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Identifying tumour 
microenvironment-related 
signature that correlates with 
prognosis and immunotherapy 
response in breast cancer
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Tumor microenvironment (TME) plays important roles in prognosis and immune evasion. However, 
the relationship between TME-related genes and clinical prognosis, immune cell infiltration, and 
immunotherapy response in breast cancer (BRCa) remains unclear. this study described the tME 
pattern to construct a TME-related prognosis signature, including risk factors PXDNL, LINC02038 and 
protective factors SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108, as an independent prognostic factor 
for BRCa. We found that the prognosis signature was negatively correlated with the survival time of 
BRCA patients, infiltration of immune cells and the expression of immune checkpoints, while positively 
correlated with tumor mutation burden and adverse treatment effects of immunotherapy. Upregulation 
of PXDNL and LINC02038 and downregulation of SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108 
in high-risk score group synergistically contribute to immunosuppressive microenvironment which 
characterized by immunosuppressive neutrophils, impaired cytotoxic T lymphocytes migration and 
natural killer cell cytotoxicity. In summary, we identified a TME-related prognostic signature in BRCA, 
which was connected with immune cell infiltration, immune checkpoints, immunotherapy response and 
could be developed for immunotherapy targets.

Introduction
The incidence of breast cancer (BRCA) ranks first among female malignant tumors, and its mortality has been 
increasing year by year. Breast cancer is the most common cancer among Chinese women, with more than 
1.6 million diagnosed and 1.2 million deaths annually1,2. BRCA is a heterogeneous disease with multiple bio-
logical phenotypes, unique histological features, different clinical manifestations, and different responses to 
treatment3. Over the past few years, we have improved our understanding of the biological functions, molecular 
and cellular mechanisms, diagnosis and treatment of BRCA4,5. Studies have shown that JAK1 plays a role in the 
prognosis and immune invasion of BRCA by affecting the infiltration levels of dendritic cells, macrophages, 
CD4+T cells, neutrophils, and CD8+T cells6. However, breast cancer treatment remains challenging because 
treatment options are largely limited to surgery and radiotherapy, and immunotherapy is clinically active in only 
a minority of breast cancer patients7,8. Tumor microenvironment is associated with breast cancer proliferation 
and immune system suppression as well as clinical treatment9.

Tumor microenvironment (TME) refers to the cellular environment in which tumor cells, immune cells, 
stromal cells and other non-cancerous cells exist10. The interaction between malignant and non-malignant cells 
in TME can influence the development and progression of cancer11,12. Tumor-associated immune cells have 
complex functions in the tumor microenvironment. Anti-tumor immune cells have tumor antagonism, tar-
geting and killing cancer cells in the early stages of tumor development, but cancer cells can suppress tumor 
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antagonism of immune cells through a variety of mechanisms13. Tumor-associated stromal cells recruit tumor 
cells and tumor promoting cells by secreting tumor promoting factors such as IL-6 and IL-814.

Due to the drug resistance and instability of the genome structure of cancer cells, targeting TME offers an 
opportunity for cancer therapy. Proliferative signaling, cell death, angiogenesis, etc. depend on cancer markers 
of TME, which have significant advantages in the course of cancer therapy15. Tumor-infiltrating lymphocytes 
(TIL) have been found to significantly affect the 5-year survival rate of non-small cell lung cancer (NSCLC) 
and have been identified as a prognostic indicator of early-stage NSCLC. This association has led to the use of 
immune checkpoint inhibitors and improved immunotherapy to treat NSCLC more effectively16,17. CXCL5 is 
an important chemokine in TME, and CXCL5 overexpression is closely related to survival time, recurrence and 
metastasis of liver cancer patients18. Studies have shown that blocking CXCL5/CXCR2 signaling can improve the 
sensitivity and effectiveness of immunotherapy and slow tumor progression19. Therefore, fully understanding 
the role of TME in the occurrence and development of BRCA and identifying microenvironment-derived bio-
markers are of great significance for improving the treatment and prognosis of BRCA patients20.

In the present study, we integrated transcriptome information from multiple cohorts of BRCA and sys-
tematically analyzed the TME pattern to recognize TME-related genes in BRCA. Then, using univariate Cox 
regression analysis, multivariate Cox regression analysis and LASSO Cox regression analysis, we established the 
TME-related prognostic signature in BRCA composed of 6 key TME-related genes and validated them in other 
datasets. Key TME-related genes synergistically reshape the immune microenvironment of breast cancer and 
influence the prognosis and immunotherapy effect of BRCA patients. The TME-related prognosis signature is 
significantly associated with immune cells, clinic-pathological features and somatic mutations of BRCA. As a 
result, TME-related prognosis signature we identified is a reliable independent prognostic factor and biomarker 
for BRCA immunotherapy response and prognosis.

Results
Identifying tumour microenvironment-related genes in BRCa. The tumor microenvironment 
(TME) in TCGA-BRCA cohort which was represented by infiltration of immune cells and stromal cells was 
established using the ESTIMATE algorithm. We found that estimate scores and stromal scores of BRCA samples 
were distributed at the significantly lower side, compared with those of the normal samples (Wilcoxon rank sum 
test, P < 0.05), as was immune scores but not significantly (Supplementary Fig. 1a,b). All scores tended to be 
negatively correlated with tumor grade. Particularly, the stromal scores were greatly related with lymph nodes 
(Kruskal-Wallis test, P = 0.032), tumor size (P = 0.011), and tumor stage (P = 0.0072). Moreover, with the pro-
gression of tumor size, the estimated score decreased significantly (P = 0.044; Supplementary Fig. 2). Although 
there was no statistically significant difference in the immune score from the aspect of TNM staging system, the 
immune score showed a decreasing trend with the development of tumor. Furthermore, Kaplan–Meier survival 
analysis demonstrated that higher immune scores were significantly associated with longer overall survival time 
(Supplementary Fig. 1c), whereas stromal scores and estimate scores have no significant relevance with patient 
prognosis. These results implied that the immune cells and stromal cells in TME have a strong evidential clinical 
relevance in BRCA.

To recognized TME-related genes, the 1109 BRCA samples were classified into high-level groups (N = 554) 
and low-level groups (N = 555) according to the median immune or stromal score, respectively. We used the 
DEseq2 package to identify differential expressed genes (DEGs). We identified 509 up-regulated genes and 
1954 down-regulated genes based on immune scores (Fig. 1a; Supplementary Fig. 3a). For example, CD38 
is up-regulated in samples with high immune scores and is a transmembrane glycoprotein expressed in the 

Fig. 1 Identifying tumour microenvironment-related genes in BRCA. (a) Heatmap of differential expressed 
genes in the high (N = 554) vs low (N = 555) immune score groups (left-panel) and in the high vs low immune 
score groups (right-panel). Heatmap of differential genes in the high (N = 554) vs low (N = 555) stromal score 
groups; (b) Heatmap of common differential expressed genes in both stromal and immune groups (left-panel). 
Venn plots showing common up-regulated and down-regulated DEGs shared by immune score and stromal 
score (right-panel).
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immune system and plays an essential role in the treatment of multiple myeloma21. CACNA2D2 is up-regulated 
in low immune samples, and overexpression of CACNA2D2 can promote cell proliferation and angiogene-
sis, thus promoting tumorigenesis22. Similarly, based on stromal scores, 1235 up-regulated genes and 2135 
down-regulated genes were obtained (Fig. 1a; Supplementary Fig. 3b). SOX8 is up-regulated in low immune 
score samples that has a significant effect on cell migration and apoptosis in triple negative breast cancer, and 
is involved in the maintenance to stem-like capacities in cancer cells23. ECM2 is up-regulated in high immune 
score samples, which could promote the formation of B lymphopoiesis24. Next, we have carried out gene ontol-
ogy (GO) and KEGG enrichment analysis on immune score difference genes and stromal score difference 
genes through the package “clusterProfiler” and “enrichplot”25. Immune score difference gene and stromal 
score difference genes enrichment presents functional consistency. The results showed that enriched GO of 
differential genes mainly existed in complement humoral phagocytosis, adaptive immunity based built, antigen 
response-activating receptor-mediated surface, leukocyte cell-cell proliferation adhesion, and immunoglobulin 
production molecular mediator. The results showed that KEGG enrichment analysis of differential genes were 
more concerned with Antigen adhesion arthritis infection, Inflammatory Th1 bowel differentiation, Allograft 
Autoimmune Graft-versus-host diabetes, Malaria immunodeficiency killer cytotoxicity, and Chemokine 
Cytokine-cytokine interaction cytokine (Supplementary Fig. 4a–d). A total of 786 common DEGs in both stro-
mal and immune groups, consisting of 258 upregulated genes and 528 downregulated genes were regarded as 
tumor microenvironment-related genes (TME-related genes; Fig. 1b). Among them, 35 (4.4%) genes overlapped 
with cancer associate genes (P = 0.0008; hypergeometric test; Supplementary Fig. 4e), which collected from 
four public databases including the Online Mendelian Inheritance in Man (OMIM) database, HuGE Navigator, 
PharmGKB, and Comparative Toxicogenomics Database (CTD). And 17 (2.1%) TME-related genes overlapped 
with BRCA associate genes (P = 0.015; hypergeometric test; Supplementary Fig. 4f). For example, FGF4 is 
upregulated in most samples with low immune score and low stromal score, and FGF4 gene deregulation affects 
the overall survival rate of patients with bladder cancer26. AGTR1 is upregulated in most of the samples with 
high immune and stromal scores and promotes lymph node metastasis in BRCA27.

Identifying key TME-related genes as a prognostic signature in BRCA. In order to identify the 
potential prognostic marker genes associated with the progression of breast cancer. Through univariate Cox 
regression analysis, 168 TME-related genes were identified as important factors affecting the survival of BRCA 
patients. After multivariate Cox regression analyses with clinic-pathological characteristics (age, sex, patholog-
ical T stage, pathological N stage, pathological M stage and pathological tumor stage), 33 of 168 TME-related 
genes with FDR < 0.05 were identified as candidate genes associated with prognosis in BRCA. Subsequently, to 
construct the prognostic feature based on candidate genes, LASSO Cox regression analysis was implemented 
to determine 6 key TME-related genes, including PXDNL, LINC02038, SLC27A2, KLRB1, IGHV1-12 and 
IGKV1OR2-108. We then established the comprehensive risk score consisting of 6 key TME-related genes as 
the TME-related prognostic signature in BRCA. The risk score was calculated as follows: expression of PXDNL 
* 0.1138 + expression of LINC02038 * 0.0782 + expression of SLC27A2 * (−0.1093) + expression of KLRB1 * 
(−0.2147) + expression of IGHV1-12 * (−0.1314) + expression of IGKV1OR2-108 * (−0.0029). Since the level 
of immune infiltration and cellular composition are closely related to tumor progression and patient prognosis, 
we used the median risk score to classify BRCA samples into high-risk and low-risk groups. The Kaplan-Meier 
survival curves indicated that BRCA patients in high-risk score group was significantly associated with poor 
prognosis (Log-rank test, P < 1.0e-4; Fig. 2a). To verify the predictive capacity of the prognostic markers, we 
evaluated its performance in three independent validation cohorts, including METABRIC (1904 BRCA samples), 
GSE58812 (107 BRCA samples) and GSE21653 (252 BRCA samples) cohorts. Consistent with the finding in the 
TCGA-BRCA cohort, we found that the prognostic signature worked well and high-risk score groups were asso-
ciated with a poorer prognosis in all independent data sets (METABRIC, Log-rank test, P < 1.0e-4; GSE58812, 
Log-rank test, P = 1.3e-4; GSE21653, Log-rank test, P = 5.5e-3; Fig. 2b). These findings indicate that the prog-
nostic signature has robust predictive potential for BRCA in the training and validation cohorts. Next, we found 
that the downregulation of KLRB1, IGHV1-12, IGKV1OR2-108 and SLC27A2 and upregulation of PXDNL 
and LINC02038 were shown in high-risk score group. We also obtained two additional independent validation 
cohorts from the ICGC database (99 BRCA samples) and Krug, Karsten et al. (122 BRCA samples), in which three 
genes (SLC27A2, PXDNL and KLRB1) were detected at mRNA expression levels. The expressions of SLC27A2 
(P = 3e-6; P = 1.2e-3) and KLRB1 (P = 0.046; P = 9.7e-10) were significantly increased in the low-risk group, 
and PXDNL was significantly increased in the high-risk group (P = 2.9e-12; P = 0.017; Supplementary Fig. 5a,b). 
Moreover, the immune scores, stromal scores and estimate scores of the high-risk score group were lower than 
those of the low-risk score group, indicating high infiltration of immune cells and stromal cells in low-risk score 
group (Fig. 2c). Specifically, immune checkpoint markers, including programmed death 1 (PD-1), programmed 
death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) were expressed at higher lev-
els in the low-risk score group, indicating that tumor samples with the low-risk score may tend to have favorable 
responses to anticancer immunotherapies. To further explore how key TME-related genes change at the protein 
level, we obtained proteomic data PDC000173 from 105 BRCA samples, in which 3 of 5 coding genes (includ-
ing SLC27A2, PXDNL and IGKV1OR2-108) were captured at the protein expression level28. SLC27A2 showed 
significantly higher protein expression levels in the low-risk group (P = 1.5e-11). And PXDNL displayed higher 
protein expression levels in the high-risk group (P = 4.4e-8). We found that the differences of key TME-related 
genes at the protein level and mRNA level were consistent (Supplementary Fig. 5c). In order to characterize 
whether these genes are regulated by methylation levels, we downloaded illumina methylation 450 K beadChip 
data of 890 breast cancer samples from TCGA project, and 4 genes (PXDNL, SLC27A2, KLRB1 and IGHV1-12) 
were detected. We found the methylation levels of 3 genes (PXDNL, SLC27A2, and IGHV1-12) were significantly 

https://doi.org/10.1038/s41597-023-02032-2


4Scientific Data |          (2023) 10:119  | https://doi.org/10.1038/s41597-023-02032-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

negatively correlated with mRNA expression levels (Pearson correlation test; P < 0.05, Supplementary Fig. 5d), 
which suggested these genes are regulated by methylation.

We discovered that risk score significantly increased in the subtypes of basal-like and luminal B which was 
distinguished by high malignancy and worse prognosis (Kruskal-Wallis test, P < 0.001) and decreased in the 
low malignancy subtype of luminal A29. The risk score was observed to be significantly increased in the breast 
cancer patients who present with stage II and IV (Kruskal-Wallis test, P = 0.024), and with large tumor size  
(T4; Kruskal-Wallis test, P = 8.3e-3; Fig. 2d). Moreover, we also found that high-risk group was concentrated on 
the high malignancy subtypes and high tumor stages, which was consistence with above findings. And high-risk 
score groups were significantly associated with a poorer prognosis for BRCA subtypes (Supplementary Fig. 6a–d),  
particularly in LumA (P = 1.2e-4) and LumB (P < 0.0001). It suggests the risk scores of the prognostic signature 
increased with the development of the malignant phenotype of the tumor and have potential clinical applica-
bility in BRCA.

Fig. 2 key TME-related genes as a prognostic signature in BRCA. KM survival curves and risk score of 
OS based on risk scores of the prognostic signature in (a) TCGA-BRCA (High = 534, Low = 535) training 
cohort and in validation cohorts (b) including METABRIC (High = 952, Low = 952), GSE21635 (High = 126, 
Low = 126) and GSE58812 (High = 53, Low = 54). (c) Cluster heat map of TME-related genes, immune 
scores/stromal scores/ESTIMATE scores and immune checkpoints PD-L1, PD1 and CTLA4 stratified by the 
prognostic signature in TCGA-BRCA cohort. (d) Differences in risk scores of the prognostic signature between 
clinic-pathological feature and BRCA subtypes. Significance P values were calculated using Kruskal-Wallis test.
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In addition, we explored whether these six genes are also prognostic markers in other cancer types. We obtained 
expression and clinical data from the TCGA repository for 32 different cancer types, including 8980 patients.  
Univariate Cox regression analysis was performed to evaluate the association between survival and expression 
levels of each of the six genes. A risk score formula was developed to evaluate the association between survival 
and expression in a certain cancer. Then the median risk score was used as cut-off to classify patients into high 
and low-risk groups. Moreover, we conducted Kaplan-Meier curves to evaluate the impact of risk score on 
patients’ overall survival time. The results showed that these 6 key TME-related genes could be used as prog-
nostic signature in 13 cancers (Supplementary Fig. 7), including adrenocortical carcinoma (ACC, P = 1e-04), 
cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, P = 8.5e-03), esophageal carci-
noma (ESCA, P = 0.042), head and neck squamous cell carcinoma (HNSC, P = 0.037; Supplementary Fig. 7a), 
kidney renal clear cell carcinoma (KIRC, P < 1e-04), brain lower grade glioma (LGG, P < 1e-04), Mesothelioma 
(MESO, P = 0.021), pheochromocytoma and paraganglioma (PCPG, P = 4.8e-03; Supplementary Fig. 7b), rec-
tum adenocarcinoma (READ, P = 0.033), sarcoma (SARC, P = 8.6e-04), skin cutaneous melanoma (SKCM, 
P = 1e-03), thyroid carcinoma (THCA, P = 0.013; Supplementary Fig. 7c), and uterine corpus endometrial car-
cinoma (UCEC, P = 2.7e-03; Supplementary Fig. 7d). We found that the prognostic signature worked well and 
high-risk score groups were associated with a poorer prognosis in 13 TCGA cancer types. These results demon-
strate the prognostic significance of these six genes, including PXDNL, LINC02038, SLC27A2, KLRB1, IGHV1-
12 and IGKV1OR2-108, in several human cancers.

the prognostic signature acting as an independent prognostic factor in BRCa. To confirm 
whether the prognostic signature are independent prognostic factors for BRCA, univariate and multivariate 
Cox regression analyses were performed on BRCA patients. The risk score of the prognostic signature and other 
clinic-pathological factors, including gender, age, pathological T stage, pathological N stage, pathological M stage 
and pathological tumor stage, were used as covariates. The results revealed that the prognostic signature, age and 
pathological tumor stage were independent risk factors to predict the prognosis of BRCA patients, and indicated 
that the prognostic signature could serve as an independent prognostic factor for BRCA (Supplementary Fig. 8a). 
Thus, combined with prognostic characteristics, age and tumor pathological stage, a comprehensive Nomogram 
information map for clinicians to predict the mortality of BRCA patients was further constructed (Supplementary 
Fig. 8b). Each patient is given a point for each prognostic factor, and the greater the sum of points, the higher the 
mortality rate. Furthermore, the calibration curves demonstrated the prediction of BRCA mortality is close to the 
real probability (Supplementary Fig. 8c). Decision curve analyses (DCA) curves also indicated the nomogram 
had high clinical predictive potential (Supplementary Fig. 8d). Therefore, the combination of the prognostic sig-
nature, age and pathological tumor stage could improve the prognosis evaluation for BRCA.

The prognostic signature correlated with immune cell infiltration in BRCA. To systematically 
evaluate the differences of the tumor immune microenvironment, xCell was used to quantify the immune infil-
tration within the tumor based on marker gene sets of 22 distinct leukocyte subsets. We found that patients 
in high-risk score group had low levels of immune infiltration (Fig. 3a). We also found low levels of immune 
infiltration in the high-risk score groups of the four breast cancer subtypes, which was consistence with 
above findings (Supplementary Fig. 6a–d). The prognostic signature showed a significant negative correla-
tion with immune-infiltrating cells, such as natural killer cells (NK cells), the natural killer T (NKT) cells and 
Neutrophil cells, while immune score, stromal score and ESTIMATE score were related to high infiltration of 
immune-infiltrating cells (Fig. 3b). We found a significant increase in the proportion of lymphocytes and myeloid 
cells in the low-risk score group compared with the high-risk score group, such as CD8+ T cells, CD4+ central 
memory T cells (Tcm), plasmacytoid dendritic cells (pDC), CD8+ Tcm cells, CD8+ effector memory T cells 
(Tem), NK cells, NKT cells, B cells, Tregs and Neutrophil (Fig. 3c). Moreover, CIBERSORT and TIMER were 
used to confirm the infiltration of immune cells in tumor samples. We found that immune cells showed more 
infiltration degree in the low-risk score group, such as CD8+ T cells, B cells, CD4+ T cells and Neutrophil, which 
was consistent with the above results (Supplementary Fig. 9). The key TME-related genes KLRB1, IGHV1-12 and 
IGKV1OR2-108 were positively relevant to infiltration of immune cells and LINC02038, SLC27A2 and PXDNL 
were negatively relevant to infiltration of immune cells (Fig. 3d). The killer cell lectin-like receptor B1 (KLRB1) 
gene encodes for CD161, a membrane protein of NK cells, showed the downregulated expression in the patients 
in high-risk score group. Recent studies have shown that CD161 downregulation causes to immune escape in 
oropharyngeal cancer and is connected with damaged NK cell cytotoxicity in patients with metastatic mela-
noma30,31. IGHV1-12 and IGKV1OR2-108 were downregulated in high-risk score group and both of which are 
associated with immunoglobulin production by differentiated B lymphocytes32. The downregulation of SLC27A2, 
a fatty acid transporter protein 2 (FATP2) encoding gene, in high-risk score group could mediate suppression of 
CD8+ T cells by polymorphonuclear myeloid derived suppressor cells or immunosuppressive neutrophils33–35. In 
line with our results, recent studies have shown that SLC27A2-specific inhibitor could substantially delay tumor 
growth and increase responses to immune checkpoint inhibitors in tumor model mice. Combined with check-
point inhibitors, SLC27A2 inhibition blocked tumor progression in mice36. PXDNL was overexpressed in the 
BRCA patients in high-risk score group. PXDNL is a novel homolog of PXDN, and PXDNL can form a complex 
with PXDN, which can impair the cytotoxic T lymphocytes (CTLs) migration and local immunosurveillance37. 
High PXDNL expression is reported to have decreased overall survival or relapse-free survival in breast cancer 
patients38. LINC02038 is often overexpressed in high-risk score group patients and the expression of LINC02038 
is negatively correlated with NK cell infiltrates in BRCA. LINC02038 was reported to inhibit the killing effect of 
NK cells by upregulating expression of TM4SF139.

Then, we performed gene set variation analysis (GSVA) to explore the biological process of genes in the 
prognostic markers. We found patients in high-risk score group was significantly enriched in E2F targets,  
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MYC targets V1 and MYC targets V2, which are relevant to tumor cell differentiation, proliferation, and metab-
olism. Similarly, patients in low-risk score group displayed enrichment to IL-6/JAK/STATs pathway, KRAS sig-
naling up, IFN-γ response and IFN-α response, which are associated with the immune activation. Therefore, 
up-regulated SLC27A2, KLRB1, IGKV1OR2-108 and IGHV1-12 in the low-risk score group synergistically 
inhibit tumor progression and activating immune response by regulating CD8+ T cells, NK cells and immuno-
globulin. Up-regulated PXDNL and LINC02038 in the high-risk score group synergistically construct immu-
nosuppressive microenvironment and promote tumor progression by impairing the cytotoxic T lymphocytes 
(CTLs) and inhibiting NK cell function. These results suggested that the prognostic signature consisting of 6 key 
TME-related genes can characterize the changes in the tumor immune microenvironment in the patients with 
BRCA, and thus influence patient prognosis and immunotherapy.

the prognostic signature positively correlated with tumor mutation burden. Since somatic 
mutations are extensively characteristic in BRCA, we describe somatic mutations in breast cancer and explore 
the relationship between the prognostic signature and tumor mutation burden (TMB). By analyzing the somatic 
mutations file of TCGA BRCA cohort, we obtained the mutation load, mutation type and mutation distribution 
of patients. Next, we found that patients in high-risk score group showed higher TMB level (Wilcoxon rank sum 
test, P = 2.8e-4; Fig. 4a) and higher TMB group showed a higher risk of the prognostic signature (Wilcoxon rank 
sum test, P = 3.6e-3, Fig. 4a). In addition, there is a significant positive correlation between the prognostic signa-
ture and the TMB (spearman correlation analysis, P < 0.001, Fig. 4b). In order to explore the important role of 
mutated genes between high and low risk groups, we used the permutation test to assess whether mutated genes 
were enriched in the high- and low-risk groups. We provided the landscape of 53 significantly mutated genes with 
potential roles in the TME which mutated in at least 1% of the TCGA BRCA samples. Among them, 7.6% mutated 

Fig. 3 The prognostic signature correlated with immune cell infiltration in BRCA. (a) Cluster heat map of 
abundance of 22 types of immune cells in the high- (N  =  534) and low-risk (N  =  535) score groups in TCGA-
BRCA cohort. (b) Correlation matrix of risk scores, genes in the prognostic signature, immune score, stromal 
score, estimate score and the abundance of 22 types of immune infiltration cell. The red indicated positive 
correlation, while blue indicated negative correlation. (c) Violin plots showing the correlation between the 
prognostic signature and 24 types of immune infiltration cells Significance P values were calculated using 
Student’s t test. (d) Diagram of the prognostic signature and immune system. Red indicates upregulation and 
blue indicates downregulation of genes in high-risk score group.
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genes presented high frequency mutations in BRCA samples (mutation rate>5%; mean mutation rate =  15.5%; 
Fig. 4c). For example, mutation frequency of TP53 (P = 0.001) and MAP3K1 (P < 0.001) are significantly upreg-
ulated in the high-risk score group than in low-risk group. Consistent with our results, oncogene TP53 mutation 
is a known detrimental prognostic factor in breast cancer patients and MAP3K1 mutations are relevant to shorter 
survival in metastatic breast cancer40,41. Our findings are consistent with previous studies showing that TP53 and 
MAP3K1 mutations revealed a highly increased risk of breast cancer42. In the low-risk score group, the mutation 
frequency of CDH1 (P < 0.001) is significantly upregulated when comparing with the high-risk group. CDH1 
mutated patients exhibited higher immune scores than wild-type patients in breast cancer, which supports our 

Fig. 4 The prognostic signature positively correlated with tumor mutation burden. (a) Box plot showing 
the correlation of TMB with risk score of the prognostic signature. Significance P values were calculated 
using Wilcoxon rank sum test. (b) Scatter plots depicting the spearman correlation between risk score of the 
prognostic signature and TMB. (c) The waterfall plot of tumor somatic mutation displayed distribution of top 
20 highly mutated genes in the high-risk (left-panel) and low-risk (right-panel) score groups. (d) Significant 
enrichment of mutant genes in the high and low risk score groups. ***P < 0.001; **P < 0.01; *P < 0.05.
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results that the TME of breast cancers correlates with CDH1 mutations42. Importantly, the mutation frequencies 
of 92.4% mutated genes were not high in the BRCA samples (mutation rate < 5%; mean mutation rate = 2.5%), 
but they showed significantly different mutation frequencies between the high and low risk score groups. For 
example, the mutation frequencies of ASPM (P = 0.002) and UNC5D (P = 0.006) are significantly upregulated 
in the high-risk group than in the low-risk group (Fig. 4d). Studies have shown that the protein product of the 
mutated gene ASPM may have tumor-destroying effects and be a potential therapeutic target for brain tumors43. 
Mutations in UNC5D are involved in the pathogenesis of non-small cell lung cancer by eliminating tumor sup-
pressor functions encoded in proteins44. In the low-risk group, the mutation frequency of TENM3 (P = 0.003) 
and COL14A1 (P = 0.015) are significantly upregulated when comparing with the high-risk group. Studies have 
shown that mutations in TENM3 are independent predictors of poor survival in esophageal squamous cell car-
cinoma45. COL14A1 is a significant mutant gene associated with the prognosis of gastric cancer, and can predict 
the survival of patients with newly classified subtypes of gastric cancer46. Mutations in these genes may play a 
potential role in the different TME of breast cancer.

In order to explore the consistency of mutation enrichment of 53 significantly mutated genes in independent 
validation dataset, METABRIC mutation data were obtained, including 2355 BRCA samples and 173 mutated 
genes. Among the 53 significantly mutated genes, 16 gene mutations were detected, in which 15 genes showed 
significant differences in mutation frequency in the high- and low-risk groups. We achieved 93.75% consistency 
with the independent validation dataset. These results showed that higher risk score of the prognostic signature 
positively correlated with higher level of TMB in breast cancers, which is a predictive marker for immunother-
apy in breast cancer47. It suggested that the prognostic signature may also be conducive to predict response to 
immunotherapy in breast cancers.

The prognostic signature as a predictive biomarker for immunotherapy in BRCA. The immune 
cells infiltrates is connected with clinical outcomes in breast cancers7. The expression of immune checkpoints 
such as PD-1 is used to predict the benefit of immunotherapy in a variety of malignant tumors. PD-1, PD-L1 and 
CTLA-4 were used as immune checkpoint markers. We constructed the risk score for 6 key TME-related genes 
as a TME-related prognostic signature to assess the association with immune checkpoints. We discovered that 
the risk score of the prognostic signature was negatively correlated with the expression of PD-L1, CTLA-4 and 
PD-1 (P < 2.2e-16; Fig. 5a). PD-L1, PD-1 and CTLA-4 are expressed at higher levels in the low-risk score group 
compared with the high-risk score group, suggesting that tumor samples with the low-risk score may tend to 

Fig. 5 The prognostic signature as a predictive biomarker for immunotherapy in BRCA. (a) Scatter plots 
depicting the negative correlation between risk score of the prognostic signature and the expression of PD-L1, 
PD-1 and CTLA-4. The spearman correlation is used in calculations. TIDE scores in high-risk and low-risk 
score groups in (b) TCGA-BRCA cohort and (c) validation cohorts including METABRIC, GSE21653 and 
GSE58812. Significance P values were calculated using Wilcoxon rank sum test.
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have favorable responses to anticancer immunotherapies. Furthermore, we sought to investigate whether prog-
nostic characteristics could predict response to immunotherapy as well as prognosis in patients with BRCA. We 
used tumor immune dysfunction and exclusion (TIDE) algorithm to predict the potential immune response in 
TCGA-BRCA cohorts48. Our results revealed higher TIDE scores in the high-risk score group in BRCA (Fig. 5b), 
which suggests that immune checkpoint blockade is less effective in patients with high-risk scores that have 
prognostic signature. TIDE scores were also found to be higher in high-risk score groups of breast cancer Basal, 
Her2, LumA and LumB subtypes (Supplementary Fig. 6a–d). In addition, we also obtained additional validation 
sets including METABRIC, GSE58812 and GSE21653 cohorts to investigate predictive ability for immunotherapy 
using the prognostic signature. The results of the validation cohort showed significant differences in TIDE scores 
between high-risk and low-risk scores for prognostic markers (Wilcoxon test; Fig. 5c). Our results suggest that 
the prognostic signature consisting of 6 key TME-related genes could act as a predictive biomarker for immu-
notherapy in BRCA. Finally, we constructed an online data portal that provides the expression and prognosis 
of TME-related genes and the relationship between TME-related prognostic signature, TIDE scores, TME, and 
clinical features (http://tmerpsmap.bio-database.com/).

Discussion
At present, advances in RNA sequencing technology and the invention of numerous analytical methods have 
advanced the understanding of tumor pathogenesis. Transcriptome profiling patterns reveal cellular functional 
states and cellular behavior in relation to genomic and environmental changes49–51. Since TME is a cellular 
environment that includes a variety of cells such as tumor cells, more and more research has turned to TME52,53. 
Therefore, more and more evidences suggest that TME has a critical role in the pathogenesis of BRCA. TME 
not only interacts with tumor cells to promote their proliferation, but also affects the treatment process54. 
Considerable effort has been invested in exploring the complex mechanisms of BRCA, but the current under-
standing of TME, therapeutic targets, and prognostic factors remains unsatisfactory55–58.

In this study, we first constructed the TME of BRCA and applied LASSO regression analysis to establish 
TME-related prognostic signature that best represented the characteristics of TME. To identify the robustness 
of the 6-gene-combination, we compared our method with other six machine learning algorithms, including 
random survival forest (RSF), Ridge, elastic network (Enet), stepwise Cox, partial least squares regression 
for Cox (plsRcox), supervised principal components (SuperPC), and the average consistency rate is 75.00% 
(Supplementary Table 2, 3). We established risk score for each sample and validated our risk score in other data 
sets and found that patients in the high-risk group had a worse prognosis. Then, to benefit clinical applications, 
we constructed the nomogram and verified the prediction potential of this model. We also carried out a further 
study on immune-infiltrating landscapes and immunotherapy response on account of TME-related prognostic 
signature. In addition, we also studied the effect of somatic mutations on TME. Indeed, our study proclaimed 
that the TME-related prognostic signature we identified has good prognostic potential.

Among TME-related prognostic signature, KLRB1, SCL27A2, PXDNL, LINC02038, IGHV1-12, 
IGKV1OR2-108 were directly related to tumor immunity to a certain extent, reflecting the characteristics of nat-
ural killer cells, natural killer T cells and other immune cells. For example, the expression of KLRB1 inhibits the 
cytotoxicity of natural killer cells (NK) and is associated with superior outcome, largely reflect tumor-associated 
leukocytes. KLRB1, as a membrane protein, can promote IFNγ secretion by NK cells and NKT59–61. Recently, a 
study revealed that the growth of ESCC cells with KLRB1 knockdown was inhibited. In our study, the expression 
of KLRB1 was positively relevant to the abundance of immune cells, and was highly expressed in the low-risk 
group, which was a beneficial survival predictor of BRCA. Peroxidasin-like (PXDNL) is mainly expressed in 
the immunoglobulin I-set domain of major histocompatibility complex (MHC) class I and II and programmed 
cell death protein 1 (PD1)62,63. Some studies have found that PXDNL was highly expressed in breast cancer 
and affects the survival of patients. We found that PXDNL was highly expressed in the high-risk group and 
was negatively correlated with many immune cells. SLC27A2 is at work in neutrophil degranulation and medi-
ates neutrophils secretion of cytokines and other inflammatory mediators. SLC27A2 has been found to be 
under-expressed in many tumors, such as ovarian and lung cancers, and is associated with low survival and 
chemotherapy resistance64–67. We found that SLC27A2 was also up-expressed in the low-risk group and inhib-
ited the immune effect of neutrophils. LINC02308 was significantly overexpressed in glioma and acts as a sponge 
to express miR-30e-3p to up-regulate TM4SF1 and promote glioma occurrence68. In our study, the expression of 
TM4SF1 was low in the low-risk group and negatively relevant to NK cell. IGHV1-12 and IGKV1OR2-108 are 
both immunoglobulin-related genes. Immunoglobulin is an immunoactive factor that is crucial in the immune 
system69,70. In our study, IGHV1-12 and IGKV1OR2-108 were positively connected with abundance of immune 
cells and overexpressed in the low-risk group. Therefore, the up-regulated key TME-related genes SLC27A2, 
KLRB1, IGKV1OR2-108 and IGHV1-12 in the low-risk score group inhibit tumor progression by affecting the 
secretion of neutrophils, NK cells and immunoglobulin. In the high-risk score group, up-regulated PXDNL 
and LINC02038 promote the formation of immunosuppressive microenvironment and promote tumor pro-
gression by affecting NK cells and CTL. These results demonstrate that key TME-related genes we identified 
are synergistically participate in the remodeling of the immune microenvironment and influence patient prog-
nosis, which may be potential therapeutic targets for BRCA. Although immune checkpoint blockade (ICB) 
therapy has shown remarkable success in treating patients with BRCA and many other types of cancer, only a 
subset of patients experience long-term benefits and achieve durable clinical responses71,72. The lack of effective 
clinical tools to assist ICB therapy not only results in an inability to classify patients, but its overuse may have 
substantial side effects and costs73. Therefore, it is of great interest to identify biomarkers that predict response 
to ICB therapy to optimize treatment decisions. In this work, we analyzed the immune infiltration landscape 
of BRCA on the strength of TME-related genes, and we discovered that the low-risk group had a higher level 
of immune cells. For the GSVA based on the TME-related prognostic signature, we observed that targets with 

https://doi.org/10.1038/s41597-023-02032-2
http://tmerpsmap.bio-database.com/


1 0Scientific Data |          (2023) 10:119  | https://doi.org/10.1038/s41597-023-02032-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

immunosuppressive and harmful effects on patients, such as E2F target, MYC target V1, and MYC target V2, 
were enriched in the high-risk population74. Moreover, the interferon gamma response and interferon alpha 
response was enriched in the low-risk group, indicating beneficial survival and immunotherapy responses75. 
We used TIDE algorithm to predict patient response to cancer immunotherapy and found that patients in the 
low-risk group had a higher proportion of immune responses than those in the high-risk group. Moreover, 
ICB therapy involves targets including PD-L1, PD-1 and CTLA476. We detected that PD-L1, PD1 and CTLA4 
were highly expressed in low-risk group, and were significantly negatively relevant to TME-related genes. These 
results may account for the better prognosis of patients in the low-risk group.

Previous studies have confirmed TMB as a novel biomarker that can predict response to tumor immuno-
therapy77. Since overall neoantigen burden is difficult to measure and TMB is easily detected and used to assess 
neoantigen burden, has been shown to be an indicator of clinical benefit or prognostic factor with the potential 
to predict ICI response78. We found a positive relevance between TMB and riskscore. The tumor suppressor gene 
CDH1 had a higher mutation level in low-risk group, while the oncogene TP53 had a higher mutation frequency 
in high-risk group. All of these findings emphasize the relationship between TMB and TME, and suggest that 
the TME-related prognostic signature can more effectively predict prognosis and immunotherapy response.

Our study demonstrates a TME-related prognostic signature in the transcriptome through existing common 
tumor databases. This novel TME-related prognostic signature may facilitate more personalized prognostic pre-
diction in BRCA patients and serves as a potential biomarker and therapeutic target. Inevitably, our study has 
some notable limitations. First, all the data we used were retrospective, and the efficacy of TME-related progno-
sis signature needs to be further verified in prospective studies. Then, we have not conducted any experimental 
studies on each gene to learn more about it and the underlying mechanism. Finally, we should include more 
clinical parameters into the TME-related prognosis signature scoring system, so as to improve the accuracy of 
prediction and provide higher reference value for clinical treatment.

Methods
Data collection. The RNA-sequencing datasets of 113 normal samples and 1109 BRCA samples were 
obtained from TCGA (https://portal.gdc.cancer.gov). Clinical data (including 1091 samples), DNA meth-
ylation data (including 890 samples) and subtype information (including 187 Basal subtypes, 77 Her2 sub-
types, 552 LumA subtypes and 202 LumB subtypes) for BRCA samples were collected from the TCGA portal 
(Supplementary Table 1). The cbioportal for Cancer Genomics was where we downloaded METABRIC RNA-
sequencing data of 1904 samples, mutation data and related clinical data (https://www.cbioportal.org/datasets). 
Microarray data and clinical information for all validation datasets were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). Among them, GSE21653 contains 252 samples, and GSE58812 has 107 
samples79,80. The TCGA-BRCA somatic mutation data was also obtained from TCGA. We obtained a transcrip-
tome dataset of breast cancer from the ICGC database, including 99 breast cancer samples (https://dcc.icgc.org/). 
And we obtained a transcriptome dataset of breast cancer from Krug, Karsten et al., which included 122 breast 
cancer samples81. We obtained the breast cancer protein dataset PDC000173 from Proteomic Data Commons 
(PDC, https://pdc.cancer.gov/pdc/), including 105 BRCA samples28.

tME Construction. Based on RNA-seq data from the TCGA-BRCA cohort, we used the ESTIMATE algo-
rithm to calculate the estimate score, stromal score, and immune score to characterize the TME82. The stromal 
score and immune score represent the infiltration levels of stromal cells and immune cells in tumor tissue, respec-
tively. The estimate score was the combination of stromal score and immune score to represent the measurement 
of tumor purity83. A lower estimate score, stromal score and immune score represent higher tumor purity and 
lower degree of infiltration of stromal cells and immune cells in tumor tissue, respectively.

Generation of DEGs. We classified 1109 tumor samples into high and low groups based on the median of 
immune score and stromal score, respectively. DEGs were generated by comparing high-group samples with 
low-group samples using the DEseq2 package. Adj. p < 0.05 and |Log2FC| > 1 were used as the threshold for 
screening DEGs.

Establishment and validation of the tME-related prognosis signature. Univariate Cox regression 
analysis and multivariate Cox regression analysis were used to screen the candidate genes related to prognosis in 
TME DEGs. The LASSO Cox regression model reduces redundant genes by reducing the dimensionality of the 
data. Then, the candidate genes were then subjected to LASSO regression analysis by the R package “glmnet” and 
10-fold cross validation. Risk score of each BRCA patient was calculated by using key TME-related genes corre-
sponding regression coefficients and expression levels. The formula is Riskscore (coef expr)i 1

n
i i= ∑ ×= . Here, coefi 

is the Cox coefficient of genei and expri is the expression of the genei. Patients were divided into high-risk and 
low-risk groups on the basis of the median risk score. Kaplan-Meier analysis was performed using the R package 
“survival” to assess the overall survival of patients in different groups.

Gene set variation analysis (GSVA). GSVA is a method to estimate the enrichment level of a gene set in 
each sample through the expression data set of the sample. The gene set files of “h all.v7.4.symbols” including 50 
key gene sets were obtained from the MSigDB of Broad Institute (http://www.gsea-msigdb.org/). We used the 
package “limma” and “GSVA” in R to recognized the biological processes of co-activation or inhibition in differ-
ent groups, with p < 0.05 and |logFC| > 0.1 is the threshold value. We conduct the gene enrichment analysis in 
terms of gene ontology (GO) and KEGG using the DEGs grouped based on different scores through the package 
“clusterProfiler” and “enrichplot”.
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Construction and validation of a predictive nomogram. Univariate and multivariate Cox regression 
analyses were performed on the risk score and other clinicopathological characteristics to identify the independ-
ent factors affecting the prognosis, which were visualized by the software package “forestplot” in R. Then, the 
confirmed prognostic factors and the software packages “RMS” and “regplot” in R were then used to develop a 
nomogram prediction model for predicting 10-to 20-year mortality in BRCA patients. Next, calibration Curves 
and decision Curve Analysis (DCA) were employed to estimate the predictive effect of Nomogram and its clinical 
potential.

Mutation enrichment analysis in the high-risk group and low-risk group. The permutation 
test was employed to assess whether the mutant gene was enriched in the high-risk group and low-risk group. 
Specifically, patients with BRCA were divided into high-risk group and low-risk group. The mutation frequency 
of the mutant gene G was H in the high-risk group, and was L in the low-risk group. The observed enrichment 
ratio of the mutant gene G for the high-risk group and the low-risk group could be denoted as high-risk enrich-
ment ratio = H/L and low-risk enrichment ratio = L/H, respectively. We randomly selected high-risk group sam-
ples and low-risk group samples from the background mutation set of BRCA samples and calculated the mutation 
frequency of mutant gene G, and then calculated the random high-risk enrichment ratio and low-risk enrichment 
ratio of gene G. After repeating the procedure 1000 times, we would obtain a P-value of mutant gene enrichment 
in the high-risk group by dividing the times when the random high-risk enrichment ratio was greater than the 
observed high-risk enrichment ratio (H/L) by 1,000. The P-values of mutant gene enrichment in the low-risk 
group were estimated using the similar methods84,85.

Expression abundance of immune cell in TME. XCell uses curve fitting to make linear comparisons of 
cell types, from which the types of immune cells and stromal cells are inferred86. The xCell R software package was 
used to evaluate the expression abundance of 22 immune cells in all samples. CIBERSORT is an analytical method 
that uses gene expression data to estimate the abundance of immune cell types in tumor samples87. The TIMER 
algorithm was used to estimate the abundance of 6 kinds of immunoinfiltrating cells in breast cancer samples88.

Evaluation of the immunological therapy response. The predictive efficiency of prognostic fea-
tures for response to BRCA ICIs was evaluated using the Tumor Immune Dysfunction and Exclusion algorithm 
(TIDE). A high TIDE score was associated with a greater likelihood of immunotherapy non-responder, while a 
low TIDE score was the opposite.

Statistical analyses. The statistical significance for the two sets of variables that fit a normal distribu-
tion was estimated by unpaired Student’s t tests. Moreover, the Kruskal-Wallis test was used for variables with 
more than two groups. The Kruskal-Wallis test and Wilcoxon rank sum test were applied to analyze correlations 
between the risk score and clinic-pathological parameters. Correlation analysis between two groups of variables 
was used spearman correlation coefficient.

Data availability
The data that support the findings of this study are available from the TCGA-BRCA (https://portal.gdc.cancer.
gov/projects/TCGA-BRCA). The additional validation data in this article were obtained from METABRIC (Breast 
Cancer, Nature 2012 & Nat Commun 2016) (http://www.cbioportal.org/datasets), ICGC (https://dcc.icgc.org/), 
Krug, Karsten et al.81, Proteomic Data Commons (https://pdc.cancer.gov/pdc/) and Gene Expression Omnibus 
(GEO) with the accession number GSE2165379,89 and GSE5881280,90. The analysis results associated with this 
paper is available on Github (https://github.com/wangliTeam/data-and-code).

Code availability
The R code used in the analysis of the data is available on GitHub (https://github.com/wangliTeam/data-and-code).
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