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Quantitative predictions of diverse 
wrinkling patterns in film/substrate 
systems
Fan Xu   1 & Michel Potier-Ferry2

A basic characteristic of stiff film/soft substrate systems is their ability to experience large deformation 
under compressive stresses, which inevitably leads to formation of patterns on the surface. Such 
pattern formation is the result of loss of stability and symmetry breaking. Knowledge on how such 
instabilities arise and evolve is essential to describe, understand, predict, and ultimately to design 
complex functional materials and structures, for example the fabrication of stretchable electronic 
devices and micro/nano-scale surface patterning control. In this paper, quantitative predictions of 
various instability pattern formations and evolutions, which involve highly nonlinear deformation and 
multiple bifurcations, will be presented based on advanced mechanical models and methods, from 
planar to curved geometry. The results can provide further insight into fundamental understanding in 
a whole view of a variety of surface patterning morphology and imply a potential way to facilitate the 
design of functional materials and structures by quantitatively harnessing surface instabilities.

Surface morphological instabilities of a soft material with a stiff thin surface layer have raised considerable 
research interests during past few years. Abundant examples can be found in various types of living creatures 
across length scales such as blooming process of hornbeam leaves1, hierarchical wrinkling of skins2 and fingers3,  
folding of growing tubular organs4 and human brain development5, morphological buckling of fruits and veg-
etables6–8, and differential growth of bacterial biofilms9. Besides, in modern industry, surface wrinkling can be 
widely applied in large area ranging from micro/nano morphological patterning control10–12, fabrication of flex-
ible electronic devices13,14, mechanical self-assembly of islands on nano-particles15, defect localization in elas-
tic surface crystals16, wet surface chemical patterning of micro-spheres17, multi-periodic surface topography 
of coated materials18, adaptive aerodynamic drag control19,20, mechanical property measurement of material  
characteristics21, to the design of moisture-responsive wrinkling devices with tunable dynamics22 and reversible 
optical writing/erasure functional surface23. These phenomena or functions with patterning morphology involve 
surface instability and symmetry breaking which are usually induced by large deformation of film/substrate sys-
tems under compressive stresses. Knowledge on how such instabilities arise and evolve is essential to describe, 
understand, predict, and ultimately to design complex functional materials and structures as listed above.

Although linear perturbation analyses can predict the wrinkling wavelength at the initial stage of instability 
threshold, determining the post-bifurcation response and surface mode transition requires nonlinear buckling 
analyses. During post-buckling, the wavelength, amplitude and instability mode may vary with respect to exter-
nal load. Due to its well-known complexity, most recent post-buckling analyses have recourse to computational 
approaches, especially through finite element method24–32, since a limited number of exact analytical solutions 
can be obtained only in very simple or simplified cases33. Nevertheless, surface instability of stiff layers attached on 
soft materials usually involves strong geometrical nonlinearities, large rotations, large displacements, loading path 
dependence, multiple symmetry-breakings, nonlinear constitutive relations, localizations and other complexities, 
which makes the numerical resolution quite difficult33. The morphological post-buckling evolution and mode 
transition beyond the critical load are incredibly complicated, especially in 3D cases, and conventional numerical 
methods are limited in studying the post-bifurcation response on their complex evolution paths. Besides, several 
early works in the literature apply Fourier-based methods34–36, which prescribe periodic boundary conditions 
and cannot account for boundary effects on pattern evolution. A general model incorporating reliable and robust 
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resolution methods is in strong demand for post-buckling analyses of film/substrate systems, especially for pre-
dicting and tracing the surface mode transition. Inspired by this, we propose a unified 3D model, associated 
with geometrically nonlinear shell formulations for the surface layer and linear elastic solids for the substrate, to 
quantitatively investigate the occurrence and post-buckling evolution of a variety of wrinkling patterns in film/
substrate systems under various loadings. The model incorporates a robust path-following technique to predict 
a sequence of secondary bifurcations on their nonlinear equilibrium path as the load increases and provides an 
overall view of pattern evolution. Such finite element model allows considering all the data of a boundary value 
problem (geometry, boundary conditions, loading and material properties), and describing their influences on 
pattern formation and pattern evolution.

Besides, many natural or artificial film/substrate systems have curved geometry. Recent experimental inves-
tigations reveal that wrinkling patterns may vary with the substrate curvature17,19 and wrinkling processes under 
curvature constraints become promising techniques for micro/nano-scale surface patterning fabrication15,37 and 
control20. Curvature-induced wrinkling pattern formation and selection are only lately being pursued theoreti-
cally and numerically12,24,28,30,38, which demonstrates the important role of topological curvature constraints on 
pattern selection in non-planar geometries. Nevertheless, quantitative prediction and tracing of the whole pattern 
evolution on curved surfaces are still challenging due to strong nonlinearities and geometric complexities, which 
merit much further investigations. Based on our proposed model, we trace the occurrence and post-buckling 
evolution of diverse instability modes on non-planar geometry, including churro-like and buckyball-like patterns, 
and advance the fundamental understanding of the whole view of pattern evolution. The results imply a potential 
way to facilitate the design of functional materials and structures by harnessing these surface instabilities.

Results
Patterns on planar geometry.  We begin with planar geometry of an elastic thin film bonded to a soft 
substrate under uniaxial compression F, in the case of linearly tapered geometry with an angle tan θ = 0.5, as 
shown in Fig. 1a. Upon wrinkling, the film elastically buckles to relax the compressive stress and the substrate 
concurrently deforms to maintain perfect bonding at the interface. The geometric gradient leads to stress gradient 
that can alter uniform sinusoidal wrinkles to graded undulations where the amplitude, wavelength and direction 
can vary along the length together. This could be analogous to shark skin that is covered with ribbed, graded 
texture aligned in the streamwise direction. Let x and y be in-plane coordinates, while z is the direction perpen-
dicular to the mean plane of the film/substrate. The length of the system is denoted by L, and the shorter and 
longer widths are represented by B0 and BL, respectively. The parameters hf, hs and ht represent, respectively, the 
thickness of the film, the substrate and the total thickness of the system. Young’s modulus and Poisson’s ratio of 
the film are respectively denoted by Ef and vf, while Es and vs are the corresponding material properties for the 
substrate. Here we consider huge modulus ratio ∼E E/ 72000f s  and large thickness ratio hs/hf = 100, which 
implies a stiff, thin film attached on a soft, thick substrate. Other dimensional parameters are set as L = 1.2 mm, 
B0 = 0.8 mm, BL = 1.2 mm. The clamped boundary condition ( = = =w w v 0x, ) is applied on the side BL, and 

Figure 1.  (a) Geometry of trapezoidal film/substrate system subjected to uniaxial compression. (b) Bifurcation 
diagram involving three bifurcations. Each point on nonlinear curves corresponds to one incremental step. 
Representative wrinkling modes with respect to the increasing load are marked on the post-buckling evolution 
path. (c) Top view of pattern evolution with increasing compression: corner mode, line mode, wavy mode, to 
wavy mode + sinusoidal mode.
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symmetry condition (u = 0) is considered on the side B0 so that calculations can be performed only for the half 
system to reduce the computational cost. The two taper edges are set to be free. Other trapezoidal domains were 
studied in39, where similar pattern evolutions were obtained. The geometric gradient generates non-uniform 
distributed axial stress in the film: σ =x F h B x( ) /[ ( )]f f , where the width of the system is given as B(x) = BL−2(L−x)
tan θ. This gradient compressive stress leads to a localized corner mode on the shorter edges at the critical load 
(see Fig. 1b and c). When the load reaches the second bifurcation, the localized corner pattern tends to be a 
graded sinusoidal shape where the amplitude fades along the x direction. This wavy pattern grows and spreads 
along the length inside the taper region beyond the second bifurcation, while the wavelength remains almost 
constant. Outside the taper region where the compressive stress is uniform, straight stripes appear. The transition 
between the two happens at the interface where the wavelength and its amplitude alter. For the cases with a rela-
tive larger geometric gradient, wavy patterns can be constrained inside the taper region and cannot propagate 
outside. Hence, localized and distributed wrinkling modes are observed when the domain is trapezoidal, which 
is caused by non-uniform compressive stresses before the bifurcation. Particularly, the corner mode follows from 
stress concentration near the corner. Here the localized mode is shortly dominated by the classical 1D sinusoidal 
mode that further has a graded amplitude due to the stress gradient. Such mechanical response can be explained 
by the Ginzburg-Landau equation with variable coefficients39. By comparison, a uniform stress leads quickly to 
uniform buckling in the center, in agreement with the solution of the Ginzburg-Landau equation involving a 
hyperbolic tangent in the case of stable post-bifurcation behavior40. An iconic case of such a hyperbolic tangent 
envelope is a long elastic rectangular plate under uniaxial compression, as discussed theoretically in41 and exper-
imentally in42. The graded patterns are attributed to a gradient of geometry, while similar behaviors can follow 
from a thickness gradient or a material gradient as in43, where more significant variations of wavelength have been 
highlighted. In the same spirit, Ginzburg-Landau equations with variable coefficients have been studied since a 
long time44–46.

The second case is dedicated to a square film/substrate structure with a bigger dimension L = 2 mm under 
equi-biaxial compression to explore 2D short-wavelength wrinkling patterns. Simply supported boundary con-
ditions (w = 0) are imposed on the four sides. Two bifurcations are found in the load-displacement curve (see 
Fig. 2a). The first instability mode is located in four corners with a checkerboard shape, since the equi-biaxial 
compression induces an isotropic compressive stress field concentrated in four corners due to boundary effects. 
With the increase of loading, the checkerboard patterns gradually occupy the whole domain with nearly uni-
form distribution. Finally the neighbouring seeds coalesce into line chains perpendicular to the diagonals that 
correspond to the directions of maximum principal compressive stress. The evolution of wrinkling modes of 
cross-section near the edge is depicted in Fig. 2b. One can observe that the boundary mode with a hyperbolic 
envelope gradually evolves into a quasi-periodic sinusoidal mode with increasing load. This checkerboard shape 
is a typical feature for planar film/substrate under equi-biaxial compression and it is similar to other wrinkling 
simulations in the literature25,29, but with a difference: the amplitude of oscillations is not uniform and is bigger 
close to the boundary because of extra stresses due to boundary effects (see Fig. 2).

Patterns on curved geometry.  Many biological structures in nature and flexible, wearable electronic 
devices in modern industry have curved geometric configurations to achieve certain functions as mentioned 
before. Recent interests are focused on harnessing curvature to tune or control surface morphogenesis with broad 
range of applications include adaptive aerodynamic drag control12,20 and microlens arrays production11. We will 
study pattern formation and evolution on core-shell cylinders and spheres, respectively, which appear to be the 
most representative curved geometries: cylinders have the simplest developable surface with zero Gaussian cur-
vature, while spheres hold double curvature with positive Gaussian curvature κ = R1/ 2. Coordinates, kinematics 
and geometries are depicted in Fig. 3. The thickness of the shell, the radius and the length of the system are 
denoted by hf, R and L, respectively. Young’s modulus and Poisson’s ratio of the shell are respectively denoted by 
Ef and vf, while Es and vs are the corresponding material properties for the core. Let us first consider an axially 
compressed cylindrical core-shell structure, where the radial displacement w is locked at both ends of the cylin-
der. The buckling and post-buckling pattern selection can be characterized by core stiffness measured by the 
dimensionless parameter =C E E R h( / )( / )s s f f

3/2 38, as shown in Fig. 4a. Precisely, for a stiff core (Cs ≥ 0.9), the 
buckling pattern is axisymmetric and the post-buckling behavior is constantly supercritical and stable with a 
pitchfork bifurcation (see Fig. 4b); whereas for a soft core (Cs ≤ 0.7), multiple bifurcations are found on the com-
plicated post-buckling response: the first two instability modes show sinusoidally deformed axisymmetric shape 
with boundary effects and the post-buckling evolution is supercritical. Then the bifurcated solution branch turns 
out to be subcritical and the associated instability modes become diamond shaped (see Fig. 4c). Gradually, the 
two neighbouring diamond-like patterns begin to merge into a bigger one near the boundary and this matures in 
the final step with a localization mode in the form of alternating deep and shallow diamond-like shapes in the 
circumferential direction. The classical linear shell buckling analysis47 predicts a number of coincident modes 
with short wavelength, including axisymmetric and non-axisymmetric diamond-like patterns, but the observed 
instability modes are usually non-axisymmetric in most of the computations and experiments for thin shells. The 
axisymmetric mode has only been found for thick shells in the case of buckling occurring in the plastic range48,49. 
The predominance of non-axisymmetric diamond-like modes is attributed to edge effect and hoop stresses in the 
boundary layer. Such boundary effect is apparent through the bulges close to the ends in Fig. 4b (see also48), which 
is generated by the mismatch between the boundary constraint and the expansion in the bulk. One finds the same 
scheme for a cylindrical shell with a soft substrate (see Fig. 4c), but the mode tends to be axisymmetric with a 
relative stiff substrate (see Fig. 4b). More surprisingly, the bifurcation curve in Fig. 4b is supercritical, which has 
never been found in pure shell structures.
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Thermal stress is the most common loading type widely existing both in nature and in industrial application. We 
then explore thermal wrinkling (thermal shrinkage in the core) of core-shell structures, where the clamped boundary 
condition ( = = = =w w u v 0x, ) is employed at both ends of the cylinder. Distinguished from axial compression 

Figure 2.  (a) Bifurcation diagram of the center point in a square film/substrate system under equi-
biaxial compression. Two bifurcations and their post-buckling evolution are captured: a corner pattern 
with checkerboard shape tends to be a uniform checkerboard pattern, and finally becomes stripe patterns 
perpendicular to the diagonal direction. (b) Evolution of corresponding wrinkling modes at the cross-section 
near the boundary marked in Fig. 2a. Boundary mode with a hyperbolic envelope gradually evolves into a 
quasi-periodic sinusoidal mode with increasing load.

Figure 3.  (a) Geometry of core-shell cylinder based on curvilinear coordinates, where x and y represent 
respectively axial and circumferential coordinates, while z the radial direction coordinate. The same frame is 
adapted to the components of the displacements u, v and w. The thickness of the shell, the radius and the length of 
the system are denoted by hf, R and L, respectively. Young’s modulus and Poisson’s ratio of the shell are respectively 
denoted by Ef and vf, while Es and vs are the corresponding material properties for the core. (b) Geometry of core-
shell sphere. The same framework and notation as core-shell cylinder are taken into account.
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case, a churro-like buckling mode occurs with short-wavelength instability in the circumference and global buckling in 
the longitudinal direction (see Fig. 5). For a relatively stiff core with = =C E E R h L h( / )( / ) ( / ) 266t s f f f

3/4 3/2 , it shows a 
pitchfork bifurcation with a stable and supercritical post-buckling behavior. This can be explained through stress anal-
ysis: differing from uniaxial stress field (σ σ=− ⊗e ex x) in the axial compression case, thermal shrinkage will induce 
an isotropic stress state (σ σ=− ⊗ + ⊗e e e e( )x x y y ) in the pre-buckling stage in the shell. It is well known that the 
critical buckling stress is generally much higher in the axial compression case than the external pressure situation, with 
the following orders of magnitude: σ| | ∼E h R/ /x

cr
f f , σ| | ∼E h R R L/ [( / ) / ]y

cr
f f

3/2 . Thus, the circumferential stress σy 
would destabilize the system much earlier than the axial stress σx so that the corresponding instability pattern should be 
similar to the hydrostatic pressure loading48,50.

Thermal wrinkling of a spherical shell supported by a core (Cs = 5) shows totally different pattern formation 
and evolution behavior, which involves dynamic movement, rotation, and coalescence of polygons formed in 
the post-buckling stage (see Fig. 6). When the thermal shrinkage reaches a critical value, the sphere suddenly 
bifurcates into a periodic dimple structure, and then evolves into buckyball-like pattern consisting of regular 
pentagons and hexagons, with a snap-back post-buckling response. This thermal shrinkage can be equivalent 
to dehydration of core-shell fruits in a dry environment and one can observe polygonal patterns on the exocarp. 
Quantitative understanding the post-buckling evolution and morphological transition of core-shell structures 
is not only beneficial for applications in biomedical engineering but also gives a potential fabrication route to 
multi-functional surfaces.

Figure 4.  (a) A phase portrait on pattern selection defined by =C E E R h( / ) ( / )s s f f
3/2. The two red dash-dot 

curves give the upper and lower bounds obtained through numerical calculations. When the critical parameter 
Cs ≥ 0.9, the instability mode is axisymmetric; whereas at a smaller value Cs ≤ 0.7, the system may branch into 
the diamond shaped mode. The pattern selection in the narrow region 0.7 < Cs < 0.9 appears to be quite 
sensitive in the numerical results. The blue solid curve is determined by the critical parameter Cs = 0.88,  
which corresponds to the boundary defined based on Koiter’s post-buckling theory28. (b) Pitchfork  
bifurcation diagram of core-shell cylinder under axial compression with Cs = 1 and Batdorf parameter 

ν= − =Z L Rh1 /( ) 455f f
2 2 : boundary instability mode to uniformly axisymmetric pattern. (c) Evolution of 

multiple bifurcations of core-shell cylinder under axial compression with Cs = 0.4: axisymmetric mode, non-
axisymmetric diamond-like mode to localization mode.
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All these deformed shapes depend mainly on loading and geometry, rather than the presence of the substrate. 
Indeed, in the examined three curved shells, patterns appear to be the same with or without substrate, except for 
the very special case of the axisymmetric mode for an axially compressed core-shell cylinder. The main contri-
bution of a relative stiff substrate is the stabilization of the post-bifurcation path, which has been observed for 
cylinders under various loads28,38,51. In the case of spherical core-shell, bifurcations remain subcritical, probably 
because the spherical symmetry induces a bi-dimensional kernel52. Nevertheless, the hysteresis loop appears to 
be rather narrow. Hexagonal patterns are quite common for convective instabilities45,53, for the buckling of pres-
surized spherical shells49 or spherical core-shells12 as considered here. In the latter paper, the physical/numerical 
model is similar to the one applied in this work, but with a high simplification for the substrate. Here we consider 
a full 3D description of the substrate. Stoop et al.12 present almost perfectly periodic patterns that degenerate 
into more or less disordered structures, while the wrinkling modes in Fig. 6 are neither strictly periodic, nor 
highly disordered. Likely the three types of patterns (periodic, ordered but not periodic, disordered) can exist for 
systems with a spherical symmetry. These three morphologies occur in the simulations of a toroidal geometry as 
well12.

Figure 5.  (a) Pitchfork bifurcation diagram of cylindrical core-shell subjected to thermal shrinkage in the core, 
with dimensionless parameter = =C E E R h L h( / )( / ) ( / ) 266t s f f f

3/4 3/2 . The post-buckling curve is supercritical 
and stable. (b) Churro-like patterns with short-wavelength instability in the circumference.

Figure 6.  Snap-back bifurcation portrait of core-shell sphere subjected to thermal shrinkage in the core, with 
dimensionless parameter = =C E E R h( / )( / ) 5s s f f

3/2 . Dimple patterns gradually evolve into buckyball-like 
modes consisting of regular pentagons and hexagons, which is analogous to dehydration of core-shell fruits in a 
dry environment.
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Discussion
Loading effect.  Wrinkling patterns strongly depend on loading type that can generate different orientations 
of compressive stresses. As for planar film/substrate systems, uniaxial compression leads to 1D sinusoidal surface 
wrinkles perpendicular to the loading direction (see Fig. 1), while equi-biaxial compression can induce symmet-
ric 2D checkerboard patterns (see Fig. 2a). Nevertheless, with the increasing of compression, localized maximum 
principal compressive stress can alter the patterns from checkerboard to sinusoidal reversely following diagonal 
directions. At the pre-buckling stage, boundary effects are observed in the biaxial compression case due to stress 
concentration in four corners.

As for core-shell cylinders, pattern formation and evolution under axial compression and thermal shrinkage 
are totally distinguished from each other (see Figs 4 and 5), which is mainly due to different stress distributions in 
the pre-buckling stage as explained before. Under axial compression with uniaxial stress field, the buckling mode 
can be axisymmetric or non-axisymmetric diamond shaped beyond secondary bifurcations; whereas for thermal 
shrinking with biaxial stress state, it always shows churro-like patterns with short-wavelength instability in the 
circumference but global buckling in the longitudinal direction.

Localization and boundary effects.  Boundary value problems as considered in this paper generally have 
boundary effects. For the case of equi-biaxial compression of planar film/substrate systems as shown in Fig. 2a, 
the first bifurcation pattern turns out to be a boundary instability mode, since the compression leading to stress 
concentration around four corners can first destabilize the film therein. This boundary effect can also be observed 
in curved structures, namely core-shell cylinders under axial compression as shown in Fig. 4b. Significant bound-
ary layers appear near both ends at the pitchfork bifurcation, which can be characterized by the famous Batdorf 
parameter ν= − =Z L Rh1 /( ) 455f f

2 2 50. In practice, this number is often large (e.g. Z ∼ 500). When it becomes 
quite small (e.g. Z is in the range 20∼50), the influence of the boundary conditions extends to the whole structure, 
while this effect is constrained to the boundary layers for large values of the Batdorf parameter (Z ≥ 100)38,51. 
Nevertheless, the influence of these boundary layers diminishes in the post-buckling stage as shown in Fig. 4b.

The use of finite element method allows accounting for boundary conditions, which is not possible by the 
widespread Fourier approach34–36. Indeed, we have obtained apparent boundary effects, except for the sphere that 
is edgeless. In the first two cases, i.e. trapezoidal and square film/substrate systems, boundary effects are limited to 
the neighborhood of the first bifurcation, and the localized patterns disappear rapidly and are gradually replaced 
by a nearly periodic pattern. The axially compressed cylinder is quite specific because of a large number of bifur-
cation modes. In this case, boundary effects favor the diamond-like mode, but only for a soft core (Cs ≤ 0.7). For 
the thermally loaded cylinder, the axial modal profile and the critical load depend on boundary conditions, since 
there is only one half wave in the axial direction51.

The localization by edge effect should not be confused with the localization due to subcritical bifurcation in 
large domains. In this case, the Ginzburg-Landau equation has a solution involving a hyperbolic secant (instead of 
a hyperbolic tangent for a supercritical bifurcation), which spontaneously leads to localized patterns54. There exist 
important works55,56 on this type of localization inside the domain, resulting in complicated response curves. A 
number of localized and stable patterns can be created, typically for variants of the Swift-Hohenberg equations57,58.  
In our computations, we have not observed such localizations in the domain, likely because the bifurcations are 
often supercritical or weakly subcritical in the considered film/substrate systems. Note that there might exist 
several post-critical solutions even in supercritical cases41,59, but they are not easily captured by a path-following 
algorithm.

Gradient effect.  Geometric gradient can change wrinkling profile to create ribbed and graded structural pat-
terns with variation of wave direction, amplitude and wavelength together (see Fig. 1). These ribbed and graded 
patterns are caused by stress gradient stemming from irregular geometric topology39. In fact, graded wrinkles 
are not straight stripes but hold a wavy curvature shape that is perpendicular to the trapezoidal edges due to the 
release of stresses on the boundary. The pattern evolution could be used to guide the design of geometrically gra-
dient film/substrate systems to achieve the desired wavy instability patterns.

Curvature effect.  Topological constraints of curved surfaces play an important role on instability pattern 
formation and mode selection. When planar film/substrates are bent with a curved surface, i.e. core-shell cylin-
ders or spheres, the buckling and post-buckling behavior are significantly altered. As for the core-shell cylindrical 
structure under uniaxial compression, buckling and post-buckling behavior mainly depends on the core stiffness 
measured by the dimensionless parameter =C E E R h( / )( / )s s f f

3/2 that involves curvature effect from the second 
term (see Fig. 4a). Precisely, for a stiff core (Cs ≥ 0.9), the buckling pattern is axisymmetric and post-bifurcation 
solutions are stable (see Fig. 4b); whereas for a soft core (Cs ≤ 0.7), the bifurcated solution branch is often subcrit-
ical and the associated instability modes are diamond-like beyond secondary bifurcations (see Fig. 4c). This sug-
gests that the uniaxial compression can lead to 2D instability modes due to the curvature effect in core-shell 
cylindrical systems. The phase diagram in Fig. 4a could be helpful for morphological design of core-shell surface 
patterning.

Thermal wrinkling patterns are totally different between spheres and cylinders even though both have curved 
surface, the former holding a positive Gaussian curvature while the latter having a zero one. Spheres exhibit 
dimple to buckyball-like mode transition, with double periodicity both in longitude and latitude. In contrast, 
cylinders undergo circumferential local buckling and global buckling along the axial direction. These differences 
are attributed to distinguished geometric curvatures.
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Methods
Model.  Quantitative predictions of diverse wrinkling patterns were carried out based on a nonlinear finite 
element model, which was first established for planar film/substrate systems29 and subsequently extended to 
hyperelastic constitutive laws60 as well as non-planar geometry such as core-shell cylindrical systems38. This finite 
element framework appears to be versatile for both planar and curved configurations as well as various loads. In 
this model, the surface layer is represented by a thin shell model to allow large rotations while the core is modeled 
by small strain elasticity. Indeed, the considered morphological instabilities are governed by nonlinear geometric 
effects in the stiff material on surface, while these effects are much smaller in the soft material for the substrate. A 
thorough investigation on comparison between finite strain hyperelastic material model and small strain Hooke’s 
elasticity, with respect to a wide stiffness range of Young’s modulus was performed in60. The limit of large/small 
strains can also be approximated through the critical buckling load for 1D sinusoidal wrinkles61, i.e. 
ε = E E1/4(3 / )cr s f

2/3, where ν= −E E /(1 )f f f
2  and ν= −E E /(1 )s s s

2 . If considering ε ∼ 5% as the upper bound of 
small strain, then one can obtain modulus bound Ef/Es ∼ 30. Precisely, for a stiffer film with >E E/ 30f s , the crit-
ical buckling strain is lower than 5% so that Hooke’s law is relevant. Therefore, in most cases of film/substrate 
systems, i.e. 

E E/ (30)f s  , linear constitutive laws appear to be sufficient and are qualitatively or even quantita-
tively equivalent to finite strain hyperelastic models60.

Buckling and wrinkling instabilities are mainly induced by compressive stresses, leading to the decrease of the 
tangent stiffness of systems. This loss of stiffness being proportional to the current stress state, its effect is much 
more significant in the film. That is the reason why it is proposed in61 to model the substrate with linear elasticity 
while the constitutive law of the film is expressed in terms of the nonlinear Green-Lagrange strain tensor accord-
ing to Saint-Venant Kirchhoff model, and this framework is maintained here, which means the strain energy in 
the film is a quadratic function of the Green-Lagrange strain tensor, i.e. γ γL1/2 : :f , where Lf is the elastic tensor 
of the film. Due to the thinness of the film, a shell model is highly recommended and a number of finite elements 
are well established to achieve this discretization, for instance in commercial software Abaqus62. Our computa-
tional scheme is based on nonlinear shell elements introduced in63 and its robustness has been validated for 
nonlinear elastic thin-walled structures such as cantilever beam, square plate, cylindrical roof, circular deep 
arch64, and planar29 or curved38 film/substrate systems. Each element is a curved quadrilateral with 8 nodes and 
48 degrees of freedom (DOFs).

Linear isotropic elasticity theory can accurately describe the substrate. Hence, the potential energy of the 
substrate can be expressed as

 ∫ ε ε ε ε= − Ω
Ω

du L L( ) 1
2

( : : : : ) ,
(1)s s

t
s

t
s th

s

where Ls is the elastic tensor of the substrate. The total strain and thermal strain are respectively denoted as ε and 
εth. Here 8-node linear brick elements with reduced integration are applied to discretize the substrate, with totally 
24 DOF on each brick element. In the cases where the substrate is subjected to the thermal shrinkage, the thermal 
strain can be expressed as

ε α= Δ Δ <T TI with 0, (2)th

where α, ΔT and I denote the thermal expansion coefficient, temperature change and second-order identity 
tensor, respectively. This thermal shrinking loading εth can be characterized by a residual strain εth = εres = −λI, 
where λ is a scalar load parameter and only normal strains are considered for isotropic loading.

As the surface film is bonded to the substrate, the displacement should be continuous at the interface. Shell 
elements and 3D brick elements, however, cannot be simply joined directly since they belong to dissimilar ele-
ments that hold different displacement degrees of freedom. Hence, additional incorporating constraint equations 
have to be employed and here Lagrange multipliers are applied to couple the corresponding nodal displacements 
in compatible meshes between the shell and the substrate. Consequently, the stationary function of the core-shell 
system is given in a Lagrangian form:

∑= + + 
 − 

  i iu u u u( , , ) ( ) ( ) ,
(3)f s f s

node i
i f sL P P

in which f  represents the potential energy of the film. The displacements of the shell and the core are respectively 
denoted as uf and us, while the Lagrange multipliers are expressed by .

Resolution.  A path-following continuation technique named Asymptotic Numerical Method (ANM)65 is 
applied to solve the resulting nonlinear PDEs (Eq. 3). The ANM is a numerical perturbation technique based on a 
succession of high-order truncated power series with respect to a well chosen path parameter, which appears as an 
efficient continuation predictor without any corrector iteration. It gives interactive access to semi-analytical equi-
librium branches, which offers considerable advantage of reliability compared with classical iterative algorithms. 
Besides, one can get approximations of the solution path that are very accurate inside the radius of convergence. 
By taking advantage of the local polynomial approximations of the branch within each step, the algorithm is 
remarkably robust and fully automatic. Furthermore, unlike incremental-iterative methods, the arc-length step 
size in the ANM is fully adaptive since it is determined a posteriori by the algorithm. Here the main interest and 
advantage of the ANM lie in the ability to trace the post-buckling evolution on the equilibrium path and to pre-
dict secondary bifurcations without any special tool. Precisely, accumulation of small steps in the ANM is often 
associated with the occurrence of a bifurcation29,66.
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