconfirmed 37 hsa-mir-183 dbDEMC,miR2Disease

13 hsa-mir-34c miR2Disease 38 hsa-mir-30d dbDEMC

14 hsa-mir-146a HMDD,dbDEMC 39 hsa-mir-218 dbDEMC

15 hsa-mir-18b dbDEMC 40 hsa-mir-137 HMDD,mir2disease,dbDEMC

16 hsa-mir-135b HMDD,mir2disease,dbDEMC 41 hsa-mir-30b dbDEMC

17 hsa-mir-205 HMDD,dbDEMC 42 hsa-mir-339 miR2Disease

18 hsa-mir-29c dbDEMC 43 hsa-mir-151 dbDEMC

19 hsa-mir-373 Unconfirmed 44 hsa-mir-30e dbDEMC

20 hsa-mir-146b dbDEMC 45 hsa-mir-10a dbDEMC,miR2Disease

21 hsa-mir-214 dbDEMC 46 hsa-mir-31 dbDEMC,miR2Disease

22 hsa-mir-34b dbDEMC,miR2Disease 47 hsa-mir-103 Unconfirmed

23 hsa-mir-20b dbDEMC 48 hsa-mir-153 Unconfirmed

24 hsa-mir-93 dbDEMC,miR2Disease 49 hsa-mir-95 dbDEMC,miR2Disease

25 hsa-mir-125a dbDEMC,miR2Disease 50 hsa-mir-302d Unconfirmed

Table 2. The top 50 colon cancer-related miRNAs candidates predicted by GSTRW and the confirmation of 
these associations. Forty- two of the top 50 potential conlon cancer miRNAs candidates have been confirmed 
based on the update HMDD, dbDEMC and mir2disease.
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Methods
Dataset and preprocessing. Two data sets are used in this study. A total of 270 miRNA–disease association 
pairs are obatained from ref.19, and 19 miRNAs that cannot be found in a previous study35 are removed. Finally, 99 
miRNAs and 51 diseases, including 225 miRNA–disease pairs, are retained. This data set is called gold benchmark 
data set. Another miRNA–disease association data set is obatained from ref.35 to validate the insensitivity of our 
method to the data set. This data set includes 1616 human miRNA–disease associations verified by the experiments. 
After integrating different miRNA records and unifying the miRNA and disease names, we finally reserve 1395 
miRNA–disease associations, including 271 miRNAs and 137 diseases. This data set is named predictive dataset.

MiRNA–miRNA functional similarity score is obtained from a previous study35, and this data set has been 
successfully applied to many methods21,42–44. Matrix SM is used to represent the adjacency matrix of miRNA, and 
SM (i, j) refers to the functional similarity score between miRNA i and miRNA j.

Disease similarity data are obtained from another study84. Matrix SD is used to represent the adjacency matrix 
of disease, and SD (i, j) refers to the functional similarity score between diseases i and j.

MiRNA family information is obtained from the miRBase database85. Studies have shown that miRNAs in the 
same family have more mRNA targets than those of miRNAs in different families, thereby indicating a higher 
functional similarity in the former than in the latter34. Matrix SMfam is used to represent miRNA family informa-
tion. If two miRNAs are in the same family, then SMfam (i, j) is set to 1; otherwise, SMfam is 0.

miRNA and disease similarity networks. We integrate the functional similarity score and family infor-
mation of miRNA to build an miRNA similarity network:

= × +SIM i j SM i j SM i j( , ) ( , ) (1 ( , )) (1)fam

where SIM (i, j) refers to the similarity score between miRNAs i and j after information fusion is performed, SM 
(i, j) indicates the similarity score between miRNAs i and j, and SMfam corresponds to the miRNA family infor-
mation matrix. When miRNA i and miRNA j belong to the same family, SMfam (i, j) is equal to 1. The similarity 
score of two miRNAs is twice the function score, indicating that miRNAs have a high similarity.

A disease similarity network is built by directly using the phenotypic information of diseases84. Phenotypic  
similarity after data processing can be represented by matrix SD. The node in the disease similarity network cor-
responds to the disease in SD, and the similarity between diseases is represented by the edge between the corre-
sponding nodes with weight. If the weight of the edge is high, then the corresponding diseases are highly similar.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-21 HMDD,mir2disease,dbDEMC 26 hsa-mir-10a HMDD,mir2disease,dbDEMC

2 hsa-mir-146a HMDD,mir2disease,dbDEMC 27 hsa-mir-141 HMDD,mir2disease,dbDEMC

3 hsa-mir-16 HMDD, dbDEMC 28 hsa-let-7e HMDD,mir2disease,dbDEMC

4 hsa-mir-155 HMDD,mir2disease,dbDEMC 29 hsa-mir-205 HMDD,mir2disease,dbDEMC

5 hsa-mir-125b HMDD,mir2disease,dbDEMC 30 hsa-let-7d HMDD,mir2disease,dbDEMC

6 hsa-mir-17 HMDD, dbDEMC 31 hsa-let-7b HMDD, dbDEMC

7 hsa-mir-34a HMDD, dbDEMC 32 hsa-let-7i HMDD,dbDEMC,miR2disease

8 hsa-mir-19a HMDD, dbDEMC 33 hsa-let-7c HMDD,dbDEMC

9 hsa-mir-15a HMDD, dbDEMC 34 hsa-let-7f HMDD,mir2disease,dbDEMC

0 hsa-mir-373 HMDD,mir2disease,dbDEMC 35 hsa-mir-9 HMDD,dbDEMC

11 hsa-mir-221 HMDD, miR2disease 36 hsa-let-7g HMDD,dbDEMC

12 hsa-mir-20a HMDD, dbDEMC 37 hsa-mir-145 HMDD,mir2disease,dbDEMC

13 hsa-mir-451 HMDD, miR2disease 38 hsa-mir-146b HMDD, miR2disease

14 hsa-mir-18a HMDD, dbDEMC 39 hsa-mir-143 HMDD,mir2disease,dbDEMC

15 hsa-mir-29c HMDD, dbDEMC 40 hsa-mir-181a HMDD,dbDEMC, miR2Disease

16 hsa-mir-29a HMDD, dbDEMC 41 hsa-mir-92b dbDEMC

17 hsa-mir-19b HMDD, dbDEMC 42 hsa-mir-127 HMDD,mir2disease,dbDEMC

18 hsa-mir-222 HMDD, dbDEMC 43 hsa-mir-29b HMDD,mir2disease,dbDEMC

19 hsa-mir-302b HMDD, miR2disease 44 hsa-mir-137 HMDD,dbDEMC

20 hsa-mir-92a HMDD, dbDEMC 45 hsa-mir-126 HMDD,mir2disease,dbDEMC

21 hsa-mir-181b HMDD,mir2disease,dbDEMC 46 hsa-mir-184 Unconfirmed

22 hsa-let-7a HMDD,mir2disease,dbDEMC 47 hsa-mir-15b dbDEMC

23 hsa-mir-372 HMDD, dbDEMC 48 hsa-mir-101 HMDD,dbDEMC,miR2disease

24 hsa-mir-200b HMDD,mir2disease,dbDEMC 49 hsa-mir-200a HMDD,mir2disease,dbDEMC

25 hsa-mir-223 HMDD, dbDEMC 50 hsa-mir-150 HMDD, dbDEMC

Table 3. The top 50 breast cancer-related miRNAs candidates predicted by GSTRW with removed all known 
breast cancer-miRNA associations and the confirmation of these associations. Forty-nine of the top 50 
potential breast cancer miRNAs candidates have been confirmed based on the update HMDD, dbDEMC and 
mir2disease.
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Global similarity calculation based on the Laplacian score of graphs. Laplacian score of graphs has 
been successfully applied42,43,86. In the global similarity of a particular disease to be inquired with other diseases 
in a given network, the global association of one miRNA with other miRNAs in the network is obtained by calcu-
lating the Laplacian score of graphs.

In this study, the binary vector d = {d1, d2, …, dn} is used to represent the initial vector of the disease to be 
inquired (di). The corresponding element value of di is 1, and other elements are 0. The global similarity between 
di and other diseases is obtained by calculating the Laplacian score of graphs represented by d , which can be 
obtained by solving following optimisation equation87:

∑ ∑α
α

− +
−

−α
   SD d d d dmin ( ) 1 ( )

(2)i j
i j i j

i
i j

,
,

2 2

In Eq. (2), the first item is a smooth penalty item, and SD is the column normalization matrix of matrix SD. With 
this parameter, a similar score for the related diseases can be obtained. The second item ensures the consistency 
of the disease to be inquired with other diseases, and α is a balance factor, where α ∈ (0, 1). It is used to balance 
the two penalty items in Eq. (2). The approximate solution of Eq. (2) is as follows87:

d I SD d(1 )( ) (3)1α α= − − −


Using this method, we can obtain the global similarity scores among all of the diseases in all of the disease net-
works as represented by matrix ∼simD.

Using a similar method, we can obtain the similarity between the inquired miRNA mj and other miRNAs:

β β= − −∼ −m I SIM m(1 )( ) (4)1

where SIM is the column normalization matrix of matrix SIM, β is the balance factor, and β ∈ (0, 1). The global 
similarity matrix of all miRNAs in the miRNA network is recorded as ∼simM .

Calculation method for the global similarity score of the miRNA–disease association based on 
the two-tier network random walk. On the basis of our hypothesis that miRNA with functional similar-
ity is usually associated with a disease exhibiting a phenotypic similarity, we design a Global Similarity method 

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-21 HMDD,miR2Disease,dbDEMC 26 hsa-mir-10a dbDEMC,miR2Disease

2 hsa-mir-15a HMDD,dbDEMC 27 hsa-mir-141 HMDD,miR2Disease,dbDEMC

3 hsa-mir-16 HMDD,dbDEMC 28 hsa-let-7d HMDD,dbDEMC

4 hsa-mir-155 HMDD,miR2Disease,dbDEMC 29 hsa-mir-205 HMDD,dbDEMC

5 hsa-mir-17 HMDD,dbDEMC 30 hsa-let-7b HMDD,miR2Disease,dbDEMC

6 hsa-mir-34a HMDD,miR2Disease,dbDEMC 31 hsa-let-7i HMDD,dbDEMC

7 hsa-mir-451 dbDEMC,miR2Disease 32 hsa-mir-145 HMDD,miR2Disease,dbDEMC

8 hsa-mir-19a HMDD,miR2Disease,dbDEMC 33 hsa-let-7f HMDD,dbDEMC

9 hsa-mir-125b dbDEMC 34 hsa-mir-223 HMDD,miR2Disease,dbDEMC

10 hsa-mir-373 Unconfirmed 35 hsa-let-7e HMDD,dbDEMC

11 hsa-mir-221 HMDD,miR2Disease,dbDEMC 36 hsa-let-7c HMDD,dbDEMC

12 hsa-mir-20a HMDD,miR2Disease,dbDEMC 37 hsa-mir-9 dbDEMC

13 hsa-mir-146a HMDD,dbDEMC 38 hsa-let-7g HMDD,miR2Disease,dbDEMC

14 hsa-mir-18a HMDD,miR2Disease,dbDEMC 39 hsa-mir-181a dbDEMC,miR2Disease

15 hsa-mir-29c dbDEMC 40 hsa-mir-137 HMDD,dbDEMC,miR2Disease

16 hsa-mir-29a HMDD,dbDEMC,miR2Disease 41 hsa-mir-92b Unconfirmed

17 hsa-mir-222 dbDEMC 42 hsa-mir-127 HMDD,miR2Disease,dbDEMC

18 hsa-mir-181b dbDEMC,miR2Disease 43 hsa-mir-126 HMDD,dbDEMC

19 hsa-mir-19b HMDD,miR2Disease,dbDEMC 44 hsa-mir-29b HMDD,miR2Disease,dbDEMC

20 hsa-mir-302b HMDD,dbDEMC 45 hsa-mir-146b dbDEMC

21 hsa-mir-92a HMDD,dbDEMC 46 hsa-mir-199a pubmed: 20226080

22 hsa-let-7a HMDD,miR2Disease,dbDEMC 47 hsa-mir-15b dbDEMC,miR2Disease

23 hsa-mir-372 dbDEMC,miR2Disease 48 hsa-mir-200a Unconfirmed

24 hsa-mir-143 HMDD,miR2Disease,dbDEMC 49 hsa-mir-122 dbDEMC

25 hsa-mir-200b HMDD,dbDEMC 50 hsa-mir-196a dbDEMC,miR2Disease

Table 4. The top 50 colon cancer-related miRNAs candidates predicted by GSTRW with removed all 
known colon cancer-miRNA associations and the confirmation of these associations. Forty-six of the top 50 
potential conlon cancer miRNAs candidates have been confirmed based on the update HMDD, dbDEMC and 
mir2disease.
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based on a Two-tier network Random Walk for the prediction of disease association (GSTRW) to reveal the asso-
ciation between a novel miRNA and a disease. We aim to include the following: (1) the known miRNA–disease 
information, (2) the global similarity between a particular disease and other diseases, (3) the global similarity 
between a specific miRNA and other miRNAs and (4) information regarding the miRNA family.

Firstly, we instruct the optimised disease seed to walk in the miRNA network and thus obtain a stable vector. 
The Pearson coefficient of this stable vector and the global similarity between the inquired miRNA mj calculated 
using Eq. (4) and the other miRNAs are used as the predictive scores of the disease in the miRNA global similarity 
network. And then, we instruct the optimized miRNA seed to walk in the disease network and thus obtain a stable 
vector. The Pearson coefficient of this stable vector and the global similarity between the inquired disease di cal-
culated using Eq. (3) and other diseases are used as the predictive scores of miRNA in the disease global similarity 
network. Finally, these two scores are weighted to obtain the final miRNA–disease association prediction score. 
If the score is high, then miRNA mj likely causes di. The specific flow chart is shown in Fig. 7, and the calculation 
is described below.

To carry out the random walk in the miRNA and disease similarity networks, we should firstly determine the 
seed sequence. To apply our algorithm to the association prediction of the isolated disease on the basis of our 
hypothesis, we introduce the miRNA-associated information of the similar disease and consequently solve the 
problems on the disease–miRNA association prediction, considering the completely unknown miRNA association  
information of the isolated diseases. Seed calculation formula isshown as below:

Figure 7. The overall flowchart of GSTRW.
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∑λ= + ⋅
∼ ∼
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D D simD d d D( , )
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n

i j
j

1
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where ∼Di refers to the initial vector of the optimised seed, and Di corresponds to the original initial vector of di to 
save the information of di in the initial stage associated with all miRNAs. If miRNA is correlated with di, then the 
corresponding position is assigned as 1; otherwise, the corresponding position is 0. ∼simD d d( , )i j  denotes the 
global similarity between di and dj, and their similarity can be obtained from the global correlation vector d~ of 
di calculated from Eq. (3). D j

0  refers to the initial vector of dj, that is, the known miRNA-associated information of 
dj. n refers to the total number of diseases, while λ is the balance parameter. Therefore, miRNA information asso-
ciated with a similar disease is introduced to optimise the initial associated miRNA of di.

After the initial vector is obtained, the restarted random walk can be carried out in the miRNA similarity net-
work to obtain a stable information distribution vector. The random walk formula is expressed as Eq. (6).

γ γ= − +
∼ ∼ ∼

+D SIMD D(1 ) (6)t t i1

where SIM refers to the column normalization matrix of the similar matrix SIM, γ refers to the probability of the 
restart, and γ ∈ (0, 1). ∼Dt represents the information distribution after t times of iteration. After several times of 
iteration, the probability space reaches a stable state: − <

∼ ∼ ∼
∞ + ′ ′

−D D D( 10 )t t1
6 . Thus, the iteration can be 

stopped. The walk results of all diseases in the miRNA similarity network are represented by matrix ∼
∞rndD .

After obtaining the distribution vector, we use the Pearson coefficient of the distribution vector to determine 
the predictive score of the disease for the disease–miRNA association in the miRNA similarity network, which is 
represented as follows:

=
∼ ∼

∞F corr rndD simM( , ) (7)m

We instruct the optimised miRNA seed vector to randomly walk in the disease similarity network. The initial seed 
of miRNA mj is calculated as follows:

∑η= + ⋅
∼ ∼

=
M M simM m m M( , )

(8)j j
i

m

j i
i

1
0

where ∼Mj refers to the obtained initial vector of seed, and Mj corresponds to the original initial vector of miRNA 
mj to save the miRNA mj-associated information with other diseases in the initial state. If the disease is associated 
with miRNA mj, then the corresponding position is assigned as 1; otherwise, it is 0. ∼simM m m( , )j i  denotes the 
global similarity between miRNA mj and miRNA mi. M i

0 is the initial vector of miRNAi, that is, the known 
miRNA mi–disease association information. m refers to the total number of miRNAs, and η is the balance param-
eter. After obtaining the initial vector, we perform the restarted random walk in the disease similarity network. 
Eq. (9) is expressed as follows:

θ θ= − +
∼ ∼ ∼

+M SDM M(1 ) (9)t t1 0

where SD refers to a column normalization matrix of the similarity matrix SD, and θ corresponds to the probabil-
ity of the restart, θ ∈ (0, 1). After several times of iteration, the probability space reaches a stable state: 

− <
∼ ∼ ∼

∞ + ′ ′
−M M M( 10 )t t1

6 ; thus, the iteration can be stopped. The walking result of all miRNAs in the disease 
similarity network is represented by matrix rndM∼∞.

After obtaining the distribution vector, we use the Pearson coefficient of the distribution vector to determine 
the predictive score of miRNA for the miRNA–disease association in the disease global similarity network.

=
∼∼

∞F corr rndM simD( , ) (10)d

Finally, the predictive score of disease in the miRNA global similarity network and the predictive score of miRNA 
in the disease global similarity network are weighted to obtain the final miRNA–disease association prediction 
score by using the following equation:

= ∗ + − ∗F w F w F(1 ) (11)m
T

d

where Row i Column j in matrix F F(i, j) refers to the association score of miRNA i and disease j. If the score is 
high, then the degree of association is high.
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