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Fast and efficient wireless power 
transfer via transitionless quantum 
driving
Koushik Paul & Amarendra K. Sarma

Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic 
limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two 
coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible 
to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme 
is fairly robust against the variations in the coupling strength and the coupling distance between the 
coils. Also, the scheme is found to be reasonably immune to intrinsic losses in the coils.

Techniques for coherent manipulation of quantum states, specially for two-level and three-level quantum sys-
tems, are of great interest in modern day quantum optics and atomic physics. In this context, resonant excitation 
via pulsed radiation and adiabatic evolution by means of frequency sweep, with controlled chirp across reso-
nance, are particularly well known. These two methods have been investigated theoretically and demonstrated 
experimentally by a wide range of implementations in past few decades1,2. To reach at a desired target state, from 
a given one, using resonant excitation, a constant frequency π pulse is required. One needs to have precise control 
over the pulse area which makes it sensitive to the fluctuations in various parameters. The adiabatic processes like 
rapid adiabatic passage (RAP), Stark chirped rapid adiabatic passage (SCRAP), stimulated Raman adiabatic pas-
sage (STIRAP) etc. do not require such precise control and are robust against parameter fluctuations3,4. However, 
for adiabatic evolution, the system must evolve adiabatically with time making those processes relatively slow. 
Furthermore, no matter how robust the process is, it is necessary to drive a system as fast as possible in order 
to reduce the effects of definite decoherences present in the system. Efforts have been made to address those 
issues in recent years. Current developments in this direction are mainly based on the idea of accelerating the 
evolution beyond the adiabatic regime without violating the principles of state transfer. Few shortcut to adiaba-
ticity (STA) techniques, such as transitionless quantum driving (TQD)5, counter diabatic algorithm (CDA)6,7 and 
Lewis-Riesenfeld invariant (LRI) approach8,9 are put forward to speed up the time evolution of quantum systems. 
In past few years, these methods have been explored rigorously across various branches of physics such as wave-
guide couplers10–13, Bose-Einstein condensates14–16, entangled state preparation17–21, Quantum computation22 and 
so on. Owing to the ubiquitous nature of adiabatic processes, STA techniques span a broad range of applications. 
One possible potential use of these techniques may be in the so-called wireless power transfer technology.

In modern age, various wireless technologies play crucial role in our day-to-day life. Since the early days of 
electromagnetics, significant progress has been made in transferring information via wireless communication. 
In contrast, wireless power transfer (WPT) gained little progress in the last century. However, recent tide in the 
use of electronic appliances and requirement for short and mid-range wireless energy exchange has helped WPT 
getting tremendous attention, and studies on WPT systems has gained momentum in past few years23–25. Modern 
day WPT techniques are mainly based on the mutual induction between two coils. Two fundamental principles, 
which are commonly used in such systems, are near-field non-radiative magneto-inductive effects and the reso-
nant coupling between both the emitter and the receiver coils26–30. In a recent landmark paper27, Soljačić’s group 
experimentally demonstrated non-radiative power transfer over a reasonable distance, using self-resonant coils 
in the strong coupling regime. Like resonant excitation (as discussed above), here also it is extremely important to 
maintain the resonance in both the coils. Otherwise it may result in decrease in the efficiency26. Few studies has 
been put forward to solve this issue31–33. WPT is also dependent on the coupling distance between the coils and 
it has been shown in few articles that in the strong coupling regime, it is possible to enhance efficiency for larger 
distances27,29,30.
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In this work, we study WPT in a system of two inductively coupled coils, having different resonant frequen-
cies, by exploiting the adiabatic and the TQD techniques. It turns out that, while the TQD based method is much 
more efficient than the adiabatic one, it requires faster frequency sweep between the two coils. Using coupled 
mode theory34, we find out the governing equations (which are similar to the Schrödinger equation for two level 
system) and devise power transfer mechanism which is impervious to the coupling strength and distance between 
the coils and intrinsic losses present in the system.

Results
Let us consider a loss-less LC circuit, without loss, with current i(t) flowing in it and voltage, v(t), across L and C. 
The equations describing the voltage and the current can be written in terms of the following coupled differential 
equations:

v t Ldi t
dt

( ) ( ) , (1a)=

= −i t C dv t
dt

( ) ( )
(1b)

Above equations could be rewritten, as a second order differential equation for voltage, as follows:

d v t
dt

v t( ) ( ) 0,
(2)

2
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2ω+ =

where ω = LC1/0
2 . The coupled equations in Eq. (1) can be expressed by two uncoupled equations for mode 

amplitudes a+(t) and a−(t):
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Here, j 1= − . The solutions for the current and the voltage from Eqs (1) and (2), when subjected to proper 
boundary conditions, are given by:

v t V t( ) cos( ), (5)0ω= | |

and

ω= | |i t C
L

V t( ) sin( )
(6)0

Here |V| is the peak voltage. Using above solutions, the total energy of the system could be obtained as: 
a V WC2

2
2| | = | | =± , where a+ being the positive frequency component of the mode amplitudes, while a− is its 

negative counterpart. In the rest of the analysis, we will consider the positive frequency component only and will 
drop the ‘+’ subscript for simplicity. Taking loss in the system into account, the equation is written in the follow-
ing modified form:

ω= − Γ
da t

dt
j a t a t( ) ( ) ( ), (7)0

where Γ is the decay rate due to the dissipation from the coils. In our study we consider two such coils, namely the 
Source and the Drain (Fig. 1), which are coupled by mutual inductance between them. These two coils are off 
resonant to each other having different resonant frequencies ωS and ωD. The coupling between the coils is given by 
κ ω ω=t M t L L( ) ( ) /s d s d , where M(t) is the mutual inductance between these two coils. The mode amplitudes are 
as(t) and ad(t) respectively and are coupled to each other. Total energy of the system is |as(t)|2 + |ad(t)|2. This sys-
tem can be expressed using the following set of coupled equations:

da t
dt

j a t j a t( ) ( ) ( ) ( ) (8a)
s

s s s dω κ= − Γ +

ω κ= − Γ − Γ +
da t

dt
j a t j a t( ) ( ) ( ) ( ) (8b)

d
d d w d s

Here Γs and Γd are the intrinsic loss rates of the source and the drain respectively. Γw is the work extracted from 
the drain coil.
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Energy transfer protocols.  In order to design the energy transfer protocols, we discuss two methods here: 
the adiabatic passage and transitionless quantum driving. From the coupled mode theory, discussed above, we 
can characterise the system by defining the Hamiltonian in [as(t) ad(t)]T basis, as follows:

ω κ
κ ω

=




− − Γ −

− − − Γ − Γ




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H t
j t

t j j
( )

( )
( ) (9)

s s

d d w

As the circuits, chosen here, are not resonant to each other, we consider the system in a rotating frame of ref-
erence, where the interaction Hamiltonian in the diabatic basis is as follows:

κ
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The diabatic basis are given by, bs,d(t) = as,d exp[−j(ωs + ωd)t/2]. In this new basis, one have to consider only the 
frequency difference between the coils, given by, Δ(t) = ωd(t) − ωs(t).

Adiabatic following.  The instantaneous eigenvectors of Eq. (10) without losses are,
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Here Θ(t) is the angle of mixing, given by t( ) tan (2 / )1
2

1 κΘ = Δ− . B±(t) are also known as adiabatic states. For 
adiabatic evolution, one needs to vary the Hamiltonian infinitely slowly or adiabatically so that the system always 
follows a particular state B+ or B− during a complete cycle of the time evolution. To achieve this, the evolution 
ought to follow the adiabatic condition, which is obtained by comparing the non-adiabatic correction terms (Eq. 
(26)) to the instantaneous eigen-energies. It is expressed as follows:

B t B t t t( ) ( ) (4 ( ) ( ) ) (12)t
2 2�∓ κ|〈∂ | 〉| + Δ±

The fulfilment of this condition makes the transition probability between B+(t) and B−(t) zero. Moreover, if 
we assume that the system is initially in the state B+(t) and the power is in the source coil at t = 0, which refers 
to Θ(0) = 0, then, by rotating Θ clockwise to π, one could arrive at the final state, bd(t). Thus the power ends up 
in the drain coil. This rotation could be achieved by sweeping Δ(t) from a large negative value to a large positive 
value. For our system, we chose κ(t) and Δ(t) according to the well known Landau-Zener (LZ) scheme35,36, given 
by:

κ κ δ β= Δ = + −t t t t( ) ; ( ) ( ) (13)0 0

where δ is some arbitrary offset between the frequencies of the two coils and β determines the slope in Δ(t), 
which eventually controls the speed of the process. Under such choices, large t0 is needed to satisfy the adiabatic 

Figure 1.  (a) Typical wireless power transfer system consists of two coils separated by a distance d, (b) 
Schematic of the coils. Two lossy LC circuits, Source and Drain with losses Γs and Γd respectively, coupled to 
each other by inductive coupling. The resonant frequencies are ωs and ωd and also ωs ≠ ωd.
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condition and it, effectively, determines the width of the evolution cycle. In passing, we note that, in general, the 
LZ model shows less adiabaticity. However, in adiabaticity based techniques, usually, one should have good con-
trol on the temporal dependence of the Hamiltonian. This amounts to controlling the complex time dependent 
profiles of Δ and κ. LZ-model, as could be seen in Eq. (13), provides simpler profiles for both Δ and κ compared 
to other models, e.g. the so-called Allen-Eberly scheme35–37.

When the loss rates are non-zero in both the source and the drain coil, the system could be considered as dis-
sipative. These dissipations can be modelled mathematically via the dissipation matrix:

Γ =




Γ

Γ + Γ





0
0 (14)
s

d w

It should be noted that, for adiabatic evolution, the intrinsic loss rates Γs and Γd should be less than the cou-
pling strength κ0, otherwise the evolution would not be possible and the power would be lost from the coil itself.

Shortcut to adiabaticity.  For shortcut, we first transform our Hamiltonian in Eq. (10), in the adiabatic basis, 
using Eq. (26), where the basis states are related as:

†= Θ+ −B t B t U t b t b t[ ( ), ( )] ( ( )) [ ( ), ( )] (15)T
s d

T

The non-adiabatic correction terms are generally negligible under adiabatic approximation. The Landau-Zener 
formula for the total transition probability between adiabatic states in our case is, p exp[ 2 / ]0

2πκ β= − . One can 
obtain p 0  when Eq. (12) is satisfied, which can be written simply as β κ8 0

2. However if one wants to drive 
the evolution faster, non-adiabatic corrections becomes stronger and p no longer remains zero. To avoid such a 
scenario, the adiabatic Hamiltonian needs to be diagonalized exactly. To serve this cause, we add the additional 
interaction to the adiabatic Hamiltonian as proposed by Berry5. We use Eq. (27) to find the additional interaction. 
The second term in Eq. (27) vanishes owing to the orthogonality of B±(t). The first term can be written in the 
adiabatic basis as follows:
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The total Hamiltonian, required for the transitionless driving, is given by
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two coils. φ characterizes another unitary rotation given by
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With all these unitary transformations, one needs to keep track of all the bases used in the process and keep them 
consistent. The mixing angle Θ should be adjusted properly via the boundary conditions, given by Θ(0) = 0, 
Θ(T) = π and κa(0) = κa(T) = 0.

Discussion
To envisage the transfer of energy from the source to the drain, with the effects of intrinsic losses taken into 
account, we followed the standard density matrix approach and therefore solved the master equation, given by

d
dt

j H[ , ] 1
2

{ , } (21)
ρ ρ ρ= − − Γ

Here ρ(t) is the density matrix and Γ represents the dissipation matrix as described in Eq. (14). The diagonal ele-
ments of ρ(t) are ρss = |bs|2 and ρdd = |bd|2 which represents the energy of the source and the drain coil respectively. 
For adiabatic evolution we chose the interaction Hamiltonian in Eq. (10) and for TQD, H(t) is taken from Eq. 
(17).
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In Fig. 2, we present the results showing the evolution of fractional energies, |bs,d(t)|2/|bs(0)|2, in presence of 
intrinsic losses, using both the adiabatic and the TQD algorithm. Even when the adiabatic condition is being 
satisfied, as shown in Fig. 2a, as a result of adiabatic evolution, the fractional energy attains the value, on the order 
of 0.25 or so at the end of the given time window. The requirement of large time, i.e. t0 = 10−4s, so that the adiaba-
ticity condition is maintained, results in energy dissipation due to the intrinsic losses.

However, when TQD is applied, fractional energy of the drain coil almost attains nearly the same value for the 
same period of time (Fig. 2b). But when the adiabatic condition is violated i.e. β κ≥ 8 0

2, enhancement of energy 
in the drain coil could be observed in Fig. 2c. The affects of intrinsic losses are almost eliminated as the time 
period becomes shorter and shorter (Fig. 2d). It is worthwhile to note the effect of β on the power transfer mech-
anism. Physically, β determines the slope of Δ and thereby it controls the time period required to complete a 
single power transfer cycle. In the adiabatic regime, β is relatively small and hence the required period Tadiabatic is 
larger and because of that, power is dissipated from the source coil during the process. When β is large, the fre-
quency sweep becomes faster and ωs(t) becomes steeper (here ωd is taken as constant) as shown in Fig. 3 which 
results in squeezing of the period. Thus the power is transferred to the drain in short time with minimum loss 
from the source. Also it is obvious that one needs to repeat the cycle over and over again to transfer power for 
practical purposes. It may be noted that wireless power transfer is generally studied in the steady-state limit of 
continuous-wave excitation38. In our study, we have analysed power transfer in the setting where the source coil 
is prepared in a state with all the energy and the drain coil with none. In a way, it is a kind of pulsed excitation. 
However, it could be extended to the case of near continuous excitation by fast repetition of the cycle.

The work efficiency of our system is defined as the ratio between the useful extracted power from the drain, 
P b t t( ) dwork w

T
d0

2∫= Γ | |  to the total time averaged power Ptotal in the system over a particular time period T, given 
by

b t t

b t t b t t

( ) d

( ) d ( ) ( ) d (22)

w
T

d

s
T

s d w
T

d

0
2

0
2

0
2

∫

∫ ∫
η =

Γ | |

Γ | | + Γ + Γ | |

We studied efficiency of the system against the variation of the initial frequency difference between the coils 
for different values of κ0/Γs,d. The efficiency strongly depends on the coupling strength κ0 for both the adiabatic 
and the TQD approach and it increases with increasing κ0 as depicted in Fig. 4a. Although this is not that surpris-
ing, but in the beyond adiabatic regime (for shorter periods), efficiency for adiabatic method decreases rapidly. 
However efficiency remains intact for TQD algorithm which can be seen from Fig. 4b.

Figure 2.  Evolution of energy from the Source coil (solid red) to the Drain coil (dash-dotted blue) with 
Γs = Γd = 4 × 103s−1, δ = 2 × 105s−1. (a) Adiabatic evolution for the time window 2t0 where κ0 = 4 × 104s−1, 
β = 3 × 109s−2 and t0 = 10−4s, followed by energy evolution using TQD with weaker coupling strenght 
κ0 = 4 × 102s−1 and decreasing time windows (b) β = 3 × 109s−2 and t0 = 10−4s, (c) β = 3 × 1010s−2 and t0 = 10−5s, 
(d) β = 3 × 1011s−2 and t0 = 10−6s.
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The coupling between the coils for WPT systems are generally very sensitive to the distance, d, between the 
coils and it decays very rapidly with larger coupling distances26,27. In Fig. 5(a,b) we depict the dependence of 
coupling strength κ(d) and efficiency η(d) respectively on the distance d between the coils. From Fig. 5b it is clear 

Figure 3.  Schematic representation of Frequency sweep of ωs(t) (or Δ(t) when ωd = constant). The sweep 
is linear with slope β according to L-Z model. For adiabatic evolution |β| = βadiabatic is small (solid red) and 
|β| = βTQD is high for the TQD method. Time period required for adiabatic case is large accordingly i.e. 
TTQD < TAdiabatic.

Figure 4.  Comparison of efficiency (η) as a function of δ between adiabatic (dashed-dotted) and tqd based 
methods (solid) for different κ0/Γs,d values: κ0/Γs,d = 10 (red), κ0/Γs,d = 50 (purple), κ0/Γs,d = 100 (green) where 
Γw = 104s−1. Time windows (T) for the evolution are as follows: (a) T = 200 μs, (b) T = 2 μs.

Figure 5.  Dependence on the distance d of the (a) coupling κ(d) between the source and the drain coil (dash-
dotted blue), additional coupling κa(d) (dotted brown) and effective coupling κeff(d) for TQD (solid red), (b) 
efficiency η(d) for adiabatic method (dash-dotted blue) and for TQD (solid brown).
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that, even in the adiabatic regime, the efficiency for the adiabatic case decreases with increasing d. η tends to zero 
for d = 2m or so as the strength of κ goes down. But in the case of TQD, η maintains a steady value for large d and 
that certainly gets enhanced with larger β values. The reason behind such behavior could be understood from 
the formalism of inverse engineering. We can observe from Fig. 5a that as κ decreases with distance, we require 
an additional coupling κa which increases with distance so that the effective coupling κeff constitutes a reasonable 
strength for sustained power transfer over a certain range of distance. We have also studied the efficiency of our 
scheme against the variations in κ0 and the intrinsic losses (Γs = Γd). From the contour plots in Fig. 6, we observe 
that η is nearly unity for lower losses and higher κ0 in the adiabatic regime. As we move from Fig. 6a–c, adiabatic-
ity gradually breaks down and efficiency also decreases gradually. Finally it goes to zero when t0 = 10−6s for any 
reasonable amount of losses. On the other hand, using TQD, we find that the achievable efficiency is highly robust 
against variations in κ0 and Γs,d unlike its adiabatic counterpart. Also the efficiency is found to get enhanced with 
decreasing time window. However, it may be appropriate and relevant to discuss briefly about the energy cost 
involved in the implementation of the proposed scheme. The energy of the coupling required for adiabatic power 
transfer will be on the order of the difference of the resonance frequencies of the source and the drain coils, i.e., 
Δ = ωd − ωs. In order to estimate the required energy to implement TQD, we need to calculate the Energy cost39,40 
of the process which is given by

H t( ) 1 d
(23)0

2

∫τ
τ

Σ =
τ

Here ||H|| is the Hilbert-Schmidt norm, given by Tr H H† . We calculated the ratio of the energy cost for adiabatic 
and additional interaction, ΣTQD/ΣAd for the coupling strength parameter used in the manuscript. As shown in 
Fig. 7, it is clear that the energy cost for implementing TQD is less compared to the adiabatic case up to the region 
of a few microseconds and it increases exponentially as the time window is reduced further. Although in princi-
ple, we can transfer the power in infinitely short time, but it is the energy cost that restrict the process up to a time 
limit for its feasibility. In this case, there is a clear trade-off between the energy cost and the transfer time41. 
Therefore, with the coupling parameter values chosen in Fig. 2, it is possible, using the proposed TQD-based 
scheme, to achieve fast power transfer up to a few microseconds for a reasonable energy cost. We find that, with 
the chosen parameter regime, one could negate the effect of losses and thereby preserving the robustness and the 
efficiency of the scheme.

Finally, we would like to make a few comments on the practical implementation of the proposed scheme. The 
scheme rely on the frequency sweeping of both the source and the drain coils. As the resonance frequency of each 
coil is given by: L C1/s d s d s d,

2
, ,ω = , clearly, one needs to have time dependence either in the inductance or in the 

capacitance or both. Variable capacitor is one possibility in this regard. In a few recent studies, such capacitors 
have been used for tuning the coils to the exact resonance42,43. One important study is44, where authors have used 
‘digital capacitance tuning’ in order to optimize the wireless power transfer. These tunable capacitors could cer-
tainly be used to achieve frequency sweeping. On the other hand, inductance depends mainly on the orientation 
and the geometry of the coils. So to obtain a time varying inductance one needs to change the orientation period-
ically by rotating or oscillating one of the coils. However in that case, the coupling will also be time dependent for 

Figure 6.  Contour plots for efficiency with respect to the variations in κ (×104s−1) and intrinsic losses Γs = Γd 
(×103s−1) and Γw = 104s−1. (a–c) For adiabatic case and (d–f) for TQD method with t0 = 10−4s in (a) and (d), 
t0 = 10−5s in (b) and (e) and t0 = 10−6s in (c) and (f).



www.nature.com/scientificreports/

8Scientific REPOrts |  (2018) 8:4134  | DOI:10.1038/s41598-018-22562-9

which a similar study could be carried out easily. Apart from frequency sweeping, we need to use a third agency 
as well in order to facilitate efficient WPT between the coils, which is akin to engineer the additional Hamiltonian 
in mathematical sense, as proposed in our scheme. In fact there already exists a couple of such methods to tune 
the operating frequency for different coil separations38. One method of immense significance is to use magnetic 
field to couple the resonators27. The additional Hamiltonian in our scheme could be engineered to take into the 
effect of such magnetic field coupling. Another recent findings show that it is possible to exploit a 
parity-time-symmetric circuit, incorporating a nonlinear gain saturation element, to induce robust wireless 
power transfer between the coils45. In a yet another method, a third coil is utilised to mediate efficient wireless 
power transfer between the coils46. Hence, we anticipate that the proposed TQD based scheme could be imple-
mented practically.

Conclusion
In conclusion, we have explored a WPT system in the light of adiabatic method and transitionless quantum 
driving method. Our findings could be summarized as follows. The adiabatic evolution of power is a useful 
way to transfer power between two coils. Unlike resonant WPT systems, it uses two off-resonant coils and fre-
quency sweeping is used for power transfer. However, it has to fulfil the adiabatic condition which makes the time 
required to transfer power in each cycle longer, resulting in dissipation of power from the source coil and hence 
efficiency decreases. On the other hand, the TQD algorithm enables us to enhance the efficiency of power trans-
fer. The algorithm suggest that, it is possible to decrease the transfer time and increase the efficiency by invoking 
an additional interaction between the coils. The amount of power dissipated from the source also gets decreased. 
The WPT method using TQD shows more robustness compared to the adiabatic one against the variations in the 
parameters like the coupling strength, intrinsic losses and the coupling distance.

Methods
Transitionless quantum driving.  Shortcut techniques for adiabatic processes ensued from the limitations 
of the adiabatic theorem itself5. Adiabatic theorem states that if a state |n(t = 0)〉 is an eigenstate of a Hamiltonian 
H(t = 0) and the Hamiltonian evolves very slowly (adiabatically) with time, then |n(t)〉 will remain in its eigen-
state throughout the evolution. However it is possible to inverse engineer the system Hamiltonian from a set of 
predefined eigenstates to drive the system beyond the adiabatic limit using TQD5. According to this method, the 
transition probability between the instantaneous eigenstates could be made zero to achieve exact evolution of the 
eigenstates. To understand it, let us consider the Hamiltonian:

∑= | 〉 〈 |H t n t E t n t( ) ( ) ( ) ( )
(24)n

n

The instantaneous eigenstates of this Hamiltonian are the adiabatic states, given by:

|Ψ 〉 = | 〉ξt e n t( ) ( ) , (25)n
i t( )n

where ξn(t) is the adiabatic phase. We can define a unitary transformation to diagonalize H(t = 0) in order to 
obtain the adiabatic Hamiltonian, as follows:

H t U H t U i U U( ) ( ) (26)ad 1 1= −− −


Here U is a time dependent unitary operator. The first term on the RHS of Eq. (26), has instantaneous eigenval-
ues and is diagonal itself. So it can drive the system along the adiabatic states |Ψn(t)〉. The second term refers to 
the non-adiabatic correction, and generally off-diagonal. When H(t) changes slowly with time, the off-diagonal 
part of Had(t) becomes negligible. Hence the probability for transfer among the instantaneous eigenstates tends 
to be zero but the evolution becomes slow. Problem arises when H(t) changes fast with time, resulting in the 
breakdown of the adiabatic condition, as the off-diagonal part of Had(t) becomes stronger and the system no 

Figure 7.  Ratio of energy cost for TQD and adiabatic power transfer with respect to decreasing time window, 
κ0 = 4 × 102s−1 (solid red) and κ0 = 4 × 104s−1 (dash-dotted blue).
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longer follows the adiabatic path. In such a scenario, the TQD algorithm could be used to negate the effects of the 
non-adiabatic terms. According to this technique, we need to add an additional coupling Hamiltonian to cancel 
out the off-diagonal terms from Had(t), so that it becomes diagonal once and for all and the system can be driven 
exactly regardless of the speed of the time evolution. In other words, one can drive the system infinitely fast along 
the adiabatic path. The additional Hamiltonian in the |n(t)〉 basis, is given by:

H t i n t n t n t n t n t n t( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ]
(27)m

t t1 ∑= |∂ 〉〈 | − 〈 |∂ 〉| 〉〈 |

The total effective Hamiltonian, Heff(t) = H(t) + H1(t), drives the system exactly beyond the adiabatic limit. 
One needs to configure H1(t) appropriately, depending on the system, to drive it in infinitely short time.
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