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A global time series of traffic 
volumes on extra-urban roads
Maarten J. van Strien   ✉ & adrienne Grêt-Regamey  

Traffic on roads outside of urban areas (i.e. extra-urban roads) can have major ecological and 
environmental impacts on agricultural, forested, and natural areas. Yet, data on extra-urban traffic 
volumes is lacking in many regions. To address this data gap, we produced a global time-series of 
traffic volumes (Annual Average Daily Traffic; AADT) on all extra-urban highways, primary roads, and 
secondary roads for the years 1975, 1990, 2000 and 2015. We constructed time series of road networks 
from existing global datasets on roads, population density, and socio-economic indicators, and 
combined these with a large collection of empirical AADT data from all continents except Antarctica. 
We used quantile regression forests to predict the median and 5% and 95% prediction intervals of AADT 
on each road section. The validation accuracy of the model was high (pseudo-R2 = 0.7407) and AADT 
predictions from 1975 were also accurate. The resulting map series provides standardised and fine-
scaled information on the development of extra-urban road traffic and has a wide variety of practical 
and scientific applications.

Background & Summary
Globally, road transport has increased strongly in the past decades and this trend is expected to continue in 
the coming decades1. Although roads and mobility generate socio-economic benefits2, roads and traffic also 
have numerous negative impacts on the environment3, ecology4,5, climate6 and human health and well-being7,8. 
Although the presence or absence of a road is undoubtedly the ultimate cause of such negative impacts, the 
traffic volume is usually the main proximate driver of the magnitude of these effects9–11. For instance, Kim,  
et al.12 found a strong positive correlation between traffic volumes and concentrations of certain persistent 
organic pollutants in roadside soils. Similarly, the incidence of asthma cases was positively related to proximate 
traffic volumes13. Also ecological studies have found that the severity of road-related threats to wildlife popula-
tions is strongly dependent on traffic volumes10. These examples underline the importance of traffic volume data 
to locate areas where the detrimental impacts of roads are highest and to plan mitigation strategies. A careful 
planning of roads can strongly reduce their negative impacts14. Despite the importance of traffic volume data, in 
many countries such data is either lacking15–17 or efforts to establish such datasets are mainly focussed on urban 
areas e.g.18–23. This fragmentation of traffic data within and between countries poses challenges in comparing 
traffic trends across different regions and over time.

Although traffic outside of urban areas (i.e. extra-urban traffic) thus receives relatively little attention, its 
ecological and environmental impacts are not less severe than those of urban traffic. Extra-urban roads usually 
account for the majority of the total road length in a country24,25. Compared to urban trips, extra-urban trips 
usually have a low frequency26, but a longer length, and therefore account for a considerable proportion of 
the total distance travelled by car25,27. As extra-urban roads intersect the landscape far beyond the boundaries 
of cities traversing rural and more natural landscapes24,28, extra-urban traffic can have a considerable impact 
on the ecology and environment of these places. Extra-urban traffic can deteriorate agricultural production, 
endanger the functioning of ecosystems through nitrogen deposition29 or other forms of noise, water and soil 
pollution30–32 and jeopardise species survival by degrading and fragmenting habitats33. As the amount of traf-
fic on extra-urban roads is largely driven by demographic and socio-economic conditions in urban regions26, 
extra-urban traffic thus forms an important telecoupling between populated and depopulated places. To quan-
tify and mitigate the negative impacts of extra-urban traffic, there is an urgent need for harmonised, large-scale 
traffic volume estimates on extra-urban roads.

Many studies have focussed on developing models to extrapolate and predict traffic volumes across a road 
network16,34–37. Particularly on the vast stretches of rural and low-volume roads, such methods provide a fast and 
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low-cost alternative to laborious and expensive empirical measurements of traffic volume16,34,35. Furthermore, 
traffic prediction models allow to create traffic datasets that are comparable across space and time. A commonly 
used metric for traffic volume in these studies is the Annual Average Daily Traffic (AADT), which is “the aver-
age number of vehicles that pass a roadway section each day in a particular year”36, p. 2979. A variety of regres-
sion techniques has been used to model AADT ranging from traditional linear regression38 to contemporary 
machine learning approaches16. In recent years, graph theoretical approaches have also been added to the suite 
of methods to model AADT e.g.37. These models can not only be used to predict AADT on road sections within 
a current road network, but also to make predictions of AADT for past or future years36. Despite the advances 
made with the modelling and predicting of AADT across road networks, none of the methods has been applied 
at a global scale, let alone for multiple years.

In this study, we produced the first freely available global time-series of traffic volume estimates on 
extra-urban roads by combining several existing global datasets on roads39,40, population density41 and 
socio-economic indicators42 with a large collection of empirical AADT training data from all continents except 
Antarctica. To do this, we developed a network-based model to predict AADT (Fig. 1). In the first step of our 
analysis, we delineated urban areas in the Global Human Settlement Layer GHS-POP41 (Fig. 1a) adapting the 
‘degree of urbanisation’ classification scheme43 (Fig. 1b). All roads outside of these urban areas were considered 
extra-urban roads. Secondly, we constructed road networks for the years 1975, 1990, 2000 and 2015 in which the 
nodes were either urban areas or road intersections, while the edges represented all extra-urban highways, pri-
mary roads, and secondary roads in the recent GRIP4 roads dataset39 (Fig. 1c). We reconstructed the roads for 
1975 and 1990 by combining the GRIP4 dataset39 with the older Vmap0 dataset40. For each road section, we cal-
culated a set of explanatory variables for AADT, consisting of road characteristic, demographic, socio-economic 
and network topological variables. For 3% of the road sections, we also collected empirical AADT values from 
national traffic count datasets for the year 2015, which served as response variable in our model. We then trained 
a Quantile Regression Forest (QRF) model44, a variation to Random Forest models, for the year 2015 with 80% 
of the empirical AADT values (training set). With the trained model, we subsequently made predictions of 
AADT for every extra-urban road section for the four time-steps. Finally, we performed a hold-out validation 
of the 2015 predictions with the remaining 20% of the empirical AADT values (validation set) as well as an 
out-of-sample validation of the 1975 predictions with empirical AADT values from two countries that were not 
used in the calibration of the models. Both validations showed that the AADT estimates had a good accuracy.

The produced AADT time-series can be used for a variety of purposes. Spatially explicit data on traffic vol-
umes can be used, for instance, to develop a system understanding of the effects of city and road network con-
figurations on the connectivity in habitat networks45. Maps of AADT can also be used to pinpoint locations for 
wildlife under- or overpasses to ensure habitat connectivity across roads46. Roads with an AADT of 10 000 are 
regarded as an insurmountable barrier for animal movement10 and it thus makes sense to target roads with an 
AADT above this threshold to implement connectivity measures. Further potential uses of our AADT predic-
tions are to assess the noise pollution by traffic across a region47 or to determine hotspots of pollutants in runoff 

Fig. 1 Overview of the analysis steps to create the road networks. The steps are demonstrated in a region around the 
city of Bern in Switzerland. (a) The global population density raster GHS-POP contains the population size in each 
250 × 250 m raster cell41. (b) Urban areas were defined from this raster, by selecting clusters of connecting raster 
cells with a minimum population density of 93.75 people per cell and a total cluster size of at least 2000 people. From 
the global road dataset GRIP439, intersections among roads (road-road intersections) or intersections of roads with 
urban areas (road-urban intersections) were defined. (c) These intersections formed nodes in the road network. The 
edges were defined by roads connecting the nodes. Attributes were calculated for all edges as explanatory variables 
of Annual Average Daily Traffic.
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from roads32. Traffic exposure maps, such as the ones produced by Madadi, et al.48 and Pratt, et al.9, are a useful 
tool to determine to what degree locations are affected by noise or pollutants from traffic. Our time-series of 
traffic volumes allows to make statements about the development of such effects e.g.47. The lack of large-scale 
road traffic data is an important reason why traffic volumes are not given adequate attention in ecological, envi-
ronmental and climate studies17. We hope that our dataset will trigger an increased consideration of traffic in 
such studies.

Methods
There exists a wide variety of traffic flow modelling approaches, ranging from micro-scale models that simulate 
the behaviour of individual road users to macroscale models that estimate traffic variables in an aggregated 
way49. Given our large spatial scale and data limitations, we developed a macro-scale model, which has been 
used often for the prediction of AADT16,35.

The analyses were carried out in Python50 and R51. Python-packages that we used were arcpy52, igraph53, 
numpy54, pandas55, and rasterio56. We used the following R-packages: quantregForest44, randomForest57 and 
ggplot258.

time series of urban areas. To define extra-urban areas, we first delineated urban areas from the Global 
Human Settlement Layer GHS-POP41. The GHS-POP dataset is a global raster time-series depicting human pop-
ulation density estimates in 250 × 250 m raster cells for the years 1975, 1990, 2000 and 2015 (Fig. 1a). To select 
urban areas from this raster, we adapted the “degree of urbanisation” classification scheme, which was developed 
by several international organisations and adopted by the UN Statistical Commission43. This classification scheme 
has the advantage that it is not based on administrative boundaries, but on the identification of population clus-
ters in a population density raster, such as GHS-POP43.

In the degree of urbanisation scheme, a two-step procedure is used to classify urban areas (Dijkstra et al. 
2021). First, all raster cells above a population density threshold are selected. Second, the total population size 
for clusters of adjoining and selected cells is calculated. Clusters above a population size threshold are consid-
ered urban areas. The scheme thus depends on two thresholds: a cell-specific population density threshold and 
a cluster-specific population size threshold. As population density threshold, we adopted the threshold for cities 
from the degree of urbanisation scheme, which is 1 500 people per km2 (i.e. 93.75 people per 250 × 250 m raster 
cell). In this scheme, all raster cells with a population density below this threshold are considered semi-dense or 
rural area43, which we considered to be “extra-urban” area. As population size threshold, we took a threshold of  
2 000 people following the definition of a town by Forman59, p. 4, who writes: “a town is a compact mainly 
residential area in agricultural or natural land that contains about 2 000 to 30 000 residents…”. Although the 
population size threshold for cities is 50 000 people in the degree of urbanisation scheme43, we chose for this 
lower threshold to also include high-density towns as urban area (Fig. 1b). We applied this classification to the 
GHS-POP raster layers for the four time-steps, to obtain a time-series of urban areas. We defined extra-urban 
areas as all terrestrial raster cells in GHS-POP that were not classified as urban area (i.e. city or high-density 
town). With this approach to define urban areas, we delineated 192 830, 252 150, 266 022, and 298 602 urban 
areas for the years 1975, 1990, 2000 and 2015, respectively. The delineated urban areas were nodes in the 
extra-urban road networks. The identified urban areas are also supplied as polygon shapefiles for each time step 
(see section “Data Records”).

Time series of extra-urban road networks. Before we could construct the road networks for the differ-
ent time-steps, we had to reconstruct historical roads. This was a challenge, as there are very few complete and 
freely available global road datasets39, let alone time series of such datasets. Due to this data shortage, the time 
series of extra-urban roads consisted of two time-steps (i.e. ≤1990 and ≥2000). For the years 2000 and 2015, we 
used the GRIP4 global road dataset39, which is one of the most complete and harmonised global road datasets 
publicly available. For the years 1975 and 1990, we approximated the historical road networks by combining the 
roads in the GRIP4 dataset39 with those in the Vmap0 dataset predating 199740.

More specifically, to reconstruct the roads for 1975 and 1990, we downgraded (i.e. change a road to a lower 
category) the road type of GRIP4 roads that were either absent or had a lower category in the Vmap0 dataset40. 
Highways and primary roads in GRIP4 that were either not present or not classified as such in Vmap0, were 
downgraded to, respectively, primary road, or secondary road. Secondary roads in GRIP4 were not further 
downgraded. As Vmap0 has a lower spatial accuracy than GRIP439, we buffered all Vmap0 roads with 1500 m. If 
90% of the length of a GRIP4 road section was overlapping this buffered area, the road section was linked to its 
Vmap0 counterpart. This strategy of reconstructing historical roads was chosen for several reasons. First, there 
are strong regional differences in the completeness of the road mapping in Vmap0 and comparable datasets39. 
Removing all roads from GRIP4 that were missing in Vmap0 would thus result in a severe underrepresentation 
of the historical roads in certain regions. Second, several studies have found that many major roads were once 
created by upgrading lower class roads e.g.60,61 and, hence, a downgrading going back in time makes sense. 
Third, as we found that the road type was an important explanatory variable for AADT (see section “Quantile 
regression forest (QRF) model”), we argue that changing the road type was the best compromise between leaving 
the roads unchanged over time and completely removing roads. Despite these justifications, this approach of 
reconstructing historical roads is not ideal, due to spatial variability in the level of detail of the Vmap0 dataset39 
as well as the differing spatial accuracies of the two datasets. Nevertheless, given the plausibility of the historical 
traffic volume maps and the satisfying results of the out-of-sample validation (see section “Technical valida-
tion”), we believe that the historical road reconstruction is of sufficient quality to be useful in further studies.

To obtain the extra-urban roads from the above road time series, we extracted all the primary roads, second-
ary roads and highways that were not within an urban area (see section “Time series of urban areas”; Fig. 1b). 
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For each extra-urban road section, we estimated travel speeds. We set the speed limits on highways, primary 
roads, and secondary roads to 120, 100 and 80 km*h−1, respectively. As the effective speeds on roads are usually 
lower than the speed limits, we applied a transformation developed by Gao, et al.62: effective speed = 0.942*speed 
limit − 9.0618. This led to effective speeds of 104, 85 and 66 km*h−1 on highways, primary roads, and secondary 
roads, respectively. Combined with the length of a road section, the travel time along each road section was cal-
culated in minutes. The minimum travel time on each road section was set to 1 minute to facilitate subsequent 
calculations. We did not consider changes in travel times over the years.

To determine the nodes in the extra-urban road network, we calculated all intersections between roads (i.e. 
road-road intersections) as well as intersections of roads with a boundary of an urban area (road-urban intersec-
tions; Fig. 1b). A road-road intersection was created wherever two roads intersected or where two road sections 
met. Intersecting roads that in reality are not a crossing (e.g. bridges and underpasses) were not considered, but 
it is anyway unknown how accurate they are represented in the GRIP4 dataset. All the road-urban intersections 
for a certain urban area obtained the same node-identifier and coordinates (i.e. the centroid of the urban area; 
Fig. 1b). As intra-urban roads were not included in the road network, the size of the entire road network was 
strongly reduced enabling efficient computations. An edge was added to the road network between any two 
nodes that were connected by a highway, primary road, or secondary road. The calculated travel times on each 
road section was added as attribute to the edges.

Our final 2015 road network consisted of 2 539 301 nodes (road-road and road-urban intersections) and  
3 300 765 edges. According to our definition of extra-urban roads, we found that the GRIP4 dataset contained  
7 250 674 km of extra-urban highways, primary roads, and secondary roads in 2015, which corresponds to 
89.5% of the total length of these road types in GRIP4.

For some analyses, such as habitat connectivity analyses, information on road tunnels is ideally required (i.e. 
roads in tunnels do not impair habitat connectivity). Yet, tunnels are not an attribute in the GRIP4 road data-
base39. In some countries this could be a considerable bias, but for most countries it is expected that road tunnels 
are not particularly prevalent, e.g. in Europe, only 1.65% of major roads are in a tunnel63.

explanatory variables. For each edge in the road network, we calculated a range of explanatory variables 
for AADT. The list of potential variables was determined, on the one hand, by a literature analysis of AADT pre-
diction studies, and, on the other hand, by the availability of global data for the relevant time steps. Making use of 
several literature reviews16,35, we identified four groups of explanatory variables for AADT: variables quantifying 
the human population, variables describing road characteristics, road network metrics, and variables quantifying 
socio-economic conditions. We tested 89 explanatory variables (the complete list is included in Supplementary 
Table 1), which we reduced with several steps (see section” Quantile Regression Forest (QRF) model”) to a final 
list of 13 variables (Table 1), which we will discuss here in more detail. All explanatory variables were calculated 
for each edge in the road network in each of the four time steps.

Since the presence of people is a prerequisite of traffic, it is not surprising that variables quantifying the 
human population in the surrounding of a road were found to be important to explain AADT35,64. Therefore, 
we included one population density variable that quantified the population in urban areas closely around a road 
section (eMeanPop4Ord) and one that quantified it at a larger distance around a road section (eMeanPop22Ord, 
Table 1).

As road characteristic, we included the road type, which was taken directly from the GRIP4 dataset39 for the 
years 2000 and 2015, or from the potentially downgraded roads for the years 1975 and 1990 (see section “Time 
series of extra-urban road networks”). Another variable that has regularly been found to influence traffic is the 
land use surrounding a road35, where land use usually refers to different types of urban land use16. As the land 
use is strongly influenced by the population density, we calculated the total population in a 2 km radius around 
each node using the GHS-POP dataset41. For each edge in the road network, we summarised this information in 
two variables: eMeanCirclePop and eDiffCirclePop (Table 1). Whereas the population density variables eMean-
Pop4Ord and eMeanPop22Ord summarise the population in urban areas at different proximities around a road, 
these variables only assess the population directly around a road section in both urban and extra-urban settings.

Various network-based studies have found that network metrics (e.g. betweenness centrality, page rank, 
degree) can also be useful explanatory variables of traffic volumes37,65. In our final selection of explanatory var-
iables, we included variables based on the edge- (eBetw60, eBetw240) and node-betweenness (eMeanBetw60, 
eDiffBetw60; Table 1), which indicate the number of shortest routes that pass through an edge or through the 
nodes on either side of the edge, respectively. Travel times were used as edge weight to calculate these shortest 
paths. As a measure of isolatedness of a node, we also calculated the mean travel time from the respective node 
to its direct neighbours. To calculate the edge attribute, this value was averaged for the nodes on either side of an 
edge (eMeanStrength; Table 1).

As correlations have been found between socio-economic conditions and traffic volumes64 or car ownership66, 
we calculated the mean Gross Domestic Product (GDP) per capita and mean Human Development Index (HDI) 
for each edge in the road network (eMeanGPD, eMeanHDI). This data was extracted from Kummu, et al.42,  
who created global raster layers of GDP per capita (purchasing power parity) and HDI for the year 1990, 2000 
and 2015. To estimate the values for 1975, we extrapolated the trend in the latter years with log-linear regression 
for GDP67 and logistic regression for HDI68.

Response variable: empirical AADT values. As response variable, we collected spatially explicit datasets 
(i.e. line or point shapefiles) with empirical AADT values from around the year 2015. We found such datasets for 
46 countries (Table 2) located in all continents (except Antarctica; Fig. 2). We made a considerable effort to find 
datasets from the year 2015 but, for some countries, had to resort to datasets from earlier or later years (Table 2). 
We assumed that these earlier or later datasets were still representative of localised traffic in 2015.
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Empirical AADT values were assigned to the closest GRIP4 road section that was within a certain maximum 
distance from the sample point. These maximum distances were set to 100, 200 or 250 m depending on the 
spatial accuracy of the AADT shapefile. We manually adjusted some of the AADT shapefiles to improve overlap 
with the GRIP4 dataset. If more than one AADT value could be matched to a road section, the mean of the val-
ues was taken. Although most datasets contained AADT values derived from vehicle count data, some datasets 
also contained some modelled estimates of AADT. Most of the AADT datasets were publicly available, and for 
some we were granted permission for their use by the owners.

The AADT values from three countries had a relatively high number of 0 values (France: 396; New Zealand: 
51; USA: 37). Upon visual inspection of the locations with AADT = 0, we noticed that the vast majority of these 
locations had neighbouring AADT values that were considerably higher. Therefore, we considered these loca-
tions as misspecified or missing data points and only considered road sections with AADT values larger than 0 
in subsequent analyses.

Our 2015 road network finally contained 99 328 edges with empirical AADT values assigned to them, which 
corresponds to 3.0% of the edges in the entire road network. Each of the considered road classes was well repre-
sented in this training data (Table 2).

Quantile regression forest (QRF) model. To relate the explanatory variables to AADT, we used a QRF 
model44, which is a variation to the well-known Random Forest model. Various studies have found that Random 
Forest models outperform other methods when predicting AADT16,35. However, whereas Random Forest and 
many other regression techniques only provide a mean predicted value as output, QRF is capable of calculating 
prediction intervals by modelling the complete conditional distribution of the response variable44. These inter-
vals express the upper and lower limits between which a true value is likely to fall and, thus, gives an indication 
of the reliability of a single prediction44. Due to the right-skewed distribution of the empirical AADT values and 
following other AADT prediction studies e.g.38,69,70, we transformed AADT with the natural logarithm before 
fitting the QRF models.

Before training our final QRF model, we tuned the following hyperparameters: number of trees (ntree), 
number of randomly selected variables at each split (mtry), minimum size of terminal nodes (nodesize), and 
size of samples to draw (sampsize)57. Making use of the R-package TuneRanger71, we found that mtry = 5, node-
size = 4 and sampsize = 0.871 (i.e. 87.1% of the training data) were optimal QRF hyperparameter settings for 

Abbreviation Category Description Data Source Calculation

eMeanPop4ord population density Urban population density closely 
surrounding an edge.

GHS-POP (Florczyk 
et al. 2019)

Mean of the total population surrounding nodes a and b. 
Total population in a node is calculated by summing the 
population in the 4th order urban areas.

eMeanPop22ord population density Urban population density in a large area 
around an edge.

GHS-POP (Florczyk 
et al. 2019)

Mean of the total population surrounding nodes a and b. 
Total population in a node is calculated by summing the 
population in the 22nd order urban areas.

GP_RTP road characteristics Road type: highway, primary road or 
secondary road.

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

GP_RTP attribute from GRIP4. For 1975 and 1990, 
adapted with Vmap0

eMeanCirclePop road characteristics Proxy for land use surrounding a road. GHS-POP (Florczyk 
et al. 2019)

The mean of the population in a 2 km radius around 
nodes a and b

eDiffCirclePop road characteristics Proxy for a land use change gradient along 
a road.

GHS-POP (Florczyk 
et al. 2019)

Absolute difference between the populations in a 2 km 
radius around nodes a and b

eBetw240 road network 
metrics

Number of long distance trips passing 
through an edge

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

Edge betweenness centrality (weight = travel time) only 
considering nodes at 240 min travel time

eBetw60 road network 
metrics

Number of short distance trips passing 
through an edge

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

Edge betweenness centrality (weight = travel time) only 
considering nodes at 60 min travel time

eDiffBetw60 road network 
metrics

Relative difference in short distance trips 
passing through the nodes on either side of 
an edge. Potentially informative for dead-
end roads

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

Absolute difference between the betweenness centrality 
(weight = travel time) of nodes a and b relative to the 
mean betweenness in both nodes. The betweenness of a 
node is calculated only by considering nodes at 60 min 
travel time

eMeanStrength road network 
metrics

Proxy for the isolatedness of nodes on either 
side of an edge

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

The mean of the average travel time of nodes a and b to 
their 1st order neighbors

eMeanBetw60 road network 
metrics

The mean number of short distance trips 
passing through the nodes on either side 
of an edge

GRIP4 (Meijer et al.  
2018), Vmap0 
(NIMA 1997)

Mean betweenness centrality (weight = travel time) of 
nodes a and b. The betweenness of a node is calculated 
only by considering nodes at 60 min travel time

eMeanNei4ord road network 
metrics The density of nodes surrounding an edge GHS-POP (Florczyk 

et al. 2019)
Mean of the number of 4th and lower order nodes of 
nodes a and b

eMeanGDP socio-economic Mean gross domestic product of an edge GDP raster (Kummu 
et al. 2018) Mean gross domestic product of nodes a and b

eMeanHDI socio-economic Mean human development index of an edge HDI raster (Kummu 
et al. 2018) Mean human development index of nodes a and b

Table 1. Final selection of explanatory variables for Average Annual Daily Traffic. The variables are 
calculated for each edge in the road network. An overview of all tested explanatory variables can be found in 
Supplementary Table 1. Nodes a and b refers to the nodes on either side of an edge.
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our dataset. We found that training and validation accuracy converged well up to 2500 trees, stayed practically 
constant till 3500 trees and then started to diverge (i.e. overfitting) with larger numbers of trees. Therefore, we 
set ntree = 2500. For the other arguments in the quantregForest44 and randomForest57 R-functions, we used 
default settings.

To reduce the initial set of explanatory variables (Supplementary Table 1) to our final selection (Table 1), 
we selected variables based on their importance in the model, the linear correlation among the variables and 
the percentage of explained variance of the QRF model. None of the finally selected explanatory variables were 
strongly correlated (Pearson r ≤ 0.66). Also, the explained variance of the QRF model fitted with the selected 
variables was comparable to that of the full model. The importance of the 13 explanatory variables in the final 
model, indicated that road type (GP_RTP) was clearly the most important explanatory variable in the QRF 
model, followed by the variables eMeanGDP, eBetw240 and eMeanCirclePop (Fig. 3 & Table 1).

We used the trained QRF model to predict the median AADT value as well as the 5% and 95% prediction 
intervals for each edge in the road network. In other words, the model predicted that there was a 90% chance 
that the true AADT value of an edge would be between these intervals. A visual comparison of the time series 
for two arbitrarily chosen regions in the world clearly showed the increase in traffic volume in these two regions 
in the period 1975 to 2015 (Fig. 4). The growth of the urban area during this period can also be observed. The 
general patterns of traffic flows also seem realistic, with through roads that connect urban areas receiving more 
traffic than side roads.

Mean AADT and growth per country. To summarise our findings, we calculated the mean AADT per 
country for each of the time steps. The country boundaries were taken from the geoBoundaries dataset72. The 
mean AADT was calculating by weighting the median AADT predictions of each road section by its length. This 
way relatively short road sections with a relatively high or low AADT would not have a disproportionate effect 
on the final mean. From these mean AADT values and for each time period, we also calculated the compound 
annual growth, which is the annual percentage of growth that would be necessary to get from the AADT in 
one time step to the next. We calculated compound growth for the time periods 1975–1990, 1990–2000, and  
2000–2015 as well as for the entire time period 1975–2015. A table with these statistics per country is made avail-
able (see section “Data Records”)73.

Data Records
The data produced in this study are available in a zip-file via the ETH research collection: https://doi.
org/10.3929/ethz-b-00066631373

The zip-file contains the table Country_meanAADT&Growth_20240325.csv, which lists for each country the 
weighted mean AADT on extra-urban roads for the years 1975, 1990, 2000 and 2015 as well as the compound 
growth in mean AADT for the time periods 1975–1990, 1990–2000, 2000–2015 and 1975–2015.

The zip-file furthermore contains folders for each of the years 1975, 1990, 2000 and 2015. Each folder con-
tains a vector map of extra-urban roads (line shapefile format; GRIP4_ExSet_XXXX_AADTpred_20240312.shp 
where XXXX refers to the year) with the predicted median AADT as well as 5% and 95% prediction intervals for 
each road section, vector maps of urban areas (polygon shapefile format; GHS_POP_Clump_XXXX.shp) delin-
eated according to the definition used in this study, and the Python and R code used to create the road networks 
and perform the analyses. A README.txt file provides further details of the contents of the zip-file.

Fig. 2 Map of the empirical Annual Average Daily Traffic (AADT) values (red dots) that could be assigned to 
edges in the road network.

https://doi.org/10.1038/s41597-024-03287-z
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Technical Validation
We performed two types of model validation: (1) a hold-out validation of the AADT predictions of 2015 and (2) 
an out-of-sample validation of the AADT predictions of 1975. To get an impression of the representativeness of 
our training data, we also assessed how well the explanatory variables in the training dataset overlapped with the 
ranges of values found in the complete road networks from all years.

Hold-out validation. For the hold-out validation, we randomly assigned 20% of our empirical AADT values to 
a validation set (i.e. 19 863 observations). The remaining 80% of the response data was used to train the QRF model. 
To determine the quality of the predictions for the validation set, we used mean square error (MSE), the percentage 
of explained variance (pseudo-R2) and the percentage of observations that fall within the prediction intervals.

After training the model, the training and validation pseudo-R2 were very similar: 0.7418 and 0.7407, respec-
tively. This indicates that 74.07% of the variance in the validation set could be explained by the model. The 
model does not seem to be overfitting considering the very small difference between the training and validation 
pseudo-R2 values. A visual comparison of the observed and predicted ln(AADT) values also confirms the good 
fit of the model (Fig. 5), with most observations being evenly distributed around and close to the line of perfect 
prediction (i.e. predicted = observed; black line in Fig. 5a). The prediction intervals seem to be correctly esti-
mated by the QRF model, as we found that 92.1% (18 301 out of 19 863 observations in the validation set) of the 
observed AADT values fell within the 90% prediction intervals (exemplified in Fig. 5b).

The model fit (pseudo-R2) was relatively high compared to those found in other AADT prediction stud-
ies34,35. Although most of the studies covered in the reviews of Das and Tsapakis35 and Baffoe-Twum, et al.34 were 
carried out at regional or national scale, the reported R2 values, with some exceptions, were lower than or similar 
to that of our model.

out-of-sample validation. For the out-of-sample validation, we obtained two AADT datasets derived from 
empirical traffic counts for 1975 from two countries of which no data was used to train the QRF: Switzerland and 
the Netherlands. For Switzerland, we obtained AADT measurements for 1975 in a table format (Swiss Federal 
Roads Office; https://www.astra.admin.ch/astra/en/home/documentation/data-and-information-products/
traffic-data/data-and-publication/swiss-automatic-road-traffic-counts--sartc-.html), which we linked to the coor-
dinates of counting stations and then transferred to our road network. For the Netherlands, we obtained digitised 
maps of AADT for road sections in 1975 (Centraal Bureau voor de Statistiek; https://open.rws.nl/open-overheid/
onderzoeksrapporten/@165173/algemene-verkeerstellingen). We georeferenced these maps and then transferred 
a random selection of these AADT values to our road network. For Switzerland and the Netherlands, we finally 
obtained, respectively, 27 and 87 empirical AADT values that could be linked to road sections in our 1975 road 
network. We compared these true AADT values with the predicted ones by calculating the linear correlation and 
the percentage of observations that fell within the prediction intervals.

The out-of-sample validation showed that the model was able to predict historical AADT values with a high 
level of accuracy (Fig. 6). For both Switzerland and the Netherlands, the Pearson r correlation between predicted 
and observed ln(AADT) values was highly significant (p < 0.001) and positive (0.60 and 0.70, respectively).  
The percentage of observations that fell within the 90% prediction interval was 85.2% and 96.5% for, respec-
tively, Switzerland (Fig. 6a) and the Netherlands (Fig. 6b). These percentage dropped to 63.3% and 77.4% when 
using the 2015 predictions, indicating that the 2015 predictions are not a good proxy for AADT in 1975.

Fig. 3 Importance of the explanatory variables in the Quantile Regression Forest model. The value on the 
x-axis, “%IncMSE”, is an indicator for variable importance.

https://doi.org/10.1038/s41597-024-03287-z
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Representativeness of training data. We found that the range of values covered by the explanatory vari-
ables in the training dataset gave a good representation of the values found in the complete road networks from all 
years (Table 3). For most explanatory variables and years, all or nearly all (≥97%), of the road sections had values 
that fell within the range of the training set (Table 3). This indicates that the training data was a representative 
sample of global roads and their AADT. Only for GDP and HDI, the range of values in the training dataset did 
not cover the entire range found in all road sections in the 1975 road network (78 and 79% covered, respectively; 
Table 3). This may have been due to the fact the GDP and HDI have increased since 1975 but could also be a 
result of the extrapolation that we carried out to estimate GDP and HDI values for 1975. Although we used pub-
lished extrapolation methods for these indicators67,68, the estimated values could still have been biased, especially 
because the extrapolation was only based on three data points (i.e. 1990, 2000 and 2015).

Fig. 4 Maps to illustrate the predictions of median Annual Average Daily Traffic (AADT) on extra-urban 
roads for the years 1975, 1990, 2000 and 2015. The top map series is for the region around the city of Bangkok 
in Thailand, whereas the bottom series depicts the southern tip of the Baja California Peninsula in Mexico (the 
main city in the maps is La Paz in the North). The expansion of the urban area as well as the growth in traffic 
volumes can be clearly seen in both map series.

Fig. 5 Plots of the observed and predicted median ln(AADT) values of the validation set. The black lines 
indicate perfect prediction (i.e. observed = predicted). (a) A density plot of all observations showing that the 
majority of observations is close to the line of perfect prediction. (b) Scatterplot for a selection of AADT values 
from the validation set to illustrate the prediction intervals. The grey lines indicate the 90% prediction intervals. 
The colours of the dots indicate whether an observed AADT is within (green) or outside (red) the prediction 
interval. AADT = Annual Average Daily Traffic.

https://doi.org/10.1038/s41597-024-03287-z
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Usage Notes
Whereas the GRIP4 global road dataset is one of the most complete and harmonised global road datasets pub-
licly available, the Vmap0 road dataset shows considerable variability in the accuracy and completeness of the 
road mapping between regions39. The roads for the years 2000 and 2015 were taken directly from GRIP4, but we 
used the Vmap0 dataset in the reconstruction of the roads for the years 1975 and 1990. Therefore, before using 
the AADT predictions in further analyses, users of our dataset should assess the reliability of the reconstructed 
historical road networks for their area of interest, particularly for the years 1975 and 1990.

code availability
The Python and R code used to create the road networks and perform the analyses is provided together with the 
output data (see section “Data Records”).
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