
1Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdata

Making Biomedical Research
Software FAIR: Actionable Step-by-
step Guidelines with a User-support
Tool
Bhavesh Patel   1 ✉, Sanjay Soundarajan1, Hervé Ménager   2 & Zicheng Hu   3

Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles tailored for research
software have been proposed by the FAIR for Research Software (FAIR4RS) Working Group. They
provide a foundation for optimizing the reuse of research software. The FAIR4RS principles are,
however, aspirational and do not provide practical instructions to the researchers. To fill this gap,
we propose in this work the first actionable step-by-step guidelines for biomedical researchers to
make their research software compliant with the FAIR4RS principles. We designate them as the FAIR
Biomedical Research Software (FAIR-BioRS) guidelines. Our process for developing these guidelines,
presented here, is based on an in-depth study of the FAIR4RS principles and a thorough review
of current practices in the field. To support researchers, we have also developed a workflow that
streamlines the process of implementing these guidelines. This workflow is incorporated in FAIRshare,
a free and open-source software application aimed at simplifying the curation and sharing of FAIR
biomedical data and software through user-friendly interfaces and automation. Details about this tool
are also presented.

Introduction
Research software (including scripts, computational models, notebooks, code libraries, etc.) is becoming
increasingly vital in scientific research. A survey by the Software Sustainability Institute in the UK revealed that
92% of academics use research software, 69% say that their research would not be practical without it, and 56%
develop their own software1. Other surveys have similarly emphasized the importance of research software in
scientific research2–4. Research software plays a fundamental role not only in collecting, analyzing, and process-
ing data but has also become the centerpiece of many scientific endeavors aimed at developing computational
models to understand and predict various physical phenomena. In line with this general trend in scientific
research, research software has also become an essential part of biomedical research over the last decade, espe-
cially with the emergence of machine learning and artificial intelligence in the field. The growing number of new
biomedical-related software repositories created on GitHub every year (c.f. Fig. 1) provide an overview of this
shift.

Research software has consequently become an essential asset of scientific research and, therefore, it has
become critical to preserve, share, and make it reusable. The Findable, Accessible, Interoperable, and Reusable
(FAIR) guiding principles provide a foundation for achieving that5. Published in 2016, these principles are aimed
at optimizing data reuse by humans and machines. While postulated for all digital research objects, several
research groups have shown that the FAIR principles as written do not directly apply to software because they do
not capture the specific traits of research software6,7. Lamprecht et al. were the first in 2019 to work on this short-
coming and published in 2020 reformulated FAIR principles that are tailored to research software6. Noticing
yet a need for more software-specific principles, the FAIR for Research Software (FAIR4RS) Working Group,
jointly convened as a Research Data Alliance (RDA) Working Group, FORCE11 Working Group, and Research
Software Alliance (ReSA) Task Force, initiated a large-scale effort shortly after in mid-2020 to tackle this need.

1FAIR Data Innovations Hub, California Medical Innovations Institute, San Diego, CA, 92121, USA. 2Institut Pasteur,
Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France. 3Computational Health Science,
University of California San Francisco, San Francisco, CA, 94158, USA. ✉e-mail: bpatel@calmi2.org

Article

OPEN

https://doi.org/10.1038/s41597-023-02463-x
http://orcid.org/0000-0002-0307-262X
http://orcid.org/0000-0002-7552-1009
http://orcid.org/0000-0002-4168-1725
mailto:bpatel@calmi2.org
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02463-x&domain=pdf

2Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

A subgroup of this working group took a fresh look at the FAIR principles and their applicability to research soft-
ware, and suggested a set of reformulated FAIR principles tailored for research software that were published as a
preprint in January 20218 and then as a peer-reviewed article in March 20219. Based on that effort and the efforts
of other subgroups, the FAIR4RS working group published in June 2021 a draft for formal community review
of their new principles called the FAIR4RS principles (v0.3)10. After revising the FAIR4RS principles based on
community feedback, they published the final version (v1.0) in May 202211. This version was introduced in a
peer-reviewed article in September 202212.

Just like the original FAIR principles, the FAIR4RS principles are aspirational and aimed at providing a gen-
eral framework. The “From FAIR research data toward FAIR and open research software” study provides some
actionable guidelines for making research software FAIR but it does not include a clear process and is based
on the original FAIR principles rather than the FAIR4RS principles13. The “Five recommendations for FAIR
software” publication also provides some actionable guidelines for making research software FAIR but it is not
aimed at complying with each principle and is also based on the original FAIR principles14. The absence of
actionable guidelines, which researchers can adhere to in order to comply with each of the FAIR4RS princi-
ples, constitutes a hindrance to the widespread adoption of FAIR practices in research software development.
Particularly in biomedical research, the COVID-19 pandemic has emphasized the need for such guidelines15.
As noted by the RDA COVID-19 Working Group: “Whilst preprints and papers are increasingly openly shared
to accelerate COVID-19 responses, the software and/or source code for these papers is often not cited and hard
to find, making reproducibility of this research challenging, if not impossible”15.

To fill this gap, we proposed in this work the first minimal and actionable step-by-step guidelines for
researchers to make their biomedical research software compliant with the FAIR4RS principles. Our focus was
on biomedical research software given that this effort was initiated as part of a larger project aimed at support-
ing the curation and sharing of COVID-19 related research data and software. We designate these guidelines
as the FAIR Biomedical Research Software (FAIR-BioRS) guidelines. Numerous challenges have been reported
in formulating such actionable guidelines, including the absence of consensus within the research community
concerning metadata and identifiers8. Rather than waiting for these challenges to be overcome, our approach
consisted of deriving the best actionable guidelines possible around these challenges such that researchers can
already start making their research software FAIR. This manuscript presents the FAIR-BioRS guidelines and
details the approach we used to develop them.

As funding to support the reusability of software is lacking, the main responsibility of making research soft-
ware FAIR falls on the researchers developing the software since they may receive only limited support to assist
them in this effort. Our proposed guidelines, while crucial for enhancing software reusability, may impose an
additional burden on these researchers who already grapple with significant challenges during the software
development process16–18. To address this concern and ensure the FAIR-BioRS guidelines are easily accessible
and widely embraced by researchers, we have developed a workflow to streamline the process of implement-
ing the FAIR-BioRS guidelines. This workflow is incorporated into FAIRshare, a free and open-source desk-
top software application aimed at simplifying the processes for making biomedical data and software FAIR.
FAIRshare takes the user’s software repository as input and guides them through step-by-step implementation of
the FAIR-BioRS guidelines. FAIRshare provides an intuitive graphical user interface at each step where the user
can easily provide required inputs for items that cannot be automatically assessed (e.g., selecting a desired license
for the software), and includes automation in the backend to take over complex and/or time-consuming tasks

Fig. 1  Evolution of the number of new biomedical-related software repositories created on GitHub in a given
year (rounded to the hundredth when >1,000). The search consisted of looking for new repositories created in
a given year with “biomedical” included in their name, tags, README, or description. To exclude repositories
with data only (e.g., CSV files or markdown text), the search was limited to repositories with a major coding
language being one of the popular software programming languages. This list of popular software programming
languages was established based on GitHub’s list of popular programming languages to which we added a couple
of languages that we deemed relevant for biomedical research software. For more details, see the code associated
with this manuscript (c.f. Code Availability section).

https://doi.org/10.1038/s41597-023-02463-x

3Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

that can be automated (e.g., creating a LICENSE file with standard license terms once the license is selected).
More details about this tool are provided in this manuscript.

Results
Overview.  The work in this manuscript is based on the FAIR4RS principles v1.011 given that they are the most
thorough to date and have garnered substantial community support. Our work was initiated in December 2021
and was initially based on the formal draft version of the FAIR4RS principles (v0.3)10. We then reiterated on our
work between November 2022 and June 2023 to align with the final version (v1.0) of the FAIR4RS principles as
well as incorporate community feedback we received along the way. Our overall process for establishing the FAIR-
BioRS guidelines is illustrated in Fig. 2. More details are provided in the Methods section.

High-level categories and instructions to fulfill the FAIR4RS principles.  For each of the FAIR4RS
principles, we derived concise high-level instructions to fulfill that principle. These instructions were derived
from pertinent information found in the FAIR4RS v1.0 publication11 and the corresponding introduction manu-
script12. These instructions are available in the “fair4rsv1.0Instructions” tab of the “data.xlsx” file associated with
this manuscript (c.f. Data Availability section). We identified that the instructions for the different principles
had overlapping themes and therefore organized the instructions into five action-based categories to help in our
process of deriving actionable guidelines:

•	 Category 1: Develop software following standards and best practices
•	 Category 2: Include metadata
•	 Category 3: Provide a license
•	 Category 4: Share software in a repository
•	 Category 5: Register in a registry

In Supplementary Table 1, we present the instructions related to each category, along with the respective
FAIR4RS principles they encompass. Then, for each category, we identified outstanding questions we needed to
answer for deriving actionable guidelines that allow us to fulfill the high-level instructions from that category.
These questions are also provided in Supplementary Table 1. To answer these questions, we combined findings
from a comprehensive review of relevant resources, our own understanding of research software development,
and external suggestions we received from various communities (c.f. Discussion section) to derive relevant
recommendations.

Review of current practices and resulting recommendations.  Reviewed studies.  Our methodol-
ogy for conducting the review is outlined in the Methods section. A list of the reviewed resources is available in
the “resourcesList” tab of the “data.xlsx” file included in the dataset associated with this manuscript (c.f. Data
Availability section). During the review, we sought actionable recommendations that addressed the questions
listed in Supplementary Table 1. A total of 39 resources were deemed relevant to these questions and included in
the analysis presented next. The information collected from each resource can be found in the “resourcesReview”
tab of the “data.xlsx” file included in the dataset associated with this manuscript (c.f. Data Availability section).
We summarize the key findings below for each of the categories and provide our resulting recommendations.

Category 1: Develop software following standards and best practices.  None of the reviewed resources provided
actionable items for following standard development practices, except one that mentions the PEP 8 Style Guide
for Python Code (http://peps.python.org/pep-0008). This is understandable since such standards vary depend-
ing on many factors such as the domain of research and coding language.

Similarly, there are no clear standards provided for the format of the data that software read, write, and
exchange. Few of the reviewed resources10,11,19 refers to the FAIRsharing Registry (https://fairsharing.org) for a
curated list of community standards20.

Suggestions for best development practices are provided in 21 of the reviewed resources. Some of the
reviewed resources are fully dedicated to best practices, including general best practices for scientific software

Lorem 1

Derive high-level
instruc�ons for
fulfilling each of

the FAIR4RS
principles

Based on a review
of the document
and introduc�on
manuscript of the
FAIR4RS principles

v1.0

Lorem 2

Combine
instruc�ons into
categories based

on common
theme

Five categories
were defined

Lorem 3

Define
outstanding

ques�ons for
fulfilling the

instruc�ons from
each category

E.g., what
repositories can

be used for
archiving

biomedical
research

so�ware?

Lorem 5

Organize the
recommenda�ons
into step-by-step

guidelines

Follow the typical
so�ware

development
process so the

guidelines are easy
to implement

Lorem 4

Derive
recommenda�ons
for answering the

ques�ons

Based on a review
of relevant
literature,

combined with
authors assessment

and external
feedback when
consensus was

lacking

1 2 3 54 FAIR-BioRS
guidelines

Fig. 2  Overall process followed to establish the current version of the FAIR-BioRS guidelines.

https://doi.org/10.1038/s41597-023-02463-x
http://peps.python.org/pep-0008
https://fairsharing.org

4Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

development21 and specific best practices for biomedical software22,23. Overall, developing with a version
control system is commonly suggested8,12–15,19,21–28. GitHub, BitBucket, and GitLab are commonly men-
tioned ready-to-use version control system platforms. Using container technologies such as Docker and
Singularity13,18,19,22,24,29, having code level documentation (in code comments, description in the head-
ers)19,21,22,25,30, and recording dependencies11,12,19,21 are other best practices mentioned in the reviewed resources.

There is clearly a lack of community-agreed standards and best practices. Therefore, we used findings
from this review, combined with our own assessment and external suggestions we received when consensus
was lacking, to establish our recommendations for fulfilling the instructions from Category 1. We recommend
working from a version control system platform (e.g., GitHub, Bitbucket, GitLab) as this seems essential for
complying with several of the FAIR4RS principles. We also recommend having code-level documentation (e.g.,
in code comments, description in the headers) when deemed necessary for code reusability. Additionally, we
recommend recording dependencies as per standard practices for the coding language (e.g., in a requirement.
txt file for Python code, in a package.json file for Node projects, or in a DESCRIPTION file for R packages).
Some of the dependencies can also be recorded in the software documentation such as in the README file
(see documentation discussion in Category 2 below). Following language-specific standards and best practices,
which depend on the development stack used, is also recommended. For instance, we suggest following the PEP
8 Style Guide for Python Code or Google’s R Style Guide for R code (https://google.github.io/styleguide/Rguide).
Finally, we recommend ensuring that inputs/outputs of the software follow any applicable community standards
(e.g., General Feature Format (GFF) for genomic annotation files) as this is essential for interoperability. We
refer to FAIRsharing Registry for finding relevant standards. We leave out recommendations on using container
technologies as this is a complex topic that we deem out of the scope of the minimal guidelines we are aiming
for here.

Category 2: Include metadata.  From the reviewed resources, 24 have made a recommendation of metadata
files and ontologies to use for research software. A majority of them6,8,10,12–14,17–19,24,25,31–36 suggest following the
guidelines of the CodeMeta Project for including metadata in research software. The CodeMeta Project is an
academic-led community initiative that was the result of the FORCE11 Software Citation working group. It aims
to formalize the metadata fields included in typical software metadata records and introduces important fields
that did not have clear equivalents. The CodeMeta vocabulary resulting from this effort is built over the schema.
org classes SoftwareApplication and SoftwareSourceCode, which links the data for semantic web discovery.
Some additional terms necessary to describe software that are not part of schema.org have been included in
the CodeMeta schema. There is a continued effort to propose these terms to schema.org so that the CodeMeta
schema completely aligns with schema.org rather than becoming a separate standard. Metadata information
conformant to the CodeMeta vocabulary is to be included in JSON-LD format in a file named codemeta.json
and stored in the root directory of the software. The Software Heritage group has developed a CodeMeta gener-
ator (https://codemeta.github.io/codemeta-generator) that can be used to create a codemeta.json file or edit an
existing one. Similar tools are also available to include a codemeta.json file in R packages37.

Including a citation file following the Citation File Format (CFF) is another popular suggestion amongst
the reviewed resources13,14,18,19,25–28,30,34–36. The CFF was developed by a group of academics assembled under
the group “Development and implementation of a standard format for CITATION files”38. The goal of the CFF
is to provide an all-purpose citation format and specifically provide optimized means for the citation of soft-
ware via the provision of software-specific reference keys and types. CFF files must be named CITATION.cff,
implemented in YAML 1.2, which is a machine-readable format that optimizes human readability and must
be stored in the root directory of the software. The CFF file initializer (https://citation-file-format.github.io/
cff-initializer-javascript) is mentioned by several reviewed resources as a tool for easily generating a CITATION.
cff file. Note that the CITATION.cff file integrates with the GitHub citation feature such that if a CITATION.cff
file is included in the root folder of a GitHub repository, a “Cite this repository” option is automatically displayed
on the repository landing page making it easier to cite a software repository on GitHub.

The codemeta.json and CITATION.cff are two general metadata files that can be used for any research soft-
ware repository. One of the reviewed resources6 suggests including language-specific metadata for instance based
on the DESCRIPTION file for R packages or the PEP 566 for Python packages. Other reviewed resources6,24,25
also suggested preparing metadata using bio-specific ontologies such as EDAM19,39,40, biotoolsSchema41, and
Bioschemas42. EDAM is a comprehensive ontology of well-established, familiar concepts that are prevalent
within bioinformatics and computational biology. The biotoolsSchema is a formalized schema (XSD) that also
includes EDAM ontology and is used by the Tools & Data Services Registry bio.tools43. Bioschemas is a com-
munity project built on top of schema.org, aiming to improve interoperability in Life Sciences so resources can
better communicate and work together by using a common markup on their websites. Bioschemas has overlap
with CodeMeta. These schemas and ontologies do not have formal file formats for inclusion in research software
and are rather suited for repositories and registries hosting software metadata.

While the recommendations above are tailored toward machine-friendly metadata files, software meta-
data in a human-friendly format, i.e. documentation, is also required to comply with the FAIR4RS principles.
Suggestions for such documentation are provided in 9 of the reviewed resources with one study fully dedi-
cated to best practices for documenting scientific software30. Including a README file (called README,
README.txt, or README.md) is the method suggested by all of the resources for maintaining documen-
tation14,19,21,24,28,30,33,44. For more visibility, one of the reviewed resources24 also suggests maintaining a website
using GitHub pages (https://pages.github.com) or Read the Docs (https://readthedocs.org). Several resources are
suggested in the reviewed literature to help with preparing documentation for research software: Write the Docs,
Doxygen, Sphinx3, Javadoc (Java code), Roxygen (R code). Documenting changes between versions of software
in a CHANGELOG file is also suggested19.

https://doi.org/10.1038/s41597-023-02463-x
https://google.github.io/styleguide/Rguide
https://codemeta.github.io/codemeta-generator
https://citation-file-format.github.io/cff-initializer-javascript
https://citation-file-format.github.io/cff-initializer-javascript
https://pages.github.com
https://readthedocs.org

5Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

There is clearly a lack of community agreement on metadata files and ontologies to use for documenting
research software. As a result, we formulated our recommendations for fulfilling the instructions in Category
2 by combining the findings from this review with our internal assessment and external suggestions received
when consensus was lacking. We recommend including both a codemeta.json and a CITATION.cff metadata
files in the software code’s root directory. Despite some overlapping fields, both files are recommended since
codemeta.json offers a machine-oriented format, while CITATION.cff provides a more human-readable for-
mat. Moreover, they both fulfill the requirement of using controlled vocabulary and include typically suggested
metadata fields in the FAIR4RS principles. The CodeMeta generator and CFF file initializer are available to help
prepare both. We suggest providing all available fields in both files. To align with the FAIR4RS principles, we
recommend providing at least the following fields in the codemeta.json file:

•	 Software name (“name”)
•	 Software description/abstract (“description”)
•	 Unique identifier (“identifier”)
•	 Authors (“givenName”, “familyName”) with their organization name (“affiliation”)
•	 Keywords (“keywords”)
•	 Programming Language (“programmingLanguage”)
•	 First and current release date (“dataPublished” and “dateModified”)
•	 License used (“license”)

Similarly, we recommend providing at least the following fields in the CITATION.cff file:

•	 Authors (“given-names”, “family-names”) with their organization name (“affiliation”)
•	 Software description/abstract (“abstract”)
•	 Unique identifier (“identifiers”)
•	 Keywords (“keywords”)
•	 License (“license”)
•	 Release date (“date-released”)

In addition, our suggestion is to maintain human-friendly documentation at the very least in a README.md
or README.txt file located in the root directory of the software. Mature/complex software may require addi-
tional, more sophisticated documentation that can be developed e.g. using tools such as GitHub pages or Read
the Docs. To comply with the FAIR4RS principles, the following aspects must be documented: overall descrip-
tion of the software (e.g., in an “About” section), high-level dependencies of the software (e.g., Node or Python
version), inputs and outputs of the software, parameters and data required to run the software, the standards
followed, how to contribute to the software, and how to cite the software. We also recommend following any
community-agreed standard documentation approach when available (e.g., the Common Workflow Language
(CWL)45 for describing command line tools). Finally, we recommend documenting changes between different
versions of the software in a file called “CHANGELOG” using plain text or markdown syntax. Locate it in the
root directory of the software. We suggest following the “Keep a changelog” (https://keepachangelog.com) con-
ventions for the content of the CHANGELOG file and using the Semantic Versioning v2.0.0 (https://semver.org)
for software version numbers.

Category 3: Provide a license.  From the reviewed resources, 18 have made suggestions about a suitable license
for research software6,10,12–15,18,21–24,26,31,33,36,46,47. All agree that it is preferable to use an open-source license to
make the software as reusable as possible. Since there are a large variety of open-source licenses available, it
should be possible to find one that fits everyone’s needs13. Therefore, if an open-source license is not used, that
decision is expected to be properly motivated31. Most of the reviewed resources don’t explicitly suggest a spe-
cific license, but typically encourage choosing a license approved by the Open Source Initiative (OSI) (https://
opensource.org/licenses) since they are well known and understood thus making reuse easier18,24. Some of
the reviewed resources do recommend using permissive licenses since they have very few restrictions mak-
ing them optimal for reuse6,21. Others explicitly encourage the use of the permissive MIT and Apache 2.0 lice
nses12,14,18,21,26,47. The Software Package Data Exchange (SPDX) (https://spdx.dev), Choose a License (https://
choosealicense.com), and the lesson on license from the 4 Simple Recommendations for Open Source Software
(https://softdev4research.github.io/4OSS-lesson/03-use-license/index.html) are some suggested resources for
getting help with selecting a suitable license. It is typically suggested to include the license terms in a LICENSE.
txt or LICENSE.md file stored in the root directory of the software21,22,24,28.

After analyzing these findings along with our own assessment and external suggestions, we recommend
fulfilling the instructions from Category 3 by including the license term in a LICENSE.txt or LICENSE.md file
placed in the software’s root directory. While the FAIR4RS principles do not require research software to be
open-source, we highly recommend using a license approved by the OSI. Amongst those licenses, we encourage
the use of the permissive MIT or Apache 2.0 licenses. Resources such as Choose a License and/or the SPDX
License List can be used to help with selecting a license and including standard terms in the LICENSE file. It is
desirable to select the license at the beginning of the development of the software so that it is easier to ensure that
the software dependencies are compatible with the license.

Category 4: Share software in a repository.  From the reviewed resources, 9 have made a recommen-
dation on the files to share for software. Sharing the source code is recommended by most of them to

https://doi.org/10.1038/s41597-023-02463-x
https://keepachangelog.com
https://semver.org
https://opensource.org/licenses
https://opensource.org/licenses
https://spdx.dev
https://choosealicense.com
https://choosealicense.com
https://softdev4research.github.io/4OSS-lesson/03-use-license/index.html

6Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

optimize reusability8,9,11,23,29,48. Providing an executable9 and some input/result data19,23,48 when available is also
recommended.

From the reviewed resources, 27 made a suggestion about repositories to use for sharing research software.
Three types of repositories are typically mentioned: archival, deployment, and domain-specific. The Registry
of Research Data Repositories (https://www.re3data.org) is often mentioned as a tool for finding a suitable
repository.

Zenodo (https://zenodo.org) is the most commonly suggested archival repository across all reviewed stud-
ies6,8,12–15,17–19,21,25–28,31,32,34,36,47–50. Funded by the European Commission and developed and hosted by the Centre
Européen pour la Recherche Nucléaire (CERN), Zenodo allows any digital resources, including research soft-
ware, to be shared and preserved in line with the FAIR principles (https://about.zenodo.org/principles). Zenodo
assigns a separate Digital Object Identifier (DOI) for each released version of a software and also creates a
high-level DOI that refers to all versions51. Of the 50,000 plus DOIs registered for software, more than 80%
were registered via Zenodo showing its popularity amongst the research software community32,52. The inte-
gration between GitHub and Zenodo facilitates the automatic archiving on Zenodo for each GitHub release of
the software. Figshare (https://figshare.com) is also a highly recommended archival repository6,14,15,18,21,23,27,48–50.
Figshare is a repository supported by Digital Science where researchers can preserve and share any research out-
puts, including research software, in line with the FAIR principles53. Archiving GitHub repositories on Figshare
is also made easy through a tool developed in collaboration with the Mozilla Science Lab (https://mozillascience.
github.io/code-research-object). Software Heritage (https://www.softwareheritage.org) is a commonly suggested
archival repository as well6,8,12–14,17,19,25,31,32,50,54. Software Heritage is an international initiative to provide a uni-
versal archive and reference system for all software. It automatically and regularly harvests source code from
version control system platforms such as GitHub and also allows anyone to initiate the submission of their
source code for archival. Software Heritage assigns intrinsic identifiers that follow a standardized format called
SoftWare Heritage persistent IDentifiers (SWHIDs). Contrary to Zenodo and Figshare, unique identifiers are
assigned to all artifacts over all levels of granularity such as project status, project release, state of source code,
and code fragment, which can be useful to unambiguously refer to any component of a software.

Some of the reviewed resources6,17,18,25,31,50 mention using deployment repositories which are typically
language-specific such as PyPI (https://pypi.org) and Conda (https://conda.io) for Python packages, CRAN
(https://cran.r-project.org) for R packages55, and Dockstore (https://dockstore.org) for Docker-based tools. Only
two biomedical-specific repositories were mentioned in the reviewed studies6,48: ModelDB for computational
neuroscience models56 and Bioconductor for R-packages aimed at the analysis of genomics data57,58.

After considering these findings, our internal assessment, and the external suggestions we received, we have
identified three recommendations for meeting the instructions in Category 4. If applicable, we suggest sharing
each version of a software on a deployment repository (e.g., PyPI or Conda for Python packages, CRAN for
R package, Dockstore for Docker-based tools). While such repositories do not provide unique and persistent
identifiers as required in the FAIR4RS, this is still useful for increasing the findability and reusability of the
software. In addition, we suggest always archiving each version of a software on Zenodo or Figshare as they both
allow software to be archived in line with the FAIR4RS principles. Zenodo is preferable due to its popularity
for archiving research software. The source code of the software with all the above-mentioned metadata files
must be archived. Executables and sample input and out data, if available, must be archived as well. Finally, we
suggest archiving the software on Software Heritage directly from your version control system platform as it will
automatically assign a unique identifier for all levels of granularity. Note that there is no community agreement
on the identifier (e.g., DOI or SWHID) to use for software, which is a gap that will need to be addressed by the
community.

Category 5: Register on a registry.  From the reviewed resources, 8 made a suggestion about registries to use for
research software6,8,12,17,24,25,34,59. The repositories Zenodo, Figshare, Software Heritage, CRAN, PyPI, and Conda
are also mentioned as registries in the reviewed literature since they require specific metadata that is used for
indexing. bio.tools (https://bio.tools)43 is the most commonly suggested registry. It is supported by ELIXIR, an
intergovernmental organization that brings together life science resources from across Europe and whose goal is
to coordinate these resources so that they form a single infrastructure. bio.tools contains more than 28,000 regis-
tered tools (as of June 2023). As explained in the metadata files section above, bio.tools uses the biotoolsSchema,
including EDAM ontology, to describe registered bioinformatics software. A unique ID called biotoolsID is
assigned to each software. Another possibility, not found in the reviewed resources but known to the authors, is
to register the software on the Research Resource Identifiers (RRIDs) portal (https://www.rrids.org) and obtain
an RRID. RRIDs are unique numbers assigned to help researchers cite key resources, including software projects,
in the biomedical literature to improve the transparency of research methods60. Note that an RRID identifies a
software as a whole, but not its different versions. Moreover, there exists a collaboration between bio.tools and
the RRID portal to share software metadata and cross-link entries.

Based on these findings, combined with our own assessment and external suggestions we received, our rec-
ommendation for fulfilling instructions from Category 5 is to register the software on bio.tools. Even if Zenodo
and Figshare already act as registries, it is still suggested to register on bio.tools to increase findability and create
additional rich metadata about the software following biotoolsSchema. The software can optionally be regis-
tered on the RRIDs portal as well. Registering on bio.tools and the RRID portal is only required once but the
registry-specific metadata must be updated as needed for each new software version.

FAIR Biomedical research software guidelines.  To make the above-mentioned recommendations easy
to implement, we organized them into step-by-step guidelines that align with the typical software development

https://doi.org/10.1038/s41597-023-02463-x
https://www.re3data.org
https://zenodo.org
https://about.zenodo.org/principles
https://figshare.com
https://mozillascience.github.io/code-research-object
https://mozillascience.github.io/code-research-object
https://www.softwareheritage.org
https://pypi.org
https://conda.io
https://cran.r-project.org
https://dockstore.org
https://bio.tools
https://www.rrids.org

7Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

process. This led to the FAIR Biomedical Research Software (FAIR-BioRS) guidelines. The first versions of the
guidelines (v1.0.0 and v1.0.1) were based on the FAIR4RS principles v0.3. They then evolved as we aligned our
work with the FAIR4RS principles v1.0 as presented in the manuscript to the FAIR-BioRS guidelines v2.0.0 pre-
sented in Table 1. Implementing these guidelines will ensure compliance with the FAIR4RS principles as shown in
the crosswalk presented in Supplementary Table 2. We have established a “FAIR-BioRS” organization on GitHub
to maintain all the related resources (http://github.com/FAIR-BioRS). These guidelines and the crosswalk are
maintained in a GitHub repository called “Guidelines” within that organization. It documents all the versions
and is also archived on Zenodo every time a new version is released61. This repository will serve as a tool to collect
community feedback on the FAIR-BioRS guidelines. New versions of the guidelines, which will be established
based on community feedback or the evolution of current standards, will be maintained there. We recommend
readers consult it to access the latest versions of the guidelines.

FAIRshare.  Guidelines typically have little effect and are very unlikely to be adopted without proper tools to
support them. Tools and resources are available to implement some steps of the FAIR-BioRS guidelines as men-
tioned in our recommendations above, but they are dispersed and not logically connected to streamline the pro-
cess. Therefore, we developed and integrated a workflow to implement the FAIR-BioRS guidelines in our software
application called FAIRshare. FAIRshare is aimed at streamlining the processes for making biomedical research
data and software FAIR. Specifically, FAIRshare combines intuitive user interfaces, automation, and user support
resources into a single application to guide and assist the researchers through a suitable workflow for making their

Step 1. Prepare prior to the development of the software

1.1. Select a version control system platform to work from (GitHub, Bitbucket, or GitLab are suggested) and create a repository there for your
software.

1.2. Select a license and include the license terms in a file called “LICENSE” using plain text or markdown syntax. Locate it in the root
directory of the software. While the FAIR4RS principles do not require research software to be open-source, it is highly recommended to use
a license approved by the Open Source Initiative (OSI). Amongst those licenses, it is encouraged to use the permissive MIT or Apache 2.0
licenses. Use choosealicense.com and/or the SPDX License List for help. During development, ensure that the software’s license is compatible
with the software’s dependencies.

Step 2. Follow coding standards and best practices during development

2.1. Have code-level documentation (e.g., in code comments, description in the file headers) when deemed necessary for code reuse.

2.2. Record dependencies as per standard practices for the coding language, e.g. in a requirements.txt file for Python code, in a package.json
file for Node projects, or in a DESCRIPTION file for R packages.

2.3. Follow language-specific standards and best practices (e.g. PEP 8 Style Guide for Python Code, Google’s R Style Guide for R code, etc.)
and document them (c.f. 3.2).

2.4. Ensure that inputs/outputs of the software follow any applicable community standards (e.g., General Feature Format (GFF) for genomic
annotation files). Use fairsharing.org for finding relevant standards.

Step 3. Document software

3.1. Maintain the documentation in a file called “README” using plain text or markdown syntax. Locate it in the root directory of the
software. Mature/complex software may require additional, more sophisticated documentation that can be developed e.g. using tools such
as GitHub pages or Read the Docs. The following aspects must be documented as applicable: overall description of the software (e.g., in an
“About” section), high-level dependencies of the software (e.g., Node or Python version), inputs and outputs of the software, parameters
and data required to run the software, the standards followed, how to contribute to the software, how to cite the software. In addition, follow
any community-agreed standard documentation approach when available (e.g., the Common Workflow Language (CWL) for describing
command line tools).

3.2. Document changes between different versions of the software in a file called “CHANGELOG” using plain text or markdown syntax.
Locate it in the root directory of the software. We suggest following the “Keep a changelog” conventions for the content of the CHANGELOG
file and the Semantic Versioning v2.0.0 for version numbers.

Step 4. Include metadata files

4.1. Include a codemeta.json metadata file in the root directory of the software. The CodeMeta generator can be used. Provide, at least, the
following fields: “name”, “description”, “identifier”, “keywords”, “programmingLanguage”, “dataPublished”, “dateModified”, and “license” along
with “givenName”, “familyName” and “affiliation” for each author. When applicable, also provide the following fields: “isPartOf ”, “hasPart”,
and “relatedLink“. See the CodeMeta documentation for a definition of the fields.

4.2. Include a CITATION.cff metadata file in the root directory of the software. The CFF file initializer can be used. Provide, at least, the
following fields: “abstract”, “identifiers”, “keywords”, “license”, and “date-released” along with “given-names”, “family-names” and “affiliation”
for each author. See the CFF documentation for a definition of the fields.

Step 5. Share software on a repository

5.1. If applicable, share the software on a deployment repository e.g., PyPI or Conda for Python packages, npm registry for JavaScript
packages, CRAN for R packages or Bioconductors for R-packages aimed at the analysis of genomics data, Dockstore for Docker-based tools,
etc. Do this for each version release of your software.

5.2. Share the software on the archival repository Zenodo (suggested) or Figshare. The source code of the software with all the above-
mentioned metadata files must be archived. Executables and sample input and output data must be included as well if available. Do this for
each version release of your software.

5.3. Archive the software repository on Software Heritage directly from your version control system platform. You can use the Software
Heritage “save code now” page. This is only required once as Software Heritage will then periodically archive your source code automatically.

Step 6. Register software on a registry

Register the software on the bio.tools registry. Optionally register the software on the Research Resource Identifiers (RRID) Portal as well.
This is only required once but the registry-specific metadata must be updated with each version release as needed.

Table 1.  The FAIR-BioRS guidelines version 2.0.0. We refer readers to the GitHub repository associated with
these guidelines (c.f. Results section) for a markdown version with hyperlinks to relevant resources. New
versions of the guidelines, if any, will also be maintained there.

https://doi.org/10.1038/s41597-023-02463-x
http://github.com/FAIR-BioRS

8Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

research data and software FAIR and sharing it on an adequate repository. FAIRshare is free to use and developed
under the permissible open-source MIT license to encourage community contributions for updating existing
workflows and including new ones. Details about the development of FAIRshare are provided in the Methods
section. The current version of FAIRshare (v2.1.0) and its documentation (v5.0.0) can be accessed through their
respective GitHub repositories and their Zenodo archive (c.f. Code Availability section).

Typically, a user will use FAIRshare to comply with the FAIR-BioRS guidelines when they are ready to pub-
lish a new version of their software. The workflow to make research software FAIR with FAIRshare guides users
through the steps of the FAIR-BioRS guidelines in a slightly different order to optimize the workflow, as illus-
trated in Fig. 3. In step 1, FAIRshare asks the user to select the location of their software directory. FAIRshare
provides users with the option to select a directory from their computer or select one of their GitHub reposito-
ries. If the user selects GitHub, FAIRshare provides an interface to connect FAIRshare to their GitHub account.
In step 2, FAIRshare asks a series of “Yes/No” questions to verify that the user has followed applicable standards
and best practices during the development and documentation of the software as dictated by Steps 2 and 3 of
the FAIR-BioRS guidelines. Links to the relevant resources on standards and best practices suggested by the
FAIR-BioRS guidelines are provided in the interface. In step 3, FAIRshare provides a convenient form-type
interface so the user can provide information about their software. The fields of the form correspond to fields
from the codemeta.json and CITATION.cff metadata files and the user’s entries are used to automatically gen-
erate and include these metadata files in the user’s root software directory. If a codemeta.json file is found at
the location selected by the user in step 1, information from that file is automatically pulled by FAIRshare to
pre-populate the form. If no codemeda.json file is found and the user files are located in a GitHub repository,
FAIRshare will automatically pull available information from the repository metadata (authors, keywords, etc.)
and pre-populate related fields of the form. Throughout the forms, tooltips have been included to help users
enter the required information. Suggestions are also made for some of the fields to help the user provide inputs
rapidly (e.g., “National Institutes of Health” is suggested for the “Funder” field, “Scientific” is suggested for
the “Software type” field, etc.). If any of the fields require an entry following a controlled vocabulary for the
codemeta.json or CITATION.cff metadata files, FAIRshare typically provides a dropdown list of standardized
options to select from to ensure metadata files are generated without error. FAIRshare also makes it mandatory
to provide inputs for the metadata fields that were deemed essential by the FAIR-BioRS guidelines. In step 4, the
user is prompted to select a license for their software if a LICENSE file is not found in their software directory.
A dropdown list is provided to select any one of the licenses recommended by the OSI. The “MIT” and “Apache
2.0” licenses are suggested in the user interface since they have been deemed optimal for making research
software FAIR. The user can read and edit the terms of a selected license directly in the app and can request
FAIRshare to include a LICENSE file with associated terms in their software. In step 5, the user is prompted to
select an archival repository to share their software files. In the current release, FAIRshare supports sharing on
both Zenodo and Figshare. A convenient interface is provided to connect FAIRshare to the user’s Zenodo or
Figshare account using a token. Upon login, the user is prompted to provide information about the software
that is required by the selected repository. FAIRshare provides a form-type interface such that the user can eas-
ily input that information. The interface closely mimics the interface from the selected repository platform to

Select a license

Select software files

FAIRshare is set to work
with files stored on

computer or on GitHub

An intui�ve UI is available
to provide informa�on

that will be used for
genera�ng codemeta and
CITATION metadata files

Provide metadata

A series of Yes/No
ques�on is asked to

ensure best prac�ces
were properly followed

Support is given to select
an OSI-approved license
and request a LICENCE
term file to be included

2 43

Process for making biomedical research software FAIR

5

Select archival repo

6

Verify best practices

An interface is provided
to connect FAIRshare to
your archival repository

account (Zenodo and
Figshare are supported)

871

Upload dataset

Publish dataset

Register on bio.tools

FAIRshare will add
metadata files with your
so�ware files and upload

all on the repository

Make the dataset openly
accessible through the

repository and get a DOI

Through a simple
interface, connect to the

bioinforma�c registry
bio.tools and register

your so�ware

Fig. 3  Illustration of the step-by-step guided workflow in FAIRshare for implementing the FAIR-BioRS
guidelines and making biomedical research software FAIR. Users of FAIRshare can follow this workflow when
they are ready to publish a new version of their biomedical research software.

https://doi.org/10.1038/s41597-023-02463-x

9Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

maintain familiarity. Since most of the information required by Zenodo and Figshare is similar to that required
in the codemeta.json file, FAIRshare pre-populates the form based on user inputs during step 3. Step 6 depends
on the location of the user’s software files as specified during step 1:

•	 If the source files are located on the user’s computer, a summary of the user’s software files, including files
to be generated by FAIRshare, is provided to the user in step 6. Once the user hits the “Start upload” but-
ton, FAIRshare creates a draft deposition on the selected archival repository to reserve a DOI, generates the
codemeta.json and CITATION metadata files (with the reserved DOI included) and LICENSE file in the
software folder, zips the folder, and uploads it in the draft deposition to create a draft software dataset.

•	 If the files are located on a GitHub repository, FAIRshare provides an interface to include any additional
files in their archive if desired besides those already on their GitHub repository (e.g., executables). Then, a
summary of the user’s software files, including files to be generated by FAIRshare, is shown to the user in step
6. Once the user hits the “Start upload” button, FAIRshare creates a draft deposition on the selected archival
repository to reserve a DOI, generate and push the codemeta.json and CITATION metadata files (with the
reserved DOI included) and LICENSE file on their GitHub repository. The GitHub repository content is then
downloaded, and any additional files specified by the user are included in the downloaded folder. FAIRshare
then zips that software folder and uploads it into the draft deposition to create a draft software dataset.

Upon completion, the user is prompted in step 7 to publish their draft dataset on the archival repository,
such that it becomes publicly accessible, and is also given the option to create a GitHub release of their software
application. A message is shown to the user after completing step 7 to encourage them to archive their software
on Software Heritage and register it on bio.tools. If the user selects to register on their software on bio.tools, an
interface is provided in step 8 where the user can connect FAIRshare to their bio.tools account, enter basic meta-
data required by bio.tools (which is prepopulated based on information already available from the codemeta.
json file), and register their software.

Besides combining all required resources for making software FAIR into a single interface, FAIRshare also
provides some advantages over existing tools. For instance, the Zenodo/GitHub integration allows users to
automatically create a Zenodo deposit every time a GitHub release is created. However, it does not allow to
get the DOI of the deposit before it is published and therefore it cannot be included in the codemeta.json and
CITATION.cff metadata files or in the software documentation, which violates principles F3 that prescribes for
metadata to “include the identifier of the software they describe”. This is addressed in FAIRshare as it creates a
draft deposit of the software first on Zenodo and Figshare to reserve a DOI and include it in the metadata before
the software is published on either archival repository.

Discussion
While research software constitutes the backbone of biomedical research, the amount of effort dedicated
to ensuring software reusability and long-term sustainability is nowhere near the effort dedicated to data.
The Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles published provide a foundation
for managing digital research objects, including software, such that their reusability by humans and machines
is optimized. However, they fall short to capture the specific traits of software such as dependencies and ver-
sioning. The Research Data Alliance (RDA) FAIR for Research Software (FAIR4RS) Working Group derived
much-needed reformulated FAIR principles to address this shortcoming. Similar to the original FAIR guiding
principles, the FAIR4RS principles remain aspirational in nature, intending to provide a general framework
for all research software. As such, they do not offer specific, practical instructions or actionable instructions
to researchers. To bridge this gap, we introduced in this work the first minimal and actionable step-by-step
guidelines for biomedical researchers to make their research software compliant with the FAIR4RS principles.
Our process for deriving these guidelines started with establishing high-level instructions to fulfill each of the
FAIR4RS principles based on FAIR4RS v1.0 publications. Noticing common themes across the instructions,
we organized them into five high-level categories. For each category, we identified outstanding questions that
needed answers to fulfill the associated instructions effectively. Subsequently, we conducted a thorough literature
review to explore existing practices that address these questions. Combining our findings and our own evalua-
tion, we ultimately established the FAIR-BioRS guidelines, which are the first minimal and actional guidelines
for making research software FAIR by fulfilling all the requirements of the FAIR4RS principles.

The reviewed resources included the best practices suggested by the NIH for sharing research software
(https://datascience.nih.gov/tools-and-analytics/best-practices-for-sharing-research-software-faq). Therefore,
the FAIR-BioRS guidelines align with the recommendations of the NIH for sharing research software.
Additionally, the current version 2.0.0 of the FAIR-BioRS guidelines incorporates suggestions from various com-
munities. Indeed, after establishing v1.0.1 of the guidelines, we initiated a significant effort to raise awareness
about the guidelines and get community feedback. The guidelines were presented62 at the Bioinformatics Open
Source Conference (BOSC) 2022 organized by the Open Bioinformatics Foundation (OBF). We also introduced
the FAIR-BioRS guidelines as a topic of collective work during the CollaborationFest that followed BOSC, which
allowed for in-depth discussions with OBF members. The guidelines were also presented to SciCodes, the con-
sortium of scientific software registries and repositories. In addition, the guidelines are being implemented as
part of the Software Development Best Practices of the AI-READI project63, a large-scale human-data collec-
tion and tools development project funded by the NIH Bridge2AI Program. Finally, the guidelines were also
presented through various webinars. Overall, we received valuable suggestions on v1.0.1 of the FAIR-BioRS
guidelines during those events which helped greatly in shaping v2.0.0 presented in this manuscript. Our com-
munity outreach effort is still ongoing. Our abstract on the FAIR-BioRS guidelines v2.0.0 has been selected

https://doi.org/10.1038/s41597-023-02463-x
https://datascience.nih.gov/tools-and-analytics/best-practices-for-sharing-research-software-faq

1 0Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

for presentation at BOSC 2023. We are in discussion with the RDA Software Source Code Interest Group, the
maintenance home for the FAIR4RS principles, to present the FAIR-BioRS guidelines. We are similarly planning
a presentation for the Elixir Tools team. We have also initiated discussions with the NIH to recommend the
FAIR-BioRS guidelines in addition to or in lieu of their current guidelines for sharing research software that does
not fully align with the FAIR4RS principles. We are hoping such an effort will help with raising awareness about
the FAIR-BioRS guidelines and lead to their adoption by various biomedical communities.

To ensure the FAIR-BioRS guidelines are easily accessible and widely embraced by researchers, we have
developed a workflow to streamline the process of implementing the FAIR-BioRS guidelines. This workflow
is incorporated in FAIRshare, a software application aimed at simplifying the processes for making biomed-
ical research data and software FAIR. FAIRshare takes the user’s software-related dataset as input when they
are ready to publish a new software version and walks them step-by-step into implementing the FAIR-BioRS
guidelines through an intuitive graphical user interface and automation. This way, researchers can implement
the FAIR-BioRS guidelines even without prior knowledge of them and in fact learn about these guidelines
along the way. FAIRshare is free and open-source to encourage community contributions to keep up with the
ever-evolving FAIR guidelines.

While establishing the FAIR-BioRS guidelines, we identified several practical gaps and needs for complying
with the FAIR4RS principles. Using our own understanding of research software and external feedback, we
established the best possible guidelines to comply with each of the FAIR4RS principles to remedy the gaps.
Mainly, there is a lack of community agreement on standards and best practices for developing and document-
ing software. In addition, there is a lack of community agreement on metadata files and ontologies to use for
describing biomedical research software. There is a need to consolidate the various developments (CodeMeta,
CFF, Bioschemas, etc.) so developers of biomedical research software can easily navigate through them and
ideally use a single metadata file in their software. Moreover, there is a lack of community agreements on stand-
ard file formats to use for different biomedical data types, which prevent standardization of the data that soft-
ware read, write, and exchange. While FAIRsharing is a useful registry, it is still very overwhelming to navigate
through a large number of existing standards, and consolidation is required here as well. There is also a lack of
agreement on a suitable identifier to use for software (DOI, SWHID, bio.tools ID, RRID, etc.). We hope that our
work will help bring awareness about these needs to the relevant communities. Our work and choices made in
the FAIR-BioRS guidelines may even guide them in their efforts to address them.

We expect the FAIR-BioRS guidelines and related resources to evolve over time based on several factors.
Given the gaps mentioned above, we made several decisions in the guidelines. These decisions may evolve as
we receive more suggestions and feedback from the research software community, for instance, to remove some
guidelines as they may be above what is expected by the FAIR4RS principles or to add more to cover missing
areas (such as linting guidelines, using codes of conduct, community governance, etc). Moreover, the guidelines
can evolve as new community agreements are established to address the above-mentioned gaps. We have thus
established a dedicated FAIR-BioRS GitHub organization to maintain all related resources. It includes a repos-
itory where new versions of the FAIR-BioRS guidelines will be maintained and published. This repository will
also be used to receive community feedback and suggestions through the GitHub issues. We plan next to open
ownership of the FAIR-BioRS GitHub organization to other members of the biomedical research software com-
munity such that this eventually becomes a community-driven effort that is perpetuated over time.

Next, we expect to establish more specific guidelines for different types of software (e.g., establish the
FAIR-BioRS Python package guidelines or the FAIR-BioRS Jupyter notebook guidelines) such that it becomes
even easier for developers of biomedical research software to comply with the FAIR4RS principles. In paral-
lel, we plan to integrate additional resources in FAIRshare such as sharing on Software Heritage, registering
on the RRID portal, or working from other version control system platforms than GitHub such as Bitbucket
and GitLab. We also plan to include additional automation to further streamline the FAIRshare process for
making research software FAIR. These include for instance automatically validating the implementation of
language-specific standards or prefilling keywords and descriptions using Natural Language Processing. A major
limitation of FAIRshare is that it is intended to help only when a user is ready to publish a new version of their
software, when it might be inconvenient for the user to go back and make changes to their source code, e.g. for
aligning with language specific standards or adding in code comments. We are therefore planning the develop-
ment of a tool that integrates directly with version control system platforms and assists users in complying with
the FAIR-BioRS guidelines right from the beginning and throughout the development of their software. As the
FAIR-BioRS guidelines, FAIRshare, and other resources related to the FAIR-BioRS guidelines are expected to
evolve over time, we have established a dedicated GitHub repository called “Hub” in the FAIR-BioRS organ-
ization (https://github.com/FAIR-BioRS/Hub). We refer to that repository to access the latest versions of all
resources related to the FAIR-BioRS guidelines and track the interaction between their different versions.

By making the FAIR-BioRS guidelines an integral part of their software development practices, we aspire for
the biomedical research software community to wholeheartedly embrace FAIR practices. The adoption of these
guidelines will enhance the reusability of research software, thereby accelerating the pace of discoveries and
innovations within the field.

Methods
Definition of research software.  The FAIR4RS Working Group was composed of four subgroups, each
focusing on different aspects of their effort. Group 3 focused on defining research software through a thorough
review of the literature. In the outcome of their effort, they provided the following short and concise definition:
“Research Software includes source code files, algorithms, scripts, computational workflows and executables that
were created during the research process or for a research purpose. Software components (e.g., operating systems,

https://doi.org/10.1038/s41597-023-02463-x
https://github.com/FAIR-BioRS/Hub

1 1Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

libraries, dependencies, packages, scripts, etc.) that are used for research but were not created during or with a
clear research intent should be considered software in research and not Research Software”64. The actionable
guidelines developed in this work are for research software based on this definition (although they may be appli-
cable beyond). This includes code, scripts, models, notebooks, libraries, executables, and other forms as long as
it fits the previously cited definition. Given that our work was born with the aim of making COVID-19-related
data and research software FAIR, our focus was on deriving guidelines for biomedical research software, although
some of the findings may be applicable to other fields of research.

Deriving concise instructions for fulfilling the FAIR4RS principles.  The FAIR4RS principles v1.0
contain 17 guiding principles for FAIR research software (vs 15 in the original FAIR principles), including 6 for
Findability, 4 for Accessibility, 2 for Interoperability, and 5 for Reusability. We analyzed details about each princi-
ple provided in the FAIR4RS v1.0 write-up11 and its introduction manuscript12. Based on these details, we derived
concise instructions to be followed for fulfilling each of the principles (provided in the “fair4rsv1.0Instructions”
tab of the “data.xlsx” file, c.f. Data Availability section), i.e., instructions that need to be followed for implement-
ing each principle. We identified that these instructions had overlapping themes and were fitting overall into five
actionable categories: 1) Develop software following standards and best practices, 2) Include metadata, 3) Provide
a license, 4) Share software on a repository, 5) Register on a registry. The action-based instructions were thus
regrouped into these categories into one instruction paragraph per category as shown in Supplementary Table 1.
Looking at the instructions for each category, we realized that there were several outstanding questions that
needed to be answered for deriving actionable guidelines to fulfill the instructions. These questions are provided
in Supplementary Table 1.

Literature review for practical implementation of FAIR4RS principles.  We conducted a literature
review to help with answering these questions and identifying actionable recommendations for fulfilling the
instructions from each category. Since discussion around FAIR for research software is very recent and not wide-
spread in the literature, we reviewed literature not only related to FAIR research software but also related to
making research software reusable without necessarily a reference to the FAIR principles. Our review was also not
restricted to biomedical-related articles for the same reason. Our overall review strategy consisted of including
resources in the English language from the following groups:

•	 Group 1: We started by reviewing the six published resources on FAIR principles for research software6,8–12.
•	 Group 2: Subsequently, we reviewed the resources referenced in studies from group 1 that were deemed rele-

vant based on their title and abstract.
•	 Group 3: We also reviewed resources listed as of February 2023 in the FAIR4Software reading materi-

als (https://www.rd-alliance.org/group/software-source-code-ig/wiki/fair4software-reading-materials),
FAIR4RS Subgroup 4 reading list of new research65, and the Zenodo community page of the FAIR4RS Work-
ing Group (https://zenodo.org/communities/fair4rs) that were deemed relevant based on their title and
abstract and were not already encountered in the previous groups.

•	 Group 4: Given our focus on biomedical research software, we also searched literature related to FAIR for
research software on PubMed. The start period was set to January 2015 since the concept of FAIR data was
introduced then, and the end period was February 2023. We read resources that were deemed relevant based
on their title and abstract and were not already encountered in the previous groups.

•	 Group 5: Finally, we included additional studies available as of February 2023 from the authors’ knowledge
that were not already read in the previous groups.

Details about the review process are provided in the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) diagram in Fig. 4. More details about the review strategy, including the PubMed
search, are included in the “reviewStrategy” sheet of the “data.xlsx” file associated with this manuscript (c.f. Data
Availability section). A list of all the resources encountered during our review is provided in the “resourcesList”
sheet of the same file. Initially, we copied the relevant information word-for-word as written in the reviewed
resources. This is available in the “resourcesReview” sheet of the “data.xlsx” file associated with this dataset (c.f.
Data Availability section). Subsequently, we only retained keywords such as the name of the suggested metadata
file, repository, etc. to facilitate further analysis. Information from any of the topics that applied to only specific
fields of research other than biomedical were left out. This is available in the “resourcesReviewKeywords” sheet
of the same file.

We developed a Jupyter notebook-based script (c.f. Code Availability section) that used scientific packages
such as pandas66,67, Matplotlib68,69, and seaborn70 to analyze our review data. We used findings from the reviewed
resources, combined with our own assessment and external suggestions (c.f. Discussion section) when consen-
sus was lacking in the literature, to derive recommendations for fulfilling the instructions from each category.
Finally, we organized the recommendations into step-by-step guidelines that follow the typical software develop-
ment process to make them easier to implement. This led to the first minimal and actionable step-by-step guide-
lines for making biomedical research software FAIR such that all the requirements of the FAIR4RS principles are
met, i.e., the FAIR-BioRS guidelines.

User support tool: FAIRshare.  FAIRshare is inspired by the software called SODA for SPARC, which has
been developed by our team to assist researchers funded by the NIH SPARC (Stimulating Peripheral Activity to
Relieve Conditions) program in making their data FAIR according to the SPARC data standards71–73. Specifically,
FAIRshare combines intuitive user interfaces and automation to guide and assist the researchers through the

https://doi.org/10.1038/s41597-023-02463-x
https://www.rd-alliance.org/group/software-source-code-ig/wiki/fair4software-reading-materials
https://zenodo.org/communities/fair4rs

1 2Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

suitable processes for making their research data and software FAIR and sharing it in an adequate repository.
FAIRshare is a cross-platform desktop software application, allowing researcher’s data to remain on their com-
puter or a storage medium of their choice until they are ready to share it on a suitable archival repository. It is built
using Electron, GitHub’s framework for building cross-platform desktop applications using web technologies
(HTML, CSS, JavaScript, NodeJS). Vue.js is used as the frontend framework to build intuitive, interactive, and
responsive user interfaces. The backend is built using Flask, a microweb framework written in Python. The use of
Python for the backend of the application was motivated by the popularity of Python in the biomedical research
field and the availability of relevant existing packages and APIs for curating research data and software. More
details are available in the dedicated GitHub repository for FAIRshare (c.f. Code Availability section).

Data availability
The data associated with this manuscript consists of a file named ‘data.xlsx‘ that contains details about the
data collected and processed during the review of relevant resources. Since no FAIR guidelines were found for
structuring review data, we structured the dataset according to the SPARC Data Structure (SDS), which provides
a broad data and metadata structure to organize biomedical research data according to the FAIR principles72.
The SPARC data curation software SODA for SPARC71–73 was used to organize the data and prepare the metadata
files. The dataset is maintained in a GitHub repository called “Data” in the FAIR-BioRS GitHub organization and
the latest version associated with this manuscript (v3.0.0) is also archived on Zenodo74 under the permissible
Creative Commons Attribution 4.0 International (CC-BY) license.

Code availability
The code associated with this manuscript consists of a “main.ipynb” Jupyter notebook, the source code of
FAIRshare, and the source code of the FAIRshare documentation. The “main.ipynb” Jupyter notebook contains
the code used to analyze the findings from the review and to conduct other analyses presented in this manuscript
(e.g., generate Fig. 1). This notebook is available in a GitHub repository called “Code” (also maintained in the
FAIR-BioRS GitHub organization). The dataset associated with this notebook was made FAIR according to
the FAIR-BioRS guidelines using FAIRshare v2.1.075, and shared under the permissible MIT license. The latest
version associated with this manuscript (v3.0.0) is archived on Zenodo76. The source code for FAIRshare is hosted
on GitHub (https://github.com/fairdataihub/FAIRshare). The current version of FAIRshare (v2.1.0) discussed
in this manuscript was made FAIR using FAIRshare itself, and shared on Zenodo75 under the permissible MIT
license. The source code for the FAIRshare documentation is maintained on GitHub as well (https://github.com/
fairdataihub/FAIRshare-Docs) and the current version (5.0.0) was shared under the permissible MIT license on
Zenodo77.

Received: 9 June 2022; Accepted: 10 August 2023;
Published: xx xx xxxx

Records identified
through database

searching
(n = 89)

Additional records
identified through other

sources
(n = 224)

Records after duplicates removed
(n = 261)

Records screened
(n = 261)

Records excluded
(n = 191)

Full-text articles
assessed for eligibility

(n = 70)

Full-text articles
excluded, with reasons

(n = 31)

Studies included in
qualitative synthesis

(n = 39)

Studies included in
quantitative synthesis

(meta-analysis)
(n = 39)

noitacifitnedI
gnineercS

ytilibigilE
dedulcnI

Fig. 4  PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram providing an
overview of our literature review process.

https://doi.org/10.1038/s41597-023-02463-x
https://github.com/fairdataihub/FAIRshare
https://github.com/fairdataihub/FAIRshare-Docs
https://github.com/fairdataihub/FAIRshare-Docs

13Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
	 1.	 Hettrick, S. softwaresaved/software_in_research_survey_2014: Software in research survey. Zenodo https://doi.org/10.5281/

zenodo.1183562 (2018).
	 2.	 Nangia, U. & Katz, D. S. Track 1 Paper: Surveying the U.S. National Postdoctoral Association Regarding Software Use and Training

in Research. Figshare https://doi.org/10.6084/m9.figshare.5328442.v1 (2017).
	 3.	 Hannay, J. E. et al. How do scientists develop and use scientific software? in 2009 ICSE Workshop on Software Engineering for

Computational Science and Engineering 1–8 (2009).
	 4.	 Prabhu, P. et al. A survey of the practice of computational science. in SC ’11: State of the Practice Reports 1–12 (IEEE, 2011).
	 5.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016).
	 6.	 Lamprecht, A.-L. et al. Towards FAIR principles for research software. Data sci. 3, 37–59 (2020).
	 7.	 Katz, D. S. et al. Software vs. data in the context of citation. PeerJ Preprints Preprint at https://doi.org/10.7287/peerj.preprints.2630v1

(2016).
	 8.	 Katz, D. S. et al. A Fresh Look at FAIR for Research Software. arXiv Preprint at http://arxiv.org/abs/2101.10883 (2021).
	 9.	 Katz, D. S., Gruenpeter, M. & Honeyman, T. Taking a fresh look at FAIR for research software. Patterns 2, 100222 (2021).
	10.	 Chue Hong, N. P. et al. FAIR Principles for Research Software (FAIR4RS Principles). Research Data Alliance https://doi.

org/10.15497/RDA00065 (2021).
	11.	 Chue Hong, N. P. et al. FAIR Principles for Research Software (FAIR4RS Principles) (1.0). https://doi.org/10.15497/RDA00068 (2022).
	12.	 Barker, M. et al. Introducing the FAIR Principles for research software. Sci Data 9, 622 (2022).
	13.	 Hasselbring, W., Carr, L., Hettrick, S., Packer, H. & Tiropanis, T. From FAIR research data toward FAIR and open research software.

it - Information Technology 62, 39–47 (2020).
	14.	 Martinez-Ortiz, C., Kuzak, M., Spaaks, J. H., Maassen, J. & Bakker, T. Five recommendations for ‘FAIR software’ (1.0). Zenodo

https://doi.org/10.5281/zenodo.4310217 (2020).
	15.	 RDA COVID-19 Working Group. RDA COVID-19 Recommendations and Guidelines on Data Sharing. Research Data Alliance

https://doi.org/10.15497/rda00052 (2020).
	16.	 Peer, L. et al. Challenges of Curating for Reproducible and FAIR Research Output. Research Data Alliance https://doi.org/10.15497/

RDA00063 (2021).
	17.	 Gruenpeter, M. et al. M2.15 Assessment report on ‘FAIRness of software’ (1.1). Zenodo https://doi.org/10.5281/zenodo.4095092

(2020).
	18.	 Anzt, H. et al. An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for

action. F1000Res. 9, 295 (2021).
	19.	 Alves, R. et al. ELIXIR Software Management Plan for Life Sciences. BioHackrXiv Preprint at https://doi.org/10.37044/osf.io/k8znb

(2021).
	20.	 Sansone, S.-A. et al. FAIRsharing as a community approach to standards, repositories and policies. Nat. Biotechnol. 37, 358–367

(2019).
	21.	 Wilson, G. et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13, e1005510 (2017).
	22.	 Silva, L. B., Jimenez, R. C., Blomberg, N. & Oliveira, J. L. General guidelines for biomedical software development. F1000Research 6,

273 (2017).
	23.	 Leprevost, F. et al. On best practices in the development of bioinformatics software. Front. Genet. 5, 199 (2014).
	24.	 Jiménez, R. C. et al. Four simple recommendations to encourage best practices in research software. F1000Res. 6 (2017).
	25.	 Erdmann, C. et al. Top 10 FAIR Data & Software Things. Zenodo https://doi.org/10.5281/zenodo.2555498 (2019).
	26.	 Martinez-Ortiz, C. et al. FAIR4RS: Adoption support. Zenodo https://doi.org/10.5281/zenodo.6258366 (2022).
	27.	 The Software Sustainability Institute. Checklist for a Software Management Plan. Zenodo https://doi.org/10.5281/zenodo.2159713

(2018).
	28.	 The Turing Way Community. The Turing Way: A handbook for reproducible, ethical and collaborative research. Zenodo https://doi.

org/10.5281/zenodo.7625728 (2022).
	29.	 Madduri, R. et al. Reproducible big data science: A case study in continuous FAIRness. PLoS One 14, e0213013 (2019).
	30.	 Lee, B. D. Ten simple rules for documenting scientific software. PLoS Comput. Biol. 14, e1006561 (2018).
	31.	 European Commission, Directorate-General for Research and Innovation. Scholarly Infrastructures for Research Software: Report

from the EOSC Executive Board Working Group (WG) Architecture Task Force (TF) SIRS. Publications Office https://doi.
org/10.2777/28598 (2020).

	32.	 Ferguson, C. et al. D3.1 Survey of Current PID Services Landscape. Zenodo https://doi.org/10.5281/zenodo.1324296 (2018).
	33.	 Di Cosmo, R. et al. Curated archiving of research software artifacts: lessons learned from the French open archive (HAL). in IDCC

2020-International Digital Curation Conference, https://doi.org/10.2218/ijdc.v15i1.698 (2020).
	34.	 Katz, D. S. et al. Software Citation Implementation Challenges. arXiv Preprint at http://arxiv.org/abs/1905.08674 (2019).
	35.	 Struck, A. Research Software Discovery: An Overview. in 2018 IEEE 14th International Conference on e-Science (e-Science) 33–37

(2018).
	36.	 Erdmann, C. & Stall, S. Software Citation Checklist. Zenodo https://doi.org/10.5281/zenodo.4706164 (2021).
	37.	 Boettiger, C. et al. ropensci/codemetar: codemetar 0.3.0. Zenodo https://doi.org/10.5281/zenodo.4748266 (2021).
	38.	 Druskat, S. et al. Citation File Format. Zenodo https://doi.org/10.5281/zenodo.5171937 (2021).
	39.	 Ison, J. et al. EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics 29,

1325–1332 (2013).
	40.	 Ison, J. et al. edamontology/edamontology: EDAM 1.25. Zenodo https://doi.org/10.5281/zenodo.3899895 (2020).
	41.	 Ison, J. et al. biotoolsSchema: a formalized schema for bioinformatics software description. Gigascience 10, (2021).
	42.	 Castro, L. J. et al. Data validation and schema interoperability. Preprint at https://biohackrxiv.org/8qdse/.
	43.	 Ison, J. et al. The bio.tools registry of software tools and data resources for the life sciences. Genome Biol. 20, 164 (2019).
	44.	 Bach, F. et al. Model Policy on sustainable software at the Helmholtz centers. Helmholtz Open Science Office https://doi.org/10.48440/

OS.HELMHOLTZ.041 (2019).
	45.	 Crusoe, M. R. et al. Methods included: standardizing computational reuse and portability with the Common Workflow Language.

Commun. ACM 65, 54–63 (2022).
	46.	 Katz, D. S. et al. Recognizing the value of software: a software citation guide. F1000Res. 9, 1257 (2020).
	47.	 Bazuine, M. T. U. Delft Guidelines on Research Software: Licensing, Registration and Commercialisation. Zenodo https://doi.

org/10.5281/zenodo.4629635 (2021).
	48.	 Benureau, F. C. Y. & Rougier, N. P. Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions.

Front. Neuroinform. 11, 69 (2017).
	49.	 Smith, A. M., Katz, D. S. & Niemeyer, K. E. Software citation principles. PeerJ Comput. Sci. 2, e86 (2016).
	50.	 Jackson, M. Software Deposit: Where to deposit software. Zenodo https://doi.org/10.5281/zenodo.1327329 (2018).
	51.	 Rix, K. Expert evidence: Frequently asked questions. J. Forensic Leg. Med. 77, 102106 (2021).
	52.	 Fenner, M., Katz, D. S., Nielsen, L. H. & Smith, A. DOI Registrations for Software. Datacite Blog https://doi.org/10.5438/1NMY-9902

(2018).
	53.	 Splawa-Neyman, P. Figshare and the FAIR data principles. Figshare https://doi.org/10.6084/m9.figshare.7476428.v1 (2018).
	54.	 Gruenpeter, M. Software as a first class output in a FAIR ecosystem. Zenodo https://doi.org/10.5281/zenodo.5563028 (2021).

https://doi.org/10.1038/s41597-023-02463-x
https://doi.org/10.5281/zenodo.1183562
https://doi.org/10.5281/zenodo.1183562
https://doi.org/10.6084/m9.figshare.5328442.v1
https://doi.org/10.7287/peerj.preprints.2630v1
http://arxiv.org/abs/2101.10883
https://doi.org/10.15497/RDA00065
https://doi.org/10.15497/RDA00065
https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.4310217
https://doi.org/10.15497/rda00052
https://doi.org/10.15497/RDA00063
https://doi.org/10.15497/RDA00063
https://doi.org/10.5281/zenodo.4095092
https://doi.org/10.37044/osf.io/k8znb
https://doi.org/10.5281/zenodo.2555498
https://doi.org/10.5281/zenodo.6258366
https://doi.org/10.5281/zenodo.2159713
https://doi.org/10.5281/zenodo.7625728
https://doi.org/10.5281/zenodo.7625728
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://doi.org/10.5281/zenodo.1324296
https://doi.org/10.2218/ijdc.v15i1.698
http://arxiv.org/abs/1905.08674
https://doi.org/10.5281/zenodo.4706164
https://doi.org/10.5281/zenodo.4748266
https://doi.org/10.5281/zenodo.5171937
https://doi.org/10.5281/zenodo.3899895
https://biohackrxiv.org/8qdse/
https://doi.org/10.48440/OS.HELMHOLTZ.041
https://doi.org/10.48440/OS.HELMHOLTZ.041
https://doi.org/10.5281/zenodo.4629635
https://doi.org/10.5281/zenodo.4629635
https://doi.org/10.5281/zenodo.1327329
https://doi.org/10.5438/1NMY-9902
https://doi.org/10.6084/m9.figshare.7476428.v1
https://doi.org/10.5281/zenodo.5563028

1 4Scientific Data | (2023) 10:557 | https://doi.org/10.1038/s41597-023-02463-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	55.	 Hornik, K. The comprehensive R archive network. Wiley Interdiscip. Rev. Comput. Stat. 4, 394–398 (2012).
	56.	 McDougal, R. A. et al. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J.

Comput. Neurosci. 42, 1–10 (2017).
	57.	 Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).
	58.	 Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5,

R80 (2004).
	59.	 Chue Hong, N. FAIR4RS Software (FAIR4RS). Zenodo https://doi.org/10.5281/zenodo.6374314 (2022).
	60.	 Bandrowski, A. et al. The Resource Identification Initiative: A Cultural Shift in Publishing. Neuroinformatics 14, 169–182 (2016).
	61.	 Patel, B., Soundarajan, S., Ménager, H. & Hu, Z. FAIR Biomedical Research Software (FAIR-BioRS) guidelines. Zenodo https://doi.

org/10.5281/zenodo.8115012 (2023).
	62.	 Patel, B. & Soundarajan, S. Making biomedical research software findable, accessible, interoperable, reusable (FAIR) with FAIRshare.

F1000Res. 11, (2022).
	63.	 Patel, B., Soundarajan, S., McWeeney, S., Cordier, B. A. & Benton, E. S. Software Development Best Practices of the AI-READI

Project. Zenodo https://doi.org/10.5281/zenodo.7363102 (2022).
	64.	 Gruenpeter, M. et al. Defining Research Software: a controversial discussion. Zenodo https://doi.org/10.5281/zenodo.5504016

(2021).
	65.	 FAIR4RS Working Group. FAIR4RS Subgroup 4 - reading list of new research. Zenodo https://doi.org/10.5281/zenodo.4555865

(2021).
	66.	 McKinney, W. Data Structures for Statistical Computing in Python. in Proceedings of the 9th Python in Science Conference. https://

doi.org/10.25080/majora-92bf1922-00a (SciPy, 2010).
	67.	 The pandas development team. pandas-dev/pandas: Pandas 1.4.2. Zenodo, https://doi.org/10.5281/zenodo.6408044 (2022).
	68.	 Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).
	69.	 Caswell, T. A. et al. matplotlib/matplotlib: REL: v3.5.2. Zenodo https://doi.org/10.5281/zenodo.6513224 (2022).
	70.	 Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
	71.	 Patel, B., Srivastava, H., Aghasafari, P. & Helmer, K. SPARC: SODA, an interactive software for curating SPARC datasets. FASEB J.

34, 1–1 (2020).
	72.	 Bandrowski, A. et al. SPARC Data Structure: Rationale and Design of a FAIR Standard for Biomedical Research Data. bioRxiv

2021.02.10.430563, https://doi.org/10.1101/2021.02.10.430563 (2021).
	73.	 Patel, B. et al. SODA (Software to Organize Data Automatically) for SPARC v12.0.2. Zenodo https://doi.org/10.5281/zenodo.8111588

(2023).
	74.	 Patel, B., Soundarajan, S., Ménager, H. & Hu, Z. Dataset: FAIR Biomedical Research Software (FAIR-BioRS) manuscript v3.0.0.

Zenodo https://doi.org/10.5281/zenodo.8112100 (2023).
	75.	 Soundarajan, S. & Patel, B. FAIRshare: FAIR data and software sharing made easy (v2.1.0). Zenodo https://doi.org/10.5281/

zenodo.8112716 (2023).
	76.	 Patel, B. Code: FAIR Biomedical Research Software (FAIR-BioRS) manuscript v3.0.0. Zenodo https://doi.org/10.5281/

zenodo.8112631 (2023).
	77.	 Soundarajan, S. & Patel, B. FAIRshare docs v5.0.0. Zenodo https://doi.org/10.5281/zenodo.8111725 (2023).

Acknowledgements
This work was supported by grants NIH U01AI150741 and NIH SPARC OT2OD030213. We thank Michael
Crusoe, Hilmar Lapp, and Morane Gruenpeter for their valuable feedback that helped shape the FAIR-BioRS
guidelines. We also thank the BOSC Community for their tremendous support in establishing and improving the
FAIR-BioRS guidelines.

Author contributions
B. Patel led the conception and design of the FAIR-BioRS guidelines, managed the acquisition/analysis/
interpretation of data from the reviewed studies, supervised the development of FAIRshare, and contributed to
drafting/revising the manuscript. S. Soundarajan led the development of FAIRshare and contributed to revising
the manuscript. Z. Hu and H. Ménager contributed to the conception and design of the FAIR-BioRS guidelines,
and revising the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/
10.1038/s41597-023-02463-x.
Correspondence and requests for materials should be addressed to B.P.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02463-x
https://doi.org/10.5281/zenodo.6374314
https://doi.org/10.5281/zenodo.8115012
https://doi.org/10.5281/zenodo.8115012
https://doi.org/10.5281/zenodo.7363102
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.4555865
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.5281/zenodo.6408044
https://doi.org/10.5281/zenodo.6513224
https://doi.org/10.1101/2021.02.10.430563
https://doi.org/10.5281/zenodo.8111588
https://doi.org/10.5281/zenodo.8112100
https://doi.org/10.5281/zenodo.8112716
https://doi.org/10.5281/zenodo.8112716
https://doi.org/10.5281/zenodo.8112631
https://doi.org/10.5281/zenodo.8112631
https://doi.org/10.5281/zenodo.8111725
https://doi.org/10.1038/s41597-023-02463-x
https://doi.org/10.1038/s41597-023-02463-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool

	Introduction

	Results

	Overview.
	High-level categories and instructions to fulfill the FAIR4RS principles.
	Review of current practices and resulting recommendations.
	Reviewed studies.
	Category 1: Develop software following standards and best practices.
	Category 2: Include metadata.
	Category 3: Provide a license.
	Category 4: Share software in a repository.
	Category 5: Register on a registry.

	FAIR Biomedical research software guidelines.
	FAIRshare.

	Discussion

	Methods

	Definition of research software.
	Deriving concise instructions for fulfilling the FAIR4RS principles.
	Literature review for practical implementation of FAIR4RS principles.
	User support tool: FAIRshare.

	Acknowledgements

	Fig. 1 Evolution of the number of new biomedical-related software repositories created on GitHub in a given year (rounded to the hundredth when >1,000).
	Fig. 2 Overall process followed to establish the current version of the FAIR-BioRS guidelines.
	Fig. 3 Illustration of the step-by-step guided workflow in FAIRshare for implementing the FAIR-BioRS guidelines and making biomedical research software FAIR.
	Fig. 4 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram providing an overview of our literature review process.
	Table 1 The FAIR-BioRS guidelines version 2.

