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From biomedical cloud platforms 
to microservices: next steps in FAIR 
data and analysis
Nathan C. Sheffield   1,2,3,4,5 ✉, Vivien R. Bonazzi6, Philip E. Bourne   2,3, Tony Burdett7, 
Timothy Clark   2,4, Robert L. Grossman   8, Ola Spjuth   9 & Andrew D. Yates7

The biomedical research community is investing heavily in biomedical cloud platforms. 
Cloud computing holds great promise for addressing challenges with big data and ensuring 
reproducibility in biology. However, despite their advantages, cloud platforms in and of 
themselves do not automatically support FAIRness. The global push to develop biomedical 
cloud platforms has led to new challenges, including platform lock-in, difficulty integrating 
across platforms, and duplicated effort for both users and developers. Here, we argue that 
these difficulties are systemic and emerge from incentives that encourage development effort 
on self-sufficient platforms and data repositories instead of interoperable microservices. 
We argue that many of these issues would be alleviated by prioritizing microservices and 
access to modular data in smaller chunks or summarized form. We propose that emphasizing 
modularity and interoperability would lead to a more powerful Unix-like ecosystem of web 
services for biomedical analysis and data retrieval. We challenge funders, developers, and 
researchers to support a vision to improve interoperability through microservices as the next 
generation of cloud-based bioinformatics.

The rise of cloud platforms
Cloud computing skyrocketed in popularity between 2008–2010 with great promise. Now, as cloud infrastruc-
ture has matured, a more recent trend in bioinformatics is the rapid expansion of biomedical cloud platforms 
and related “commons” sharing environments. We define biomedical cloud platforms as computing environ-
ments that provide three things: (1) access to specific (biomedical) data resources; (2) specific biomedical anal-
ysis software; and (3) cloud compute power for analysis. Biomedical cloud platforms are virtual environments 
specialized for a use case or research community. They are built using general-purpose cloud components or 
services, such as commercial Infrastructure-as-a-Service or Platform-as-a-Service products, but provide speci-
ficity to a biomedical research area in the form of tailored data and tools (Fig. 1a).

In bioinformatics, cloud platforms and related frameworks are expanding rapidly; to name a few, there 
is Terra, AnVIL1, the Gabriella Miller Kids First Data Resource Center2, Cavatica3, Gen3 Workspaces4, the 
Biomedical Research Hub5, the AHA Precision Medicine Platform6, CanDIG7, NHLBI BioData Catalyst, Alex’s 
Lemonade Stand Refine.bio, the Pediatric Cancer Data Commons8, SAGE Bionetworks’ Synapse9, the NCI 
Genomic Data Commons10, and others. In addition, commercial providers such as DNA Nexus, Seven Bridges, 
and Truwl offer custom platforms.
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It’s clear that the biomedical research community is investing heavily in the concept of cloud platforms, and 
there are several compelling arguments for this11. The most oft-cited argument revolves around the idea that for 
big data, it is more efficient to bring analysis to data than vice versa1. Clearly, as biological data has grown, it has 
become harder to move around. Transfer times and costs are substantial, and even if the data can be transferred, 
many researchers don’t have sufficient local resources; and for those that do, it feels terribly inefficient to dupli-
cate petabytes of data, particularly since most of the time these datasets are just sitting around. Cloud platforms 
seem like the perfect solution: Put all the data in one place, and let the researchers come and analyze it there in a 
controlled computing environment (Fig. 1b).

Besides potentially reduced costs for data storage and transfer, cloud platforms provide other advantages for 
all datasets, whether large or small: they allow computing over a dataset with less friction. For example, cloud 
platforms simplify controlling access to data, which is critical for many types of biological data. They also enable 
centralized, standardized computing environments, which have the potential to make analysis more reproduc-
ible while simultaneously reducing the need for investigators to maintain their own computing infrastructure. 
Users can start with a notebook with all required libraries, tools, and applications already loaded, sidestepping 
challenges like software compatibility, network architecture, server maintenance, etc. This is the experience that 
users have come to expect from platforms like Kaggle and Colab. Finally, biomedical cloud platforms offer easy 
and virtually unlimited scalability for both storage and compute power, with “pay-as-you-go” pricing that is 
favorable to the bursting use case common in biomedical research. These advantages lend great appeal to the 
biomedical cloud platform model, driving enormous investment over the past few years.

And yet somehow, despite large investments in biomedical cloud platforms, the promise of a unifying cloud 
seems further away than ever. Funders, companies, research institutions, and even individual lab groups have 
begun setting up their own biomedical cloud platforms, leading to a bewildering array of offerings. Each is 
optimized for a particular purpose and comes with data and analytical resources specific for that task. But con-
flictingly, in a pitch to win users, these same platforms are often marketed as flexible and accommodating, and 
encourage researchers to bring their own tools and data to bear within the ecosystem. In a way, although the 
explosion of cloud platforms reflects their varying tailored use cases, they nonetheless seem to be chasing the 
“holy grail” of the one cloud platform to rule them all. Paradoxically, instead of consolidating computing envi-
ronments per the original intent, investment in biomedical cloud platforms has actually increased the number 
of places to go and things to learn for biomedical data analysis (Fig. 1c).

If a single computing environment could accommodate all a researcher’s computing needs, this wouldn’t 
necessarily be a problem; however, researchers typically work on multiple projects with differing tool or data 
requirements that cannot necessarily be fulfilled by the same platform. Their needs may span different large 
datasets, include private data that cannot leave the premesis, or include specific hardware requirements. Thus, 
rather than reducing the challenges of computing and big data for individual labs, researchers are now divided 
even further as they must learn to use local high-performance computing environments mixed with multiple 
cloud environments, each with its own idiosyncrasies. This cloud platform heterogeneity is even more intense 
than that of the underlying cloud infrastructure providers; indeed, biomedical cloud platforms also spread 
across clouds, leading to duplicated administrative burden like managing billing accounts, learning user inter-
faces, and understanding provider-specific terminology. Despite the sound rationale and good intentions of 
cloud platforms, they have not simplified computing on big data, but increased its complexity.

Perhaps these biomedical cloud platform woes are just growing pains as the community grapples with new 
ideas and technology. As we gain experience, perhaps the task of managing data across platforms will become 
more manageable. Maybe competition among them will lead to consolidation and simplification. If so, over 
time, these struggles will be mitigated, and biomedical cloud platforms may eventually achieve the promise of 
simplifying and democratizing biomedical data analysis. But is it possible that these issues are not transient, and 
instead reflect an inevitable emergent property of the platform approach?

Fig. 1  Biomedical cloud platforms. (a) Biomedical cloud platforms are built from generic cloud components, 
including raw infrastructure components and Platform-as-a-Service (PaaS) or Software-as-a-Service (SaaS) 
offerings from commercial or on-premises providers. (b) A biomedical cloud platform provides compute power, 
data, and software for a particular purpose, and provides efficiency as a single source where users can come to 
run analysis. (c) Biomedical cloud platforms have proliferated, leading to a bewildering array of offerings and 
confusion for biomedical scientists.
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Cloud platforms inherently prioritize internal features
In our experience, biomedical cloud platforms, while frequently built on the premise of simplifying data shar-
ing and interoperability, are not generally delivering on this promise. Instead, as we argue further below, they 
are leading to lock-in, more restricted data access, non-interoperable data schemas, and duplicated effort for 
users and developers. One reason for this is the appeal of a common design choice: they tend to prioritize 
internal platform capabilities over external connections that drive interoperability with other systems (Fig. 2a). 
We define internal development as work on standalone capabilities of the platform itself; things like breadth of 
available analysis tools, amount of hosted data, and flexibility with types of analysis or workflows that can be run 
on the platform. Internal capabilities represent the utility of a platform and are obviously necessary. However, 
too much focus on internal capabilities neglects external connections–that is, links to resources outside the plat-
form, such as the ability to retrieve and integrate data from another cloud platform, or send data to an analysis 
tool hosted elsewhere.

The drive to prioritize internal features over external ones has several natural causes: First, developers often 
find it easier or more rewarding to develop their own systems than to investigate others; second, funders gener-
ally prioritize biomedical outcomes and consider external connections of secondary interest; third, user counts 
are often considered a measure of success for funding and prestige, disincentivizing developers from connect-
ing to competitors; fourth, platform architects generally make decisions independently and do not consider 
the emergent issues in the community as many people make the same decisions. These factors lead to cloud 
platforms that tend to grow in provided features. As the platforms expand in scope and power, the incentive to 
invest in interoperability across platforms decreases, because more and more external functions become avail-
able internally. This creates a self-reinforcing cycle in which individual platforms begin to sell simplicity in the 
form of a system to solve all the problems for the researcher in-house, so that the researcher doesn’t need to go 
anywhere else to get things done. The premise is ultimately to enable researchers to do work–any work at all–
inside the platform, with all necessary data at hand.

These promises are appealing, but while the intention behind the approach for each individual platform may 
seem justifiable and desirable, the incentives and practical limitations means in practice, cloud platforms often 
end up as walled gardens (Fig. 2b).

Biomedical cloud platforms lead to practical challenges
The emergent properties of an ecosystem of dozens or hundreds of internally-focused platforms lead to several 
practical issues: (1) platform lock-in; (2) difficulty integrating across platform technology; (3) tight coupling 
around ad hoc data schemas; and (4) confusion and duplicated effort for both users and developers.

Platform lock-in.  A major challenge with the biomedical cloud platform approach is the difficulty switching 
platforms due to both financial and cultural barriers. On the financial side, major cloud providers price storage 
to make it easy to get data in, but hard to get it out. This business decision makes it difficult to leave a particular 
cloud. Although this may not be an intentional property of a biomedical cloud platform, it is often inherited from 
the underlying provider. Finances aside, there is also a cultural cost in switching platforms. To become familiar 
with a particular cloud platform requires a substantial learning investment; each comes with its own terminology, 
focus, and idiosyncrasies. This learning cost must be repaid when switching platforms, making it a chore. These 
financial and cultural costs mean once a dataset or research group commits to a particular cloud platform, it is 
difficult to change. The bigger the data gets, the more inertia there is to just leave it there. This is a negative quality 
in a fast-moving scientific enterprise.

Difficulty integrating across platforms.  The thought of a single biomedical cloud platform for all your 
work is very appealing; but unfortunately, this simplifies the process of real research, particularly in biology. More 
and more, analysis requires integrating data from many sources, both public and private. Furthermore, the types 
of analyses are also frequently split across many kinds of tools with different computing needs. This heterogeneity 
increases the complexity of a one-size-fits-all cloud platform. And even if a particular platform can satisfy all 
needs for a particular project, most researchers are working on multiple projects, each with a different set of ref-
erence data, private data, and analysis tools. Furthermore, the dream of a central analysis location is a myth in the 
first place: though we may envision cloud infrastructure as a nebulous, remote environment in the sky, the reality 
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Fig. 2  Inward-facing platform development decreases interoperability. (a) Biomedical cloud platform 
development is often inward-focused, which prioritizes building capabilities of the platform. In contrast, 
outward-focused development emphasizes connections to other platforms. (b) As platforms develop new 
capability, they have less need to connect to other platforms, eventually leading to a self-contained environment.
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is that cloud infrastructure, too, has a physical location and is necessarily split across regions and clusters. These 
issues together make it inevitable that researchers will need to integrate across cloud platforms. The inward-facing 
focus of cloud platforms ignores this complexity, assuming instead that the researcher will be able to complete 
every project from start-to-finish using only the resources within a single cloud platform.

Tight coupling around ad hoc data schemas.  Cloud platforms may be offered as a more FAIR 
alternative to self-hosted research data. This argument arises because self-hosted data often adopt ad-hoc or 
project-specific standards, whereas cloud platforms have an opportunity to emphasize community-accepted data 
standards. However, the real driver of interoperability comes not from cloud platforms per se, but from com-
munity data schemas they may promote. Unfortunately, the incentives that drive inward-focused features also 
lead platforms to adopt project-specific data standards in the same way as self-hosted data. Cloud platforms, in 
their pursuit of more data and more users, are incentivized to be agnostic to standards and formats that support 
findability and reuse, and instead promote accessibility that encourages analysis in place and discourages down-
stream sharing. This creates an illusion of FAIRness: putting terabytes of data into one large BigQuery table does 
not make that data interoperable. Instead, it pushes ever greater costs for collecting, cleaning, and harmonizing 
data onto data generators and data scientists who already cite this as their biggest challenge. Thus, bespoke but 
cloud-native tools with tightly-coupled ad hoc schemas portents a new generation of project-specific data silos 
that are much more expensive to combine and clean.

Confusion and duplicated effort for both users and developers.  Users must investigate and select 
the platform that fits best for their question. Given the fast-moving area of cloud computing and the large number 
of available offerings, coupled with the cost of learning the systems due to their complexity, plus the importance 
of the decision due to the difficulty to switch–this is a substantial decision that users should not take lightly. If 
they do need to switch, this cost will need to be paid repeatedly. The other major cost is developer time. Under 
the cloud platform model, many common needs will need to be re-implemented independently in each platform.

These practical challenges share a theme: data interoperability. Interoperability is one of the four core tenets 
in the FAIR Data Principles12, which are community-accepted guidelines for data management created to drive 
greater uptake and reuse of data assets13–19. FAIR places very specific interoperability requirements on data; for 
example: (1) data must be identified with persistent globally unique identifiers with two-stage resolution; (2) 
resources must be described using rich metadata that is searchable; (3) metadata must be represented in a formal 
vocabulary and accessible separately from the data; etc.12,19–23. The FAIRness concept is also being expanded to 
software24,25.

Pursuing FAIRness is a difficult journey, and one that many researchers and organizations are just beginning. 
Data interoperability is generally the hardest of the four principles to adopt, and our four practical challenges 
above demonstrate some of the difficulties. We contend that these interoperability issues are not simply grow-
ing pains, but an inevitable corollary that emerges with many independent decisions to develop standalone, 
inward-focused cloud platforms. Because the current incentive structure encourages inward-facing develop-
ment over outward-facing connections, our effort is leading to lack of interoperability, data silos, and increased 
complexity for both users and developers. Enormous investments in cloud platforms are not only not helping, 
but may even be hurting our ability to share and analyze data.

But if cloud platforms aren’t the way forward, what is?

Interoperability through microservices
We propose to encourage data interoperability by shifting effort from biomedical cloud platforms to micros-
ervices. The term microservices encompasses multiple concepts that together form an architectural style for 
application development. The micro part means individual components are small and individually useful. The 
services part means execution of the function is remote, and therefore doesn’t rely on local computing infra-
structure. Thus, microservices are typically small functions, executed by a remote service, often via API. The 
microservice approach breaks an application into a series of loosely coupled functions that together accomplish 
a complex process.

Microservices can be viewed either as the antithesis, an extension, or a foundation of cloud platforms. Where 
biomedical cloud platforms derive their appeal from the breadth of internal data and features they provide, 
microservices provide few capabilities and derive power from interoperability. Therefore, unlike monolithic plat-
forms, microservices development naturally leads to increased interoperability. Microservices are a modern-age, 
web-based rediscovery of the Unix philosophy: “[T]he power of a system comes more from the relationships 
among programs than from the programs themselves. Many UNIX programs do quite trivial tasks in isolation, 
but, combined with other programs, become general and useful tools”26. After nearly 5 decades, Unix-like sys-
tems have become widely used for web services and now dominate the list of top supercomputers27, a testament 
to the enduring legacy of the Unix philosophy.

But are microservices a practical possibility in the extremely complicated and heterogeneous world of biolog-
ical data analysis, in which large, complex datasets and resource-intensive, multifaceted analysis are the norm? 
On the surface, the idea of small services and small data retrieval inherent to microservices seems at odds with 
common challenges in biological data analysis. How can the benefits of microservices apply to huge data sets 
spread across multiple data providers? How are microservices relevant when long-running analysis tasks are 
required to process the data?

Though the complexity and scale of biomedical analysis do make it more challenging to reap the benefits of 
microservice-based development, we propose that key concepts from microservices can still be very useful for 
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application in biological data analysis. We propose two concepts for improving interoperability of large-scale 
centralized data: (1) data slicing; and (2) data summary layers.

Data slicing.  From a platform-centric perspective, we build platforms around data because it’s more efficient 
to bring analysis to data than the inverse. Taken to its extreme, the most efficient and convenient analysis platform 
would be a single unified platform hosting all possible data. Unfortunately, this is impractical; there will always 
be multiple data sources in multiple locations, and therefore data transfer is inevitable for any analysis that spans 
data sources. Nevertheless, most of the time, most of the data is at rest, and for many analyses, only small chunks 
of data from several large data stores are needed. A microservices-centric perspective posits an alternative solu-
tion: to provide easy access to data slices (Fig. 3a). A microservice for data slicing provides efficient API-oriented 
access to small chunks of data. Like centralizing all data, data slicing also solves the problem of moving analysis to 
data, but in a different way: by encouraging the data to move, but minimizing the amount of data that must do so. 
By making it easy to move the data in small parts, data slicing microservices make cross-dataset analysis practical 
and efficient–without requiring an impossible single platform that hosts all data.

Data summary layers.  Access to data slices is useful for analyses that only require specific subsets of a large 
dataset, but what about tools or analyses for which slices of data do not suffice? Some analyses, such as machine 
learning applications, require looking across complete data sets. While there may be no simple solution for analy-
sis that demands all raw data, many tools in this category, including common machine learning methods, benefit 
from summarized, cleaned, and compressed data. This leads to a second approach to improve data interoperabil-
ity: data summary layers (Fig. 3b). In this approach, we conceptualize data as moving through a process that pro-
gressively reduces the size: raw data is large, processed data is much smaller, and summary data is very small. A 
machine learning application typically consumes processed or summarized data that has already been simplified 
and normalized–for example, by extracting the relevant features for a particular application. Another example is 
an API providing access to data via a trained model, which is in itself a form of summarized data. By providing 
access to data in summarized or processed form, a service minimizes the amount of transfer similar to data slices, 
but this time by providing a processed version of the complete data set.

Providing access to data slices or summaries leads to several benefits. First, it mitigates some regulatory 
concerns on data privacy; raw data can be controlled while allowing unfettered access to summarized or sliced 
pieces of data, which in many contexts is allowed. Even the most restricted datasets have some summary level 
that can be made widely available, and for access levels that require authorization, granular access is easy to 
implement using modern microservice-based authorization frameworks like OAuth 2.0. Second, it improves 
the ability to share data, which increases interoperability among tools and analyses by encouraging tools to 
use the same loosely connected set of data sources. Third, it improves reproducibility and reusability, because a 
particular data chunk can be reproducibly obtained from the server using a static API URI. Fourth, it simplifies 
the analytical setup for the user: Instead of providing yet another computing environment so researchers can 
bring analysis to data, it allows researchers to use the computing environment they are already comfortable 
with. Finally, by increasing emphasis on interoperability, this approach will also emphasize standards creation 
and uptake.

The rising tide of microservice-friendly technology
Comparing monolithic cloud platforms against microservices is a resurfacing of a perennial question in appli-
cation development: to what degree should a tool rely on external libraries or remote services versus imple-
menting them in-house? The same question arises in web development, software engineering, Linux containers, 
etc. Outsourcing has the advantage of eliminating duplication, reducing size and maintenance, and increasing 
interoperability; however, it requires reliable outsourced functions. If an external library or service is not reliable, 
robustness is improved by embedding capability internally. This is particularly true in web applications, where 
services may be down not only for software reasons, but also due to lack of network stability. Unfortunately, for 
an ecosystem built around microservices, a single unreliable service may cause an entire pipeline to stop.

Reliability is therefore a justifiable argument against microservices. However, at least from the technological 
point of view, it is rapidly being addressed. As cloud computing has matured, the technology and stability of the 
Internet has progressed to where it is no longer a dream to build reliable and fault-tolerant applications that are 
distributed across services and servers; in fact, it is quickly becoming appreciated that such an approach is likely 
to yield more stable systems in the long run because it simplifies scaling, troubleshooting, and redundancy. In 
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Fig. 3  Granular data access approaches improve interoperability. (a) Data slice APIs provide access to data in 
chunks, rather than to the entire dataset at once. (b) Data summary layers provide granular access to data at 
multiple stages of processing.
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the past, technological and network issues may have been a strong argument for building self-contained cloud 
platforms, but today, technology has risen to a point that the opposite is now true, and the most robust applica-
tions are typically built from distributed service components that operate and scale independently.

Other recent technological advances are also making the microservice-based approach more amenable in 
terms of maintainability and ease of development. Microservice implementations are facilitated by containeriza-
tion and orchestration frameworks such as Kubernetes28. While these systems have previously been demanding 
to set up and hence constituted a barrier, they are now straightforward to contextualize on virtually every cloud 
infrastructure. Further, most bioinformatics software is available in containers, a trend that is simplifying their 
incorporation in microservices and microservice-based platforms29.

Microservices and containerized software support not only web application development, but also bioinfor-
matic pipelines that process data through a sequence of compute steps. For example, pipelines can use microser-
vices as sources of reference data, to outsource compute tasks, or to share or publish processed data. In contrast, 
a pipeline built into a monolithic, inward-focused cloud environment is more likely to rely on internal reference 
data and tools, and is thus more tightly coupled to a particular platform with tools and reference data not nec-
essarily available for use by other pipelines in other environments for other purposes. Microservices therefore 
improve the portability and interoperability of pipelines.

Existing work in bio-microservices
The explosion in biomedical cloud platforms doesn’t mean there has been no effort to build bio-related micro-
services; on the contrary, many applications adhering to microservice principles are under development and in 
use. For example, efforts across the Global Alliance for Genomics and Health (GA4GH) are driving a variety of 
microservices, such as Refget30,31. The Gen3 Framework Services are a small set of microservices that have been 
used as a foundational set of services to develop over a dozen different data commons and data resources, each 
developed independently for a different research community to support their individual requirements5, but all 
relying on the same set of core microservices. Another example is the PhenoMeNal project, which pioneered 
Virtual Research Environments (VREs) for metabolomics based on the microservice architecture, with many 
microservices in metabolomics analysis and general data analysis32,33. The OpenRiskNet project (openrisknet.
org) refined this environment for chemical safety assessment and added an API layer for semantic discovera-
bility for services. The NCI Genomic Data Commons provides API-oriented access to petabytes of genomic 
data, which can also be accessed in data slices10. Other efforts include refgenie34,35, FAIRSCAPE36, and others. 
Tools like these are already an indispensable part of the ecosystem of biological computing. However, because 
microservices by nature have small scope, they typically get neither the public recognition nor funding given to 
monolithic efforts.

The next generation of microservice-enabled cloud platforms
We have argued that emphasis on biomedical cloud platforms leads to emergent challenges with interoperability. 
But the problem is not with platforms per se, but rather, with the common practice of emphasizing inward-facing 
capability at the cost of interoperability. The prevailing trends are encouraging inward-facing capability, rather 
than standards-compliant, external-facing services (Fig. 4). In fact, a cloud platform built from accessible ser-
vices37 could provide the best of both worlds: a unified location for specific analysis with specific data resources, 
plus an offering of interoperable services to retrieve small data or run small tasks from diverse external envi-
ronments. This concept is similar to the previously proposed idea of data commons, defined as a cloud platform 
that also provides access to data via an API38. For example, the NCI Genomic Data Commons provides a series 
of API services, and then builds additional capability on top of these services. If the microservices are made 
first-class components accessible externally, this development approach could lead to a robust, Unix-like inter-
operable system of services that may be mixed and matched.

To encourage further development of the vision for an interoperable network of microservices, we offer 
several recommendations for the community: First, we challenge developers of cloud platforms to focus more 
effort on APIs, even if this comes at the cost of internal platform feature development. These APIs should follow 
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Fig. 4  Interoperability will require attention to both technology and data. Infrastructure technology is 
orthogonal to data interoperability. Emphasis on cloud technology alone may ignore data reuse. Considering 
both technology and data reuse could usher in a new era of data interoperability.
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existing guidelines, including being OpenAPI-compatible39. Furthermore, APIs should not just provide access 
to data, but should provide granular access to chunks and summarized forms of data. Second, we propose that 
effort should shift from platforms that provide computing services toward platforms focused on data services. 
The primary goals of a data platform should be (1) to process the data to a summarized form in a reproducible 
way; (2) to make that data easily accessible, in chunks and summaries, so that users can reliably and reproduci-
bly retrieve the subset or summarized version of the data they need. Only as a secondary goal should platforms 
provide the ability to bring compute power to work on the raw data. This vision inverts the common practices 
today in cloud platforms. Third, we challenge funding bodies to increase investment and sustained support of 
small, focused services, rather than large, self-contained and all-encompassing platforms. One way to do this is 
through organizations like GA4GH, which are large enough to command attention and drive use, but divided 
into small work streams that tackle small, isolated problems and produce interoperable microservices. Another 
way to do this would be to develop smaller, sustained grant mechanisms that provide for maintenance and devel-
opment of well-defined microservices. Fourth, we recommend increasing emphasis on coordination activities 
in general. Coordination across both large consortia and individual groups is resource-intensive, but critical for 
generating interoperable datasets and tools. Coordination effort adds tremendous scientific value, so increased 
funding and recognition of these activities will promote open standard and data interoperability. Finally, we 
appeal to grant and paper reviewers to prioritize interoperability and granularity of data access of a platform, 
rather than just scope of features. From our experience, there is a disturbing trend in the review process that 
encourages revisions of grants and papers to increase impact by broadening scope and size, which drives effort 
away from development of microservices. This effort could instead be invested in polishing interoperability. 
Proposals should be evaluated rigorously against published FAIR principles12 for any funded biomedical com-
mons environment or framework.

We are convinced that emphasizing microservices will lead to improved interoperability in biomedical data 
analysis. However, other approaches and further work are clearly necessary; achieving interoperability has 
proven one of the most challenging aspects of modern data analysis, and it will require a variety of technical and 
cultural adjustments to get right. Interoperability has many levels20; for example, interoperability of underlying 
data and software sets the stage for interoperability among cloud platforms and frameworks, which in turn 
encourages interoperability among downstream analytical results. While microservices can solve some tech-
nical challenges, their benefit will be limited if the related issue of interoperable data schemas is not addressed. 
Furthermore, technical interoperability as discussed here is just the beginning, and is only useful if the under-
lying data itself is consistent. For example, different experimental approaches may yield data that are difficult or 
impossible to integrate, regardless of FAIRness. Nevertheless, improving the technical interoperability, including 
more machine-friendly metadata description, is an important universal step that can set the stage for substantive 
coalescence of experimental protocols and analysis methods that can make the data not only technically but also 
biologically interoperable. Furthermore, computing technology under development have potential to further 
enhance biomedical data interoperability. For example, distributed computing, edge computing, and content 
delivery networks (CDNs), are driving performance and challenging centralized computing models. Serverless 
computing and serverless databases are reshaping the data landscape. Microtransactions have become a viable 
business model and may provide a solution to the incessant challenge of “who pays?” in biomedical computing. 
Developments like webassembly are increasing the appeal of local compute. These innovations and others all 
have potential in a community effort to improve interoperability. Together, we are convinced that with the effort 
of developers, funders, reviewers, and users, we can realize a more interoperable ecosystem for biomedical data 
analysis.
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