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A document-level information 
extraction pipeline for layered 
cathode materials for sodium-ion 
batteries
Yuxiao Gou1, Yiping Zhang1, Jian Zhu1 & Yidan Shu1,2 ✉

Natural language processing techniques enable extraction of valuable information from large amounts 
of published literature for the application of data science and technology, i.e. machine learning in the 
field of materials science. Nevertheless, the automated extraction of data from full-text documents 
remains a complex task. We propose a document-level natural language processing pipeline for 
literature extraction of comprehensive information on layered cathode materials for sodium-ion 
batteries. The pipeline enhances entity recognition with contextual supplementary information 
while capturing the article structure. Finally, a heuristic multi-level relationship extraction algorithm 
is employed in relation extraction to extract experimental parameters and complex performance 
relationships respectively. We successfully extracted a comprehensive dataset containing 5265 records 
from 1747 documents, encompassing essential information such as chemical composition, synthesis 
parameters, and electrochemical properties. By implementing our pipeline, we have made significant 
progress in overcoming the challenges associated with data scarcity in battery informatics. The 
extracted datasets provide a valuable resource for further research and development in the field of 
layered cathode materials.

Introduction
Sodium-ion batteries (SIBs) have garnered significant attention due to their similar working principles to 
lithium-ion batteries and the abundant, cheap, and widely distributed sodium resources. In the field of SIBs, 
various types of materials, including transition metal oxides1,2, Prussian blue compounds3, polyanion-type com-
pounds4, have been studied as cathode materials for sodium-ion batteries. Among these, layered transition metal 
oxides (LTMOs) including NaxTMO2 (TM = Fe, Ni, Co, Mn, etc.) have become the most promising cathode 
material for SIBs owing to its large specific capacity, high ionic conductivity, and feasible preparation conditions. 
This has led to extensive research efforts aimed at developing SIBs as a viable alternative to lithium-ion batteries 
for large-scale energy storage systems.

In recent years, the academic community has witnessed a significant increase in the number of pub-
lished research papers specifically dedicated to investigating LTMOs as cathode materials for SIBs. However, 
many of these papers still rely on traditional trial-and-error methods for material development, which can be 
time-consuming. One potential solution to accelerate the design and development of new materials is to leverage 
data science techniques and adopt a systematic “materials-by-design” approach. By utilizing data science tech-
niques, researchers can analyze large amounts of data and extract valuable insights to guide the design of new 
materials. This approach has the potential to significantly speed up the discovery of new cathode materials for SIBs. 
However, the non-machine-readable formats of publication leads to data scarcity in the field of battery materials 
informatics. This scarcity hinders the training of property predictors, as it requires laborious manual curation of 
relevant data from the literature. Ling5 provided a comprehensive summary of the various types of datasets that are 
applicable for battery informatics studies. However, it is noteworthy that there is still a lack of datasets specifically 
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dedicated to the investigation of the cycling and rate performance of layered cathode materials for SIBs. Therefore, 
developing methods for automatically extracting data rapidly and accurately has increasingly become a necessity.

The application of natural language processing (NLP) techniques to automatically extract data on organic and 
inorganic chemical substances from articles in the fields of chemistry and materials science has shown promising 
results6–9. Information extraction (IE) from written text is an extensively studied area within NLP. The idea of 
“self-supervised learning” through transformer-based models such as Bidirectional Encoder Representations 
from Transformers (BERT)10, SciBERT11 and BatteryBERT12, which are pre-trained on massive corpora of 
unlabeled text to learn contextual embeddings and further fine-tuning through supervised learning on specific 
datasets, enabling them to surpass the performance of BERT in context-aware NLP applications such as text clas-
sification, entity recognition (NER), and question answering13, is the dominant paradigm of information extrac-
tion today. A common workflow for text classification, NER and relation extraction is to feed labelled inputs to 
BERT and use the output vector embedding of each sentence or word along with the corresponding labels as 
inputs to a task-specific machine learning model that learns to predict these labels. In practice, due to constraints 
such as the size of the labelled data and the complexity of the task, a mixture of model and rule processing is 
adopted for a given task to achieve a balance between accuracy and computational efficiency14. For example, the 
latest version of ChemDataExtractor version 2.1, incorporates a NER system that combines Bert, Conditional 
Random Field (CRF), rules, and dictionaries. This combined approach has shown impressive performance, 
achieving results that are comparable to the state-of-the-art for recognizing both organic and inorganic entities15.

On studies pertaining to batteries, El-Bousiydy16 et al. extracted ten characteristics related to the electro-
chemical performance of lithium-ion batteries (LIBs) (mass loading, porosity, thickness, surface area, electrode 
composition, electrolyte volume, electrolyte composition, separator, voltage cut-off, and voltage range) and 
provided a general perspective. Kononova17 et al. used an automated extraction pipeline to extract data on 
inorganic chemical substances containing cathode materials for LIBs only from solid-state synthesis passages 
of scientific publications to create a solid-state synthesis “codified recipes” database. Huang18 et al. modified 
ChemDataExtractor to automatically generate information from more than 229,000 papers related to battery. 
A large database including five material properties: capacity, voltage, conductivity, Coulombic efficiency, and 
energy was constructed, where rate capacity and cycling capacity are not separated, leading to the main prob-
lem that currents in the form of “C-rates” cannot be standardized. In summary, the majority of previous work 
utilizing NLP techniques in the field of materials science focused on constructing individual databases on either 
material synthesis parameters or properties through extracting from abstracts or partial texts. However, to the 
best of our knowledge, limited efforts have been made to comprehensively extract synthesis parameters and 
performance data from full-text and build a systematic database covering the information on both synthesis and 
performance of materials, specifically for battery cathode materials.

In this work, we construct a generic pipeline for extracting both material properties and synthetic parame-
ter data of cathode materials of SIB. To the best of our knowledge, this work represents the first comprehensive 
extraction method of synthesis parameters and properties for sodium layered cathode materials generated based 
on literature data. Each instance in the dataset not only covers the chemical composition and synthesis parame-
ters, such as sintering temperature, sintering time, but also functional properties such as cycling capacity, number 
of cycles, rate capacity, test current, and test voltage range. In total, 1747 articles on sodium cathode materials were 
filtered (See document classification for detailed filtering strategies) from a corpus of 63447 articles from Elsevier 
and Royal Society of Chemistry (RSC) publishers and a dataset of 5265 instances were extracted automatically. 
For extraction of complex relation, including materials, synthesis parameters, cycling and rate performance, our 
method presents a composite F1 score of 81.14% and 82.67% from articles from Elsevier and RSC respectively.

Results
As Fig. 1 shows, our automated text mining pipeline for transition metal layered cathode materials involves 
several stages as follows:

Firstly, we use document classifiers to filter out scientific articles in extensible markup language (XML) and 
hypertext markup language (HTML) formats that contain the topics we are interested in. The purpose of docu-
ment classification is to accurately grasp the topic of the article (see in Document classification).

Secondly, document preprocessing was performed on the original archive corpus in order to generate a com-
plete and standardized document record and filter out irrelevant information, including paragraph classification 
and text preprocessing. Paragraph classification aims to isolate paragraphs involving different topics for different 
following tasks. Text preprocessing aims to unify the description of chemical expressions and related properties 
(see in Document preprocessing).

Thirdly, NER is performed, which includes chemical named entity recognition (CNER), chemical supple-
mentary information extraction (CSIE), electrochemical property extraction, and synthetic parameter extrac-
tion. The NER method aims to extract the named entities, properties, and property values of cathode materials 
from English texts. CSIE refers to the process of enhancing the information associated with identified chemical 
entities and unifying the sequence of these entities. This process primarily involves identifying abbreviation 
definitions and determining variable values (see in Named entity recognition).

Fourthly, relation extraction is carried out. Additionally, in the context of electrochemical property relation 
extraction, sentence classification is utilized to identify target sentences associated with different electrochemical 
properties. Relation extraction gives specific tuple relations of element contents and properties and interdepend-
ency parsing is used to find links between specific materials and their property data fragments.

Finally, the extracted tuple entities containing the digital object identifier (DOI) of the article, the year of 
publication, the layered cathode material entity and its abbreviation, property and property values are automati-
cally compiled into a highly structured format to form the layered cathode materials for SIBs database.

https://doi.org/10.1038/s41597-024-03196-1


3Scientific Data |          (2024) 11:372  | https://doi.org/10.1038/s41597-024-03196-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Corpus of papers.  We found that 29 manually annotated articles containing the label “Sodium layered oxide 
cathode” in the original dataset were not successfully identified, and they were added to the final corpus, resulting 
in a total of 1747 articles. Fig. 2 shows the distribution of research topics of articles in the sodium layered cathode 
material corpus, of which the maximum number of articles in pure material experimental synthesis research was 
515 (about 29.48%). There were 484 articles (about 27.70%) and 212 articles (about 12.14%) studying materials 
by doping and coating modification experimental methods, respectively. It is worth noting that the number of 
research articles combined with computational science is about 346 (about 19.81%), which indicates that com-
putational science plays an important role in the comprehensive research of sodium layered cathode materials.  
The corpus of this study contains 1702 articles on the research of sodium layered cathode materials from 2010 to 
June 2023 from Elsevier and RSC (the reason for the difference from the above 1747 is that the datasets contain 
articles before 2010). Fig. 3 shows the development trend of the number of articles on sodium layered cathode 
materials published by different publishers in the past 14 years. In general, with the rise of SIBs, the research on 
layered cathode materials of SIBs has been paid more and more attention by scholars.

Fig. 1  Schematic of the workflow of the automated text mining pipeline.
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Named entity recognition.  In the literatures of layered cathode materials, the relationships between chemi-
cal entities and their properties to be extracted can be presented as a complex ternary tuple <chemical name, prop-
erties, physical parameters>. As shown in Fig. 4, chemical names encompass various forms of cathode materials 
for SIBs such as chemical formulae (e.g., Na0.9Mn0.52Fe0.28Cu0.2O2 and NaNi0.5-xMn0.3Ti0.2SbxO2), abbreviations (e.g., 
CFM-Cu and NMTSbx), or pronoun phrases (e.g., this material, or even this sample when x = 0.15). The proper-
ties comprise the name, value, and unit of the material’s property. In addition, physical parameters encompass 
both synthesis parameters and test condition parameters for measuring electrochemical properties. The synthesis 
parameters include material sintering temperature and sintering time, which are crucial factors in the fabrication 
process of the material. These parameters directly affect the physical properties and performance of the synthesized 
material. On the other hand, the test condition parameters, such as current density and voltage range, are impor-
tant when evaluating the performance and behavior of the material in a specific application or testing setup. These 

Fig. 2  Venn diagram of corpus label distribution.

Fig. 3  Stacked bar chart: the number of published articles about Sodium layered oxide cathode over the last 14 years. 
The vertical axis represents the number of journal articles related to the topic of Sodium layered oxide cathode.
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parameters provide insights into how the material responds to different levels of electrical current and voltage, 
which are essential for understanding its electrochemical performance. Considering both synthesis parameters 
and test condition parameters is crucial for a comprehensive analysis of the material’s physical characteristics and 
its suitability for specific applications. In this work, a total of 1747 documents of layered cathode materials for SIBs 
were obtained through automatic document classification. After document preprocessing, a NER system based on 
the CNER module of ChemDataExtractor version 2.1 and heuristic rules was explored. Here, we illustrate the NER 
system, which provides a sequence of entities for subsequent relation extraction, as follows.

Chemical named entity recognition and chemical supplementary information extraction.  CNER is a fundamental 
task in IE of material literature19,20. However, accurate location of the entity boundaries by chemical entity recog-
nition models is challenging due to the wide variety of materials, the flexible formation of chemical entities, and 
the limited availability of labeled data for model training. In the case of research papers focusing on layered cath-
ode material systems, the presence of chemical formulas with stoichiometric and elemental variables, as well as 
chemical formula abbreviations (e.g., NaNi0.5-xMn0.3Ti0.2SbxO2, O3-NaNi0.45Mn0.3Ti0.2M0.05O2, and NNMO), often 
leads to increased uncertainty in subsequent relation extraction. Therefore, CSIE becomes particularly important 
to accurately identify the values represented by these variables and the definitions of the abbreviated formulas.

To address this challenge, a hybrid CNER post-processing is proposed in this study. This method combines the 
domain knowledge of cathode materials with the text2chem (https://github.com/CederGroupHub/text2chem)  
toolkit, a Regex-based text parser developed by Kononova et al., can convert chemical terms and entities into 
chemical data structures. It builds upon the CNER module of ChemDataExtractor to take advantage of the 
supplementary information provided in parentheses after the entities (e.g., “(x = 0.03,0.05,0.07)” and “(M = Nb/
Mo/Cr)”). The proposed approach aims to provide a sequence of entities consisting of defined elements for 
subsequent relation extraction tasks.

Identify the values of the variables.  The tokens labeled as chemical entities by ChemDataExtractor are parsed 
with text2cem to cover multiple possible specific materials corresponding to a chemical formula with variables. 
Specifically, when stoichiometric number variables such as x, y, z, and element variables such as M (metal), 
and TM (transition metal) are found in the chemical entity, multiple stoichiometries or elements are extracted 
from a single material mention. For instance, “O3-NaNi0.45Mn0.3Ti0.2M0.05O2 (M = Nb/Mo/Cr)” is converted 
to “O3-NaTi0.2Nb0.05Mn0.3Ni0.45O2”, “O3-NaTi0.2Mo0.05Mn0.3Ni0.45O2”, and “O3-NaTi0.2Cr0.05Mn0.3Ni0.45O2”. 
Similarly, “NaNi0.5-xMn0.3Ti0.2SbxO2 (x = 0.03, 0.05, 0.07)” is converted to “NaTi0.2Mn0.3Ni0.47Sb0.03O2”, 
“NaTi0.2Mn0.3Ni0.45Sb0.05O2”, “NaTi0.2Mn0.3Ni0.43Sb0.07O2”.

Abbreviation definitions.  Chemical formulae abbreviations are related to full chemical formulae based on their 
adjacency to parentheses and naming verbs. This approach is inspired by the algorithm for identifying abbrevi-
ation definitions in biomedical text by Schwartz and Hearst21. Usually, in an article, a chemical formula and its 
abbreviation appear in two types of scenarios: (a) long-form ‘(‘ short-form ‘)’ and (b) long-form … naming-verb 
… short-form. The main difference is the possible location of the short-form, with pattern (a) in parentheses 
and pattern (b) after the naming verb. Here, the long-form refers to chemical entities, the short-form indicates 
chemical formula abbreviation, and the naming-verb includes “marked”, “denoted”, “named”, etc. In practice, 
short-form and long-form are often interchangeable.

In detail, the process of extracting abbreviations and their definitions from cathode material text involves two 
main subtasks. The first subtask is the extraction of < long-form, short-form > pair candidates from the sentence. 
Both the short-form and long-form are derived from tokens labeled as chemical entities by ChemDataExtractor. 
Tokens successfully parsed by text2chem are marked as long-form, while tokens with two consecutive upper-
case letters are marked as short-form. Once these steps are completed, a list of short-form candidate words 

Fig. 4  Cathode material property relationship network.
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for the long-form is generated. The subtask is to choose the appropriate subset of words. The main idea is to 
count the number of uppercase characters in both the long-form and short-form. If the number of repetitions 
is not less than two and the uppercase letters in the short-form appear in the long-form, a successful match 
is determined. For example, given the input string “O3-NaNi0.45Mn0.3Ti0.2M0.05O2 (M = Nb/Mo/Cr, abbre-
viated as NMTNb, NMTMo and NMTCr, respectively)” the following mapping relationships are returned: 
(‘NMTNb’, ‘O3-NaTi0.2Nb0.05Mn0.3Ni0.45O2.0’), (‘NMTMo’, ‘O3-NaTi0.2Mo0.05Mn0.3Ni0.45O2.0’), (‘NMTCr’, 
‘O3-NaTi0.2Cr0.05Mn0.3Ni0.45O2.0’) in a list.

This algorithm is applied to all sentences in paragraphs to produce a list of mappings between chemical 
formula abbreviations and their corresponding chemical formula. These mappings are then used to transform 
chemical formula abbreviations in the literature extraction records into more informative chemical formulas 
corresponding to elemental compositions.

Synthesis parameter and electrochemical property extraction.  There are two categories of information that are 
the most important to describe layered cathode materials for SIBs: electrochemical performance and synthesis 
method. The former is usually evaluated using cycling performance and rate performance. The latter can be cov-
ered using sintering temperature and sintering time because layered cathode materials are typically synthesized 
using a simple high-temperature solid-phase method22.

The paragraphs to extract synthesis parameters and electrochemical properties are derived from the previ-
ous paragraph classification process. To cover the properties mentioned in the sentences as comprehensively 
as possible, we have customized multiple matching rules in the form of regular expressions, as Supplementary 
Table [1] summarizes. In particular, three common units of current density properties, namely C, mA g-1, and 
A g-1, are considered in this study. To ensure consistency, conversion expressions between different units of cur-
rent density that may appear in the article are taken into account. For example, conversions such as “1 C = 150 
mAg-1”, “20 mAg-1 (0.1 C)”, and “0.2 C (50 mAg-1)” are considered to standardize the units of current density 
to mAg-1. To precisely determine capacity retention, we introduce the property descriptors “retention” and 
“capacity”. For the number of cycles, descriptors such as “first” and “initial” are considered to indicate the initial 
number of cycles. Subsequently, the identified character sequence covered by the aforementioned pattern is 
tokenized to extract the property values.

The final property extraction is recorded as a key-value pair, where the key consists of the property name 
with its unit, and the value represents the corresponding property value. To illustrate the property extraction pro-
cess, consider the following example sentence: “After 300 cycles, a discharge capacity of 47 mAh g-1 is obtained, 
only equal to 66% of the initial capacity.”23. Based on the provided sentence, the extracted property values can be 
recorded as a key-value pair in the following format “{‘cycle’: [300, 1], ‘capacity: mAhg-1’: [47], ‘retention: %’: [66]}”.

Relation extraction.  Extracting multiple relationships from cathode material papers is indeed a challenging 
task. It involves the extraction of two types of property relationships, as shown in Fig. 4. The first type encom-
passes electrochemical property relationships, which can be further classified into cycling performance prop-
erty relation and rate performance property relation, they are tabulated as complex tuples, <cathode material, 
the number of cycles, capacity/retention, current density, and voltage range> and <cathode material, capacity, 
current density, and voltage range>, respectively. The second type pertains to synthetic parameter relationships, 
which can be represented as a binary tuple consisting of sintering temperature and sintering time. Multiple cath-
ode materials, their specified properties, and corresponding property values are often reported in separate sen-
tences. Alternatively, multiple properties and their corresponding values may be reported for a single cathode 
material. These complexities pose obstacles for relation extraction, especially when working with a limited corpus 
of cathode materials for SIBs. Hierarchical relation extraction supervised algorithms require more than ~70,000 
labelled sentence samples24. Even semi-supervised methods require a certain number of labelled samples as seeds 
to start learning. It is worth noting that most relation extraction systems primarily focus on extracting relations at 
the sentence level and do not consider relations that span across multiple sentences or paragraphs25. In this study, 
we present a novel order and distance-based algorithm that that does not rely on labelled samples for relationship 
extraction. Our proposed approach considers relationships across sentence levels. In feature-based relationship 
extraction methods, the number of words and word sequences between entities and properties can be used as 
the main syntactic features26. Thus, the number and order of entity occurrences, along with the distance between 
entities provide a basis for assessing relation dependencies.

Specifically, the algorithm we propose starts from the target sentence, where the target sentence for different 
tasks of relation extraction is determined by the combination of entities appearing in the sentence. Sentences 
mentioning number of cycles and capacity/retention are used for cycling performance property relation extrac-
tion, while those mentioning capacity and current density but not number of cycles are used for rate perfor-
mance property relation extraction. Once the target sentence is identified, the relationship tuples for extraction 
are determined. Subsequently, matching commences from entities with stronger dependency relationships, con-
sidering the quantities of the entity sequences, denoted as n1 and n2.

	 1.	 Shortest Character Distance: This addresses cases where specific entities are absent in the sentence 
(n1 = 0 or n2 = 0). It focuses on instances where entities like cathode material or voltage range is missing, 
and fill it by finding the closest entity to the sentence head index based on character distance in the preced-
ing text.

	 2.	 Sequential Matching: It tackles situations where n1 = n2 in the sentence, and the matching order is deter-
mined by the order of the two entity sequences. Particularly, when either n1 or n2 equals 1, the entity with a 
quantity of 1 is multiplied to match n1 = n2 based on a greedy rule. Here, we haven’t emphasized the remaining 
cases where n1 is not equal to n2, as they occur less frequently due to the precise nature of battery literature.

https://doi.org/10.1038/s41597-024-03196-1
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Once the matching of the two entities is completed, several tuples with associated relationships are obtained. 
These tuples are treated as new entity sequences and are matched again with other entities in the target tuple, 
repeating the process until the target tuple is filled as comprehensively as possible.

For matching cycling performance property relation, the process begins with the number of cycles and 
capacity/retention, and then sequentially matches with cathode materials, voltage range, and current density.

For matching rate performance property relation, matching starts with current density and capacity, and 
then sequentially matches with cathode materials and voltage range.

Fig. 5 illustrates a complete information extraction process, where sentences S1, S2, and S3 are dispersed 
throughout the paper27 with certain contextual relationships, and S3 is the target sentence.

In the NER stage, CSIE establishes linkages for contextual cathode material entities and their abbrevia-
tions. The identified entity sequence in S3, including the number of cycles and capacity/retention, provides the 
descriptive intent for the sentence, used for subsequent extraction of cycling performance property relation.

In the relation extraction stage depicted in the Fig. 5, numerical values are used to describe the lengths of 
entity sequences. In Step 1, matching is performed for the relationships involving the number of cycles and 
capacity/retention. It’s worth noting that due to the comparative nature of capacity retention, it cannot be 
matched with the initial cycle, hence in this step, both lengths of entity sequences are the same, and sequential 
matching is executed. In Step 2, based on the tuples matched in the first step, further matching with cathode 
material entity is conducted, establishing linkages with preceding supplementary information, and sequential 
matching is performed based on quantity relationships. In Step 3, matching with voltage ranges is performed 
based on the results of the second step. Since the voltage range entity sequence is missing in S3, the shortest 

Fig. 5  Multivariate hierarchical relation extraction for the electrochemical property.
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character distance links to the voltage range extracted from S2, followed by sequential matching based on the 
greedy approach. Step 4 follows a similar logic, resulting in the complete target tuple.

In the synthesis parameter binary property relation, which can be considered as the most basic scenario for 
this algorithm to handle, a greedy-based sequential matching strategy is used to match two sequences of enti-
ties, as depicted in Fig. 6. This strategy aims to generate pairs of sintering temperature, sintering time> that are 
present in the experimental paragraphs of the article. Ultimately, the highest sintering temperature in the binary 
relation is selected as the synthesis parameter of the material investigated in the article.

Dataset overview.  Using our pipeline, we successfully extracted 5265 property records of layered cathode 
materials for SIBs from a total of 1747 articles. Among these records, 3557 correspond to cycling performance 
properties, while 1708 pertain to rate performance properties.

Fig. 7 visually represents the distribution and percentage of missing values in the records, where each col-
umn corresponds to a specific property. Fig. 7a,b illustrate the distribution of missing values of in the cycling 
and rate performance data among records of materials, respectively. In this representation, each row in the 
figure represents a single piece of data and the presence of a blank cell indicates missing values of the property 
corresponding to the column. Notably, the sintering temperature and sintering time are merged into the column 
of “Synthesis parameters”, so are the upper and lower test voltage are into “Voltage range” in order to show the 
data distribution more clearly. The current density property is presented in units of mAg-1 or C, depending on 
the specific record. Regarding the property of cycling performance, each row of data contains the retention or 
capacity value of the material for a specific number of cycles. On the other hand, for records related to rate per-
formance properties, each row of data represents the material’s capacity at a particular current density. Fig. 7c,d  
provide an overview of the proportion and count of missing properties in the cycling and rate performance 
records, respectively. In the cycling performance records, there is a notably high number of missing values for 
the current density attribute. This can be attributed to the dispersed nature of the descriptions of test condition 
parameters of cycling performance in literatures, particularly when current density is described. Indeed, this 
observation underscores the challenge posed by the diverse patterns of descriptions of current density test in 
battery literature in natural language, which complicate the task of accurately extracting relevant information. 
Specifically, challenge may arise from differences in units, formatting, or the use of various terminology across 
different sources. Consequently, it becomes crucial for future work to develop robust extraction methods that 
can effectively handle these diverse patterns and ensure accurate and reliable information extraction from bat-
tery literature.

Among the 5265 unique data records, a total of 592 unique layered oxide cathode materials were identified. 
Fig. 8 provides an overview of the chemical distributions of layered oxides with the general formula NaxTMO2, 
where TM represents transition metals. These transition metals can be single elements or mixtures of two, three, 
or multiple elements. Additionally, Fig. 8 specifies the distribution of the top seven representative materials 
for each type of layered oxide material. This facilitates the identification of the most popular layered cathode 
materials in recent studies. For example, the figure highlights the most popular single transition metal layered 
cathode materials, such as NaxCrO2, NaxMnO2, and NaxFeO2. It also showcases the distribution of binary tran-
sition metal layered cathode materials like NaxMn1-yNiyO2, where M represents elements such as Ni, Fe, or Co. 
Furthermore, the figure illustrates the distribution of ternary transition metal layered cathode materials, includ-
ing NaxMn1-y-zMyNizO2, where M can be Co, Fe, or Zn. Lastly, it showcases the distribution of multi-transition 
metal Mn-based layered cathode materials that have been studied extensively in recent years.

Fig. 6  Synthesis parameter binary relation extraction.
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Model Performance.  Multi-label text classification.  Table 1 presents the combined Precision, Recall, F1 
score, as well as Micro average and Macro average results of the model’s binary document classification for each 
label on the test set. The binary classification results indicate that the model achieves the highest overall per-
formance on the “Experiment” label, with an F1 score of 95.86%. However, the model shows a relatively poorer 
performance on the “Coating” label, with an F1 score of 74.33%. This discrepancy can be attributed to differences 
in the model’s learning effect due to the uneven distribution of training samples.

Specifically, the “Coating” label has a limited number of training samples, resulting in a weaker performance 
from the model on this label. In contrast, the ‘Experiment’ label benefits from a larger number of training sam-
ples, allowing the model to learn more effectively and perform better in its prediction (F1 score of 95.86%). This 
distribution of labeled data also confirms that experimental synthesis is the predominant research approach in 
the field of traditional materials.

Furthermore, the Aggregate Metric evaluation results demonstrate that the F1 scores for all models reach 
85%. Additionally, the models outperform the Macro average in all indicators of the Micro average. This can be 
observed from Eqs. (8), (9), and (10), which indicate that the Macro average, being a simple arithmetic average, 
does not consider the issue of sample distribution. As a result, the scores may be biased towards labels with sig-
nificant differences in values.

In conclusion, the model can be successfully utilized for the screening of articles on layered cathode materials 
for SIBs and for analyzing the research methodologies employed in these articles.

Fig. 7  Visualization of missing values in the cycling performance and rate performance. (a) Distribution of 
missing values in the cycling performance data. (b) Distribution of missing values in the rate performance 
data. (c) Percentage of non-missing values in cyclic performance data. (d) Percentage of non-missing values in 
cycling performance data.
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Paragraph classification.  In this study, a total of 50 documents were randomly selected from the document 
collection. The categorized paragraphs within these documents were manually checked. The performance of the 
categorization process was evaluated using precision, recall, and F1 score metrics, as demonstrated in Table 2.

Abbreviation definitions.  The evaluation of abbreviation detections in this study was primarily based on 
the matching of binary relation pairs between sodium layered cathode materials and their corresponding 

Fig. 8  Distribution of layered oxides NaxTMO2 (TM = single, binary, ternary or multi-transition metal) cathode 
materials and its top seven representatives.

Predicted Label Precision Recall F1 score

Coating 68.85% 80.77% 74.33%

Computation 84.78% 88.64% 86.67%

Doping 89.99% 96.92% 93.33%

Experiment 97.04% 94.71% 95.86%

Sodium layered oxide cathode 83.78% 85.32% 84.54%

Aggregate Metric
Micro average 88.39% 90.79% 89.58%

Macro average 84.89% 89.27% 86.95%

Table 1.  Evaluation of multi-label text classification model.

Paragraph category Precision Recall F1 score

Introduction 100% 100% 100%

Experiment 100% 91.99% 95.83%

Table 2.  Precision, Recall and F1 Score of the paragraph classification.
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abbreviations. Correct matches were designated as TP, while incorrect matches were designated as FP. Additionally, 
binary relation pairs that were not recalled were considered FN. Using these criteria, abbreviation detections 
was performed on 705 sentences randomly selected from 98 articles (totaling approximately 16,442 sentences). 
Furthermore, to assess the performance of the improved module within a specific domain, the abbreviation detec-
tion module in “ChemDataExtractor” was utilized as a control. The precision, recall, and F1 scores obtained from 
the final experiments are provided in Table 3, with precision at 98.02%, recall at 87.94%, and F1 score at 92.71%.

Relation extraction.  To ensure the reliability of our pipeline extraction, we conducted a verification process 
using a test set comprising a total of 10 papers28–37 from the databases of this study (RSC, Elsevier) and 12 
papers38–49 from other journals (Nature Communications, Advanced Materials, American Chemical Society, 
Small) were randomly selected. These papers were available in XML/HTML format.

For the verification process, researchers manually reviewed the original article text and labeled the key infor-
mation related to the tasks specified in Table 4. The pipeline output was compared with the manually compiled 
standard output, and Precision, Recall, and F1 scores were calculated for various tasks based on this comparison.

Table 4 provides an overview of the Precision, Recall, and F1 scores for the four primary tasks in relation 
extraction: Abbreviation definitions, Synthesis parameter relation of material synthesis, Cycling performance 
sentence classification, and Rate performance sentence classification. Additionally, the overall Precision, Recall, 
and F1 scores of the two comprehensive tasks, Cycling performance relation extraction and Rate performance 
relation extraction, are also displayed. In these evaluation metrics, an entire data record extracted is treated as a 
single unit. If a record is totally or partially missing compared to the manually extracted information, it is con-
sidered as a false negative. If the record is partially incorrect, it is considered as a false positive. If and only if the 
record is entirely correct, it is considered as a true positive.

Fig. 9 illustrate the performance of each relational extraction task across different datasets. The Precision 
scores consistently remain high for the four base tasks, and in some cases, there are even no false positives in the 
test set. This success can be attributed to the hybrid NLP approach employed by the pipeline, which leverages 
domain knowledge specific to cathode material for SIBs. This approach is well-suited to the structured language 
and format commonly found in scientific articles on sodium layered cathode materials. The accurate matching 
of Abbreviation definitions is particularly noteworthy, as it serves as a crucial prerequisite for successful extrac-
tion of cycling performance and rate performance properties of sodium layered cathode materials. However, the 
scores for the Cycling performance relation extraction and Rate performance relation extraction tasks are lower 
compared to the four basic tasks. This can be attributed to the inherent complexity of these tasks.

Specifically, the performance of Cycling performance relation extraction is notably poor in Test Dataset 1,  
primarily due to challenges in Abbreviation definitions and Synthesis parameter relation. The low recall in 
Abbreviation definitions can be attributed to irregularities in material abbreviation naming. For instance, in the 
text42, “Na0.8” is used as the abbreviation for “P2-Na0.8Ni0.1Mn0.8Fe0.1O2” which leads to incomplete identifica-
tion of chemical entities by the pipeline. Additionally, the low recall in Synthesis parameter relation of material 
synthesis can be attributed to a few articles39 that primarily focused on investigating the effect of phase struc-
ture on electrochemical properties at various synthesis temperatures. In contrast, the study at hand specifically 
focuses on the time corresponding to the highest synthesis temperature. These factors contribute to a degrada-
tion in performance. In summary, there was a slight decrease in accuracy and recall when moving from internal 
journals to external combinations of journals from different publishers. This can be attributed to the greater 

Methods Precision Recall F1 score

This work 98.02% 87.94% 92.71%

ChemDataExtractor 2.1.2 95.45% 45.32% 61.46%

Table 3.  Precision, recall, and F1 score of the sodium layered cathode material entity abbreviation definitions.

Task
Abbreviation 
definitions

Synthesis parameter 
relation extraction

Cycling performance 
sentence classification

Rate performance 
sentence classification

Cycling performance 
relation extraction

Rate performance 
relation extraction

Test datasets

12 articles 
from other 
journals

P 94.74% 100% 90.91% 92.68% 69.84% 90.24%

R 78.26% 88.89% 96.15% 84.44% 68.75% 74%

F1 85.71% 94.12% 93.46% 88.37% 69.29% 81.32%

10 articles 
from 
RSC and 
Elsevier

P 93.75% 100% 96% 93.55% 85.96% 96.88%

R 93.75% 100% 100% 100% 89.91% 74.70%

F1 93.75% 100% 97.96% 96.67% 87.89% 84.35%

Total (22 
articles)

P 94.29% 100% 93.85% 90.54% 80.23% 93.15%

R 84.62% 94.12% 98.39% 90.54% 82.08% 74.32%

F1 89.19% 96.97% 96.06% 90.54% 81.14% 82.67%

Table 4.  P (Precision), R (Recall), and F1 (F1 scores) on different datasets for the six main tasks: Abbreviation 
definitions, Synthesis parameter relation extraction, cycling performance sentence classification, Rate 
performance sentence classification, Cycling performance relation extraction and Rate performance relation 
extraction.
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variety of formats and non-standard representations encountered in the different journals. However, despite 
this challenge, the overall F1 score performance of the pipeline on both data combinations remains above 81%, 
indicating robustness.

Discussion
Our proposed method successfully collected a comprehensive database consisting of 5265 data records from 
1747 articles, encompassing synthesis parameters, cycling and rate performance properties, along with relevant 
test condition parameters. The dataset we have constructed provides valuable insights into the characteristics of 
sodium layered cathode materials, aiding future research in this field. Furthermore, the key novelty of our meth-
ods is the enhancement of relation extraction across sentences, which presents a significant challenge within the 
realm of information extraction. It is realized by incorporating cross-sentence and even paragraph-level extrac-
tion to extract relations which cannot be captured by previous. As far as our knowledge extends, our information 
extraction pipeline represents a pioneering effort in the materials domain methods.

In detail, in the relation extraction stage, we proposed an effective heuristic multi-level relationship extrac-
tion algorithm. This algorithm incorporated information from the full text, particularly the chemical comple-
mentary information, including the detection of chemical formula abbreviation full names and variable values 
associated with chemical formulae, significantly enhanced entity information. Additionally, the extraction of 
performance properties at the sentence level was considered. As a result of these efforts, the relation extraction 
algorithm achieved average F1 scores of 81.14% and 82.67% for Cycling performance and Rate performance 
relation extraction in different journals, respectively, indicating strong robustness.

It is noteworthy that despite the primary focus of this study being on papers in XML/HTML format, our 
information extraction pipeline also has the potential to process papers in PDF format by using toolkits such 
as PDFMiner (https://github.com/euske/pdfminer) to convert them into plain text, thus ensuring the smooth 
extraction of information. Furthermore, our extraction strategy is not limited to the synthesis parameters, 
cycling performance, and rate performance properties of sodium layered cathode materials for SIBs. By adjust-
ing the prompted elements in the CNER module to “Li”, our approach can be applied to the research of layered 
cathode materials for LIBs. Additionally, by incorporating a tailored CNER model for a specific battery cathode 
material field, it becomes possible to extract cathode material properties studied within that particular domain. 
This flexibility allows our extraction pipeline to be adapted and extended to various research areas, enhancing its 
applicability and potential for extracting valuable information from different types of texts.

However, there are problems that we have not yet solved and require further advancements, Firstly, manual 
intervention is necessary for data cleaning and refinement because of inevitable errors and duplicates among 
the automatically extracted records. Secondly, accurately capturing attribute values described as ranges, such as 
“from… to…,” and understanding their potential relationships with other attributes still remains a challenge. 
Thirdly, the extraction process did not account for relevant coating materials in the context of coating modifi-
cation. These aspects are crucial for the development of cathode materials and should be incorporated to enrich 
the existing database.

Methods
Document classification.  In literature searching only “sodium ion battery” was entered as the keyword 
to collect more articles that might be of interest. This search strategy led to many articles that included titles, 
abstracts, keywords, or articles in the main content that are similar to related topics. However, some of them 
focus on other materials such as nano-optoelectronic materials, metal catalytic materials, metal-organic skeletons 
(MOF), etc. Irrelevant articles in the corpus may decrease the accuracy of content mining. Therefore, we combine 
binary document classification and multi-label text classification (MLTC) on the abstracts to filter out irrelevant 
articles and obtain a set of articles of layered cathode material for SIBs as follows:

	 1.	 Binary document classification to classify whether a research paper is relevant to battery research or not. 
The battery document classification model BatteryOnlyBERT-uncased (accuracy up to 97.08%) fine-tuned 
by Huang et al.50 was used. 10565 articles from RSC and 30591 articles from Elsevier were retained.

Fig. 9  Radar plot: Performance of different tasks on different datasets.
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	 2.	 Further, a MLTC task (Coating, Computation, Doping, Experiment, Sodium layered oxide cathode) was 
performed to refine the research method of the article according to the given abstract with a fine-tuned 
BatteryBERT-cased model. Definitions of classified abstract categories are shown in Table 5. 1140 manually 
annotated abstracts were used for training and tested on an additional 286 labeled abstracts (dataset label 
distribution is shown in Fig. 10). The articles with “Sodium layered oxide cathode” in the predicted label 
were screened out, and 458 articles from RSC and 1260 articles from Elsevier were retained based on 1).

Document preprocessing.  Paragraph classification.  Among the dozens of paragraphs in an HTML/
XML document, classification allows us to determine which paragraph contains the target property infor-
mation to be extracted. In the following synthesis parameter and electrochemical property extraction, differ-
ent sub-tasks would be performed on paragraphs of different categories or combinations of categories. A text 
extraction algorithm based on section headings was employed to classify the paragraphs into five categories: 
“Abstract”, “Introduction”, “Experiment”, “Metadata” and “Others”. Metadata sections such as “Acknowledgement”, 
“Reference” and “Conflict”, which do not contain inorganic materials, were excluded.

Specifically, Python library “Beautifulsoup4” was utilized to locate various title tags (Fig. 11). Then the title 
texts were classified using customized regular expressions (Table 6). Afterwards, we parsed the plain text of all 
paragraph tags under the classified title tag to achieve paragraph classification. Within the paragraphs, bounda-
ries are marked with “$$”, cross-references include image references and reference references, and the character 
“<CR>” is uniformly used instead of reference references, and “<FIG>” is used instead of image references.

To enhance the efficiency of our method, we have implemented a meticulous task allocation for various cat-
egories of paragraphs. Specifically, we have filtered out the paragraphs categorized as “metadata” while ensuring 
the participation of all paragraphs in CSIE. The paragraphs belonging to the “abstract” category are utilized for 
document classification and electrochemical property relation extraction, while those falling under the “exper-
iment” category were used for synthesis parameter relation extraction. Furthermore, the remaining paragraphs, 
typically encompassing the results and discussion sections, were employed for electrochemical property relation 
extraction.

Text preprocessing.  Chemical expressions, unicode characters and descriptions of related properties were nor-
malized to eliminate inconsistency, facilitate the development of parsing rules for properties and improves the 
performance of CNER.

Category Definition

Coating This article presents the properties of the materials studied by coating modification.

Computation The research on the intersection of materials science and computer science mainly includes computational 
simulation, computer design of materials and machine learning.

Doping In this article, the properties of the material are studied by doping.

Experiment The article has material synthesis experiments.

Sodium layered oxide cathode The research area of this article is about layered cathode oxide materials.

Table 5.  Abstract categories and their definitions.

Fig. 10  Multi-label classification datasets.
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Firstly, the text was tokenized using ChemDataExtractor51. This involves splitting the raw text into sentences, 
followed by the splitting of each sentence into individual tokens. Then it was determined whether a token was a 
valid chemical formulae using pymatgen52 combined with regular expression and rule-based techniques. Finally, 
the identified valid chemical formulas were normalized to provide a unified chemical entity for subsequent lit-
erature mining of battery materials, involving the following steps:

	 1.	 Elements were ordered according to their electronegativity as defined in Table VI of the “Nomenclature of 
Inorganic Chemistry (IUPAC Recommendations 2005)”53 defined. For example, Na0.67Mn0.7Ni0.15Cu0.15O2 
and Na0.67Mn0.7Cu0.15Ni0.15O2 were rewritten as Na0.67Mn0.7Ni0.15Cu0.15O2;

	 2.	 Redundant spaces and valence states were removed from chemical formulas. For example, Na[<SPACE> 
Ni0.5Co0.2Mn0.3]O2 (here <SPACE> indicates the space in chemical formulas) becomes Na[Ni0.

5Co0.2Mn0.3]O2 and P2-Na2/3Mg(II)1/4Mn(IV)7/12Co(III)1/6O2 becomes P2-Na2/3Mg1/4Mn7/12Co1/6O2;
	 3.	 For chemical formulas containing Na and transition metal elements, redundant parentheses were removed. 

For example, Na[Ni0.5Co0.2Mn0.3]O2 becomes NaMn0.3Co0.2Ni0.5O2;
	 4.	 Elemental stoichiometric fractions were converted into decimals in chemical formulas. For example, P2-

Na2/3Mg1/4Mn7/12Co1/6O2 becomes P2-Na0.67Mg0.25Mn0.58Co0.17O2;

In addition, Unicode characters that are used interchangeably are standardized, and all non-printing con-
trol characters were removed. For example, “–”, “⁃”, “-” were replaced as “-” and “\u0001”, “\u000e”, “\u001a” 
were removed. Furthermore, units of sintering temperature, sintering time, current density and capacity, which 
correspond to the most important property parameters of SIBs, were unified as “°C”, “h”, “mAg-1”, “Ag-1”, and 
“mAhg-1”, respectively, using regular expressions.

Scientific documents collection.  This study enabled a large automatic collection of published literature by 
accessing APIs designed by publishers for data mining purposes. The RSC and Elsevier provide full text of pub-
lished articles. In order to collect these articles for data extraction, literature collection was carried out by com-
bining Python HTTP libraries “urllib3” and “requests” with “Sodium ion battery” as the keyword and the search 
year was 2010 to 2023. The data returned by the server consisted of CSS, JavaScript, and image format documents, 
as well as HTML and XML files, which contained the complete structured content of each article required for 
this study. Accordingly, this study preliminary from Elsevier developer portal website (https://dev.elsevier.com/) 
obtained the 48750 articles, from the RSC (https://www.rsc.org/) to download the 14697 articles. A total of 63447 
articles were initially stored in HTML/XML format.

Data post-processing.  To combine the relation extraction records from the synthesis parameter and elec-
trochemical property and create uniform records for a formatted database. the following data post-processing is 
adopted:

	 1.	 Sintering temperature and time extracted are used as synthesis parameters for all materials under uniform 
Doi.

	 2.	 The voltage range is split into two properties: Voltage lower limit and voltage upper limit.
	 3.	 Under certain conditions, records of cycling performance can be used to calculate the capacity at a specific 

number of cycles by using the following formula:

Fig. 11  HTML/XML tag categories and their hierarchies.
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Here, Ci denotes the number of cycles i, CapacityCi
 represents the capacity under the ith cycle, CapacityCInitial

 
is usually defaulted to the first cycle discharge capacity of the battery.

If this record contains both <the number of Cycles (referred to as Ci), Capacity> and <the number of 
(referred to as Cj), Capacity Retention> and if i = j, the initial capacity can be deduced. Additionally, if i = 1, the 
capacity under the number of Cj cycles can also be deduced. As depicted in Fig. 12a, (i) represents the initial data 
record, including “Cycle_capacity: mAhg-1” and “Cycle_retention: %”. The red line depicts the relationship 
derived from the data. By performing the calculation with i = j = 1800, = .Capacity retention rate 91 2%c1800

 and 
Capacity mAh g59 8( 1)C1800

= . − , the initial capacity is determined to be 65.6 (mAh g-1). The post-processed 
data record is represented as Fig. 12a, (ii).

Supplementary Tables units of C and Ag-1 have been converted to mAg-1 for consistency. The conversion 
factor for 1 C-rate (mA g-1) is determined using the “Current definition” rule in Supplementary Table [1]. The 
highest frequency of the “Current definition” records is selected to establish the conversion factor. Fig. 12b, illus-
trates the mapping relationship between 1 C-rate (mA g-1) and the corresponding frequency mentioned in the 
article. The blue line represents the flow of the current unit conversion from “C” to “mAg-1”. By standardizing 
the current density units to “mAg-1”, the data can be presented consistently throughout the article. This conver-
sion ensures clarity and facilitates accurate comparison and analysis of the results.

These data post-processing steps ensure that the extracted data records are in a consistent format and can be 
easily integrated into a formatted database.

Section Matching rules (Regular expression) Tasks

Abstract (?i:abstract) document classification, CSIE, electrochemical 
property relation extraction

Introduction (?i: intro) CSIE

Experiment (?i:prepar|Synthes|proce|experiment|Method|Material|Chemical|Fabrication|Composition) CSIE, synthesis parameter relation extraction,

Metadata (?i: Acknowledgement|Reference|Conflict|Author) —

Other — CSIE, electrochemical property relation extraction

Table 6.  Classification and corresponding tasks of sections.

Fig. 12  Data post-processing.
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Technical Validation
To assess the effectiveness of the methods utilized in this study, precision, recall, and F1 score were employed 
as evaluation metrics for various subtasks, including abstract, paragraph, and sentence classification, chemical 
abbreviation definition identification, and relation extraction. Both precision and recall have a probabilistic 
interpretation. Precision measures the probability of the system correctly identifying a relevant object, while 
recall measures the probability of a relevant object being correctly identified54. Precision is calculated by quan-
tifying the number of positive class predictions that truly belong to the positive class, while recall quantifies the 
number of positive class predictions made from all positive examples in the dataset. The F1 score, on the other 
hand, provides a balanced mean of precision and recall, considering their relationship.

=
+
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TP

TP FP (2)
c

c

c c

=
+
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TP

TP FN (3)
c

c

c c

=
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+
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where TP represents true positives, FP represents false positives, FN represents false negatives, and binary eval-
uations are performed for each label “c”.

According to Tsoumakas et al.55, micro-F1 and macro-F1 are versions of the F1 score that are micro-averaged 
and macro-averaged, respectively. These metrics are used to evaluate the combined performance of binary clas-
sification predictions for multi-labels. Therefore, in order to comprehensively evaluate the multi-label classifi-
cation task for the abstract, this study considers precision, recall, and F1 score for each category, as well as their 
corresponding micro-averaged and macro-averaged versions. The formulas for these metrics are as follows:
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Data class Data key label Description Data type

Metadata
Doi DOI of the article String

Year Published date Int

Named Entity

Name Chemical formula of the material String

Abbreviation Abbreviation of the material String

Elements Elemental composition of the chemical formula Object (dict)

Synthesis parameter
Temperature Sintering temperature of the material Float

Time Sintering time of the material Float

Performance category Category Cycling performance or Rate performance String

Electrochemical property

Cycle Number of cycles Int

Capacity Specific capacity of the cathode Float

Retention Capacity retention rate of cathode Float

Current Current density value Float

Voltage lower limit Lower bound of the test voltage range Float

Voltage upper limit Upper bound of the test voltage range Float

Table 7.  Format of each data record: data class, data key label, description, data type.
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Data availability
The dataset extracted by our pipeline has been made available in CSV and JSON formats at figshare56. The details 
of the data format are given in Table 7.

Code availability
The source code of the document-level information extraction pipeline is available at https://github.com/
GGNoWayBack/cathodedataextractor.
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