Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Morphological and molecular preservation through universal preparation of fresh-frozen tissue samples for multimodal imaging workflows

Abstract

The landscape of tissue-based imaging modalities is constantly and rapidly evolving. While formalin-fixed, paraffin-embedded material is still useful for histological imaging, the fixation process irreversibly changes the molecular composition of the sample. Therefore, many imaging approaches require fresh-frozen material to get meaningful results. This is particularly true for molecular imaging techniques such as mass spectrometry imaging, which are widely used to probe the spatial arrangement of the tissue metabolome. As high-quality fresh-frozen tissues are limited in their availability, any sample preparation workflow they are subjected to needs to ensure morphological and molecular preservation of the tissues and be compatible with as many of the established and emerging imaging techniques as possible to obtain the maximum possible insights from the tissues. Here we describe a universal sample preparation workflow, from the initial step of freezing the tissues to the cold embedding in a new hydroxypropyl methylcellulose/polyvinylpyrrolidone-enriched hydrogel and the generation of thin tissue sections for analysis. Moreover, we highlight the optimized storage conditions that limit molecular and morphological degradation of the sections. The protocol is compatible with human and plant tissues and can be easily adapted for the preparation of alternative sample formats (e.g., three-dimensional cell cultures). The integrated workflow is universally compatible with histological tissue analysis, mass spectrometry imaging and imaging mass cytometry, as well as spatial proteomic, genomic and transcriptomic tissue analysis. The protocol can be completed within 4 h and requires minimal prior experience in the preparation of tissue samples for multimodal imaging experiments.

Key points

  • This protocol presents the use of an hydroxypropyl methylcellulose/polyvinylpyrrolidone-rich hydrogel for the cold embedding and sectioning of animal and plant tissues as well as three-dimensional cell cultures.

  • The new embedding material achieves superior morphological preservation of the tissues and makes the specimens compatible with a wide variety of downstream applications, including mass spectrometry imaging, histology and molecular biology methods. The method facilitates the creation of multitissue blocks, limiting batch effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General snap freezing procedure for fresh tissue samples (Step 1A(i–x)).
Fig. 2: Snap-freezing procedure for encapsulated organs such as kidney and heart (Step 1B(i–xi)).
Fig. 3: Preparation of the HPMC/PVP-based embedding medium (Steps 2–9).
Fig. 4: Embedding of fresh-frozen tissue samples (Steps 10–25).
Fig. 5: Embedding of 3D cell cultures (Steps 43–71).
Fig. 6: Cryosectioning of embedded tissue samples (Steps 72–97).
Fig. 7: Reproducibility evaluation of the optimized embedding protocol and achievable imaging resolution.
Fig. 8: Effects of the embedding media on DNA and RNA extraction.
Fig. 9: IF staining of a cardiac microtissue embedded in HPMC/PVP.

Similar content being viewed by others

Data availability

All relevant data are included in the main body of this paper or in the Extended Data. Source data are provided with this paper.

References

  1. Doria, M. L. et al. Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging. Sci. Rep. 6, 39219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Groseclose, M. R., Laffan, S. B., Frazier, K. S., Hughes-Earle, A. & Castellino, S. Imaging MS in toxicology: an investigation of juvenile rat nephrotoxicity associated with dabrafenib administration. J. Am. Soc. Mass Spectrom. 26, 887–898 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goodwin, R. J., Pennington, S. R. & Pitt, A. R. Protein and peptides in pictures: imaging with MALDI mass spectrometry. Proteomics 8, 3785–3800 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. McDonnell, L. A. et al. Peptide and protein imaging mass spectrometry in cancer research. J. Proteom. 73, 1921–1944 (2010).

    Article  CAS  Google Scholar 

  5. Schwartz, S. A., Reyzer, M. L. & Caprioli, R. M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Peukert, M. et al. Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI–MSI). N. Phytol. 193, 806–815 (2012).

    Article  CAS  Google Scholar 

  7. Dannhorn, A. et al. Universal sample preparation unlocking multimodal molecular tissue imaging. Anal. Chem. 92, 11080–11088 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Bonnel, D. et al. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI–MSI: application to prostate cancer. Anal. Bioanal. Chem. 401, 149–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Stoeckli, M., Staab, D., Schweitzer, A., Gardiner, J. & Seebach, D. Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 1921–1924 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Everest-Dass, A. V. et al. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol. Cell. Proteom. 15, 3003–3016 (2016).

    Article  CAS  Google Scholar 

  11. Dannhorn, A. et al. Evaluation of formalin-fixed and FFPE tissues for spatially resolved metabolomics and drug distribution studies. Pharmaceuticals 15, 1307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berghmans, E. et al. Implementation of MALDI mass spectrometry imaging in cancer proteomics research: applications and challenges. J. Pers. Med. 10, 54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grgic, A., Krestensen, K. K. & Heeren, R. M. A. Optimized protocol for MALDI MSI of N-glycans using an on-tissue digestion in fresh frozen tissue sections. Sci. Rep. 13, 2776 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shariatgorji, M. et al. Pyrylium salts as reactive matrices for MALDI–MS imaging of biologically active primary amines. J. Am. Soc. Mass Spectrom. 26, 934–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Shariatgorji, R. et al. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging. Nat. Protoc. 16, 3298–3321 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Bednařík, A., Bölsker, S., Soltwisch, J. & Dreisewerd, K. An on-tissue Paternò–Büchi reaction for localization of carbon–carbon double bonds in phospholipids and glycolipids by matrix-assisted laser-desorption–ionization mass-spectrometry imaging. Angew. Chem. Int. Ed. 57, 12092–12096 (2018).

    Article  Google Scholar 

  17. Flint, L. E. et al. Characterization of an aggregated three-dimensional cell culture model by multimodal mass spectrometry imaging. Anal. Chem. 92, 12538–12547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flint, L. E. et al. Comparison of osteosarcoma aggregated tumour models with human tissue by multimodal mass spectrometry imaging. Metabolites 11, 506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Najumudeen, A. K. et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat. Genet. 53, 16–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Adua, S. J. et al. Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer. Nat. Commun. 13, 7690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prag, H. A. et al. Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury. Circ. Res. 131, 528–541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vande Voorde, J. et al. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target. Nat. Metab. 5, 1303–1318 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Graziano, V. et al. Defining the spatial distribution of extracellular adenosine revealed a myeloid-dependent immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J. Immunother. Cancer 11, e006457 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cuddihy, J. et al. Lactate dehydrogenase activity staining demonstrates time-dependent immune cell infiltration in human ex-vivo burn-injured skin. Sci. Rep. 11, 21249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dannhorn, A. et al. Evaluation of UV-C decontamination of clinical tissue sections for spatially resolved analysis by mass spectrometry imaging (MSI). Anal. Chem. 93, 2767–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Isberg, O. G. et al. Automated cancer diagnostics via analysis of optical and chemical images by deep and shallow learning. Metabolites 12, 455 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dannhorn, A. et al. Correlating mass spectrometry imaging and liquid chromatography–tandem mass spectrometry for tissue-based pharmacokinetic studies. Metabolites 12, 261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamm, G. et al. Pharmacological inhibition of MERTK induces in vivo retinal degeneration: a multimodal imaging ocular safety assessment. Arch. Toxicol. 96, 613–624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mottahedin, A. et al. Targeting succinate metabolism to decrease brain injury upon mechanical thrombectomy treatment of ischemic stroke. Redox Biol. 59, 102600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Race, A. M. et al. Deep learning-based annotation transfer between molecular imaging modalities: An automated workflow for multimodal data integration. Anal. Chem. 93, 3061–3071 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Strittmatter, N. et al. Method to visualize the intratumor distribution and impact of gemcitabine in pancreatic ductal adenocarcinoma by multimodal imaging. Anal. Chem. 94, 1795–1803 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Kucheriavaia, D. et al. Toward revealing microcystin distribution in mouse liver tissue using MALDI–MS imaging. Toxins 13, 709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strittmatter, N. et al. Holistic characterization of a Salmonella typhimurium infection model using integrated molecular imaging. J. Am. Soc. Mass Spectrom. 32, 2791–2802 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rittel, M. F. et al. Spatial omics imaging of fresh-frozen tissue and routine FFPE histopathology of a single cancer needle core biopsy: a freezing device and multimodal workflow. Cancers 15, 2676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strittmatter, N. et al. Method to investigate the distribution of water-soluble drug-delivery systems in fresh frozen tissues using imaging mass cytometry. Anal. Chem. 93, 3742–3749 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Boughton, B. A., Thinagaran, D., Sarabia, D., Bacic, A. & Roessner, U. Mass spectrometry imaging for plant biology: a review. Phytochem. Rev. 15, 445–488 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Zemaitis, K. J. et al. Expanded coverage of phytocompounds by mass spectrometry imaging using on-tissue chemical derivatization by 4-APEBA. Anal. Chem. 95, 12701–12709 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Lukowski, J. K. et al. An optimized approach and inflation media for obtaining complimentary mass spectrometry-based omics data from human lung tissue. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2022.1022775 (2022).

  39. Yang, J. et al. Optimization of Zebrafish larvae sectioning for mass spectrometry imaging. Pharmaceuticals 15, 1230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y.-X., Zhang, Y.-D. & Shi, Y.-P. A reliable and effective sample preparation protocol of MALDI–TOF–MSI for lipids imaging analysis in hard and dry cereals. Food Chem. 398, 133911 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Ma, L. et al. Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging. Anal. Bioanal. Chem. 414, 4777–4790 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Hou, Y. et al. Applications of spatially resolved omics in the field of endocrine tumors. Front. Endocrinol. https://doi.org/10.3389/fendo.2022.993081 (2023).

  43. Granborg, J. R., Handler, A. M. & Janfelt, C. Mass spectrometry imaging in drug distribution and drug metabolism studies—principles, applications and perspectives. Trends Anal. Chem. 146, 116482 (2022).

    Article  CAS  Google Scholar 

  44. Dilmetz, B. A. et al. Novel technical developments in mass spectrometry imaging in 2020: a mini review. Anal. Sci. Adv. 2, 225–237 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iakab, S. A., Ràfols, P., Correig-Blanchar, X. & García-Altares, M. Perspective on multimodal imaging techniques coupling mass spectrometry and vibrational spectroscopy: picturing the best of both worlds. Anal. Chem. 93, 6301–6310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tuck, M. et al. Multimodal imaging based on vibrational spectroscopies and mass spectrometry imaging applied to biological tissue: a multiscale and multiomics review. Anal. Chem. 93, 445–477 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Patterson, N. H., Tuck, M., Van de Plas, R. & Caprioli, R. M. Advanced registration and analysis of MALDI imaging mass spectrometry measurements through autofluorescence microscopy. Anal. Chem. https://doi.org/10.1021/acs.analchem.8b02884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ushida, K., Asai, N., Uchiyama, K., Enomoto, A. & Takahashi, M. Development of a method to preliminarily embed tissue samples using low melting temperature fish gelatin before sectioning: a technical note. Pathol. Int. 68, 241–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Strohalm, M. et al. Poly[N -(2-hydroxypropyl)methacrylamide]-based tissue-embedding medium compatible with MALDI mass spectrometry imaging experiments. Anal. Chem. 83, 5458–5462 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, C. et al. Polyacrylamide gel as a new embedding medium for the enhancement of metabolite MALDI imaging. Chem. Commun. 59, 3842–3845 (2023).

    Article  CAS  Google Scholar 

  51. Fala, M. et al. Comparison of 13C MRI of hyperpolarized [1-13C]pyruvate and lactate with the corresponding mass spectrometry images in a murine lymphoma model. Magn. Reson. Med. 85, 3027–3035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goodwin, R. J. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J. Proteom. 75, 4893–4911 (2012).

    Article  CAS  Google Scholar 

  53. Steu, S. et al. A procedure for tissue freezing and processing applicable to both intra-operative frozen section diagnosis and tissue banking in surgical pathology. Virchows Arch. 452, 305–312 (2008).

    Article  PubMed  Google Scholar 

  54. Nilsson, A. et al. Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging. Chem. Res. Toxicol. 28, 1823–1830 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Shabihkhani, M. et al. The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin. Biochem. 47, 258–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Choy Buentello, D., Koch, L. S., Trujillo-de Santiago, G., Alvarez, M. M. & Broersen, K. Use of standard U-bottom and V-bottom well plates to generate neuroepithelial embryoid bodies. PLoS ONE 17, e0262062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bakker, B. et al. Preparing ductal epithelial organoids for high-spatial-resolution molecular profiling using mass spectrometry imaging. Nat. Protoc. 17, 962–979 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H. & Hummon, A. B. Imaging mass spectrometry of three-dimensional cell culture systems. Anal. Chem. 83, 8794–8801 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, X. et al. MALDI–MSI of immunotherapy: mapping the EGFR-targeting antibody cetuximab in 3D colon-cancer cell cultures. Anal. Chem. 90, 14156–14164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xie, P., Zhang, H., Wu, P., Chen, Y. & Cai, Z. Three-dimensional mass spectrometry imaging reveals distributions of lipids and the drug metabolite associated with the enhanced growth of colon cancer cell spheroids treated with triclosan. Anal. Chem. 94, 13667–13675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Swales, J. G. et al. Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging. Anal. Chem. 90, 6051–6058 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lukowski, J. K. et al. Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility. J. Am. Soc. Mass Spectrom. 31, 2538–2546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asslan, M., Lauzon, N., Beus, M., Maysinger, D. & Rousseau, S. Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Anal. Bioanal. Chem. 413, 5135–5146 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Iakab, S.-A. et al. 3D-mass spectrometry imaging of micro-scale 3D cell culture models in cancer research. Preprint at bioRxiv https://doi.org/10.1101/2022.12.05.519157 (2022).

  67. Archer, C. R. et al. Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology. Sci. Rep. 8, 10160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Biotechnology and Biological Sciences Research Council for the case funding for A.D. (BB/N504038/1). The authors also acknowledge the Cancer Research UK Grand Challenge Rosetta Consortium for discussions in support of their research.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and E.K. developed the embedding medium and procedure for tissues. L.F., F.G. and A.R.H. adapted the methodology for the embedding of 3D cell cultures. A.C. and A.R.H. provided the organoids for the appropriate protocol steps. S.A.J. provided the expertise for the freezing procedures of fresh tissue samples. G.P., S.T.B., O.J.S., J.B., Z.T. and R.J.A.G. provided feedback discussion for the methodology. Z.T. and R.J.A.G. secured the funding for the work. All authors reviewed and edited the manuscript drafted by A.D.

Corresponding author

Correspondence to Richard J. A. Goodwin.

Ethics declarations

Competing interests

A.D., L.F., F.G., A.C., A.R.H., S.A.J., S.T.B. and R.J.A.G. are full-time salaried employees, own stocks of AstraZeneca and performed this study as part of their regular duties.

Peer review

Peer review information

Nature Protocols thanks Junhai Yang, Xiaodong Wang and Miriam Rittel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Dannhorn, A. et al. Anal. Chem. 92, 11080–11088 (2020): https://doi.org/10.1021/acs.analchem.0c00826

Flint, L. E. et al. Anal. Chem. 92, 12538–12547 (2020): https://doi.org/10.1021/acs.analchem.0c02389

Prag, H. A. et al. Circ. Res. 131, 528–541 (2022): https://doi.org/10.1161/circresaha.121.320717

Vande Voorde, J. et al. Nat. Metab. 5, 1303–1318 (2023): https://doi.org/10.1038/s42255-023-00857-0

Najumudeen, A. K. et al. Nat. Genet. 53, 16–26 (2021): https://doi.org/10.1038/s41588-020-00753-3

Extended data

Extended Data Fig. 1 Impact of choice of cryogen on sample integrity.

a, mouse kidney snap frozen in dry ice chilled isopentane with fracture line through the organ. b, mouse kidney snap frozen in dry ice chilled isopropanol after washing in dry ice chilled isopentane without visible fractures.

Extended Data Fig. 2 Troubleshooting of the freezing of the multi-tissue blocks.

a, Multi-tissue block that was fully frozen before being washed in the isopentane dry ice slurry. b, Multi-tissue block that was not fully frozen before being washed in the isopentane dry ice slurry and that fractured due to pressure building up during rapid freezing. The fracture line is indicated with ▲.

Extended Data Fig. 3 Identification of the sectioning level for 3D cell culture blocks.

a, Top layer of the red-dyed embedding medium. b, Interface layer between the two dyed embedding media in which the 3D cell cultures are positioned and sections of the tissues should be collected. c, tissue-free, blue-dyed base medium after exhaustion of the sample.

Extended Data Fig. 4 Troubleshooting of the sectioning temperature.

a, Section of a multi-tissue block collected at the appropriate temperature without visible fractures of the tissues or sticking to the surfaces of the cryomicrotome. b, Section collected at too low temperature with visible fracturing of the tissues within. c, Section of a multi-tissue block collected at too high temperature with visible damage to the embedding medium and tissue sections.

Extended Data Fig. 5 Troubleshooting of a damaged blade or anti-rolling plate.

a,b, Section of a multi-tissue block with intact blade and the resulting H&E stained tissue section. c,d, Section of the same block collected with a faulty blade and visibly affected tissue morphology on a H&E stained tissue as indicated by ▲. The faulty blade scraped the tissue resulting in bands where the morphological structures were torn apart, rendering them impossible to identify. Scale bars in b and d, 200 µm.

Source data

Source Data Fig. 9

Unprocessed fluorescent microscopy data used to generate Fig. 9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dannhorn, A., Kazanc, E., Flint, L. et al. Morphological and molecular preservation through universal preparation of fresh-frozen tissue samples for multimodal imaging workflows. Nat Protoc 19, 2685–2711 (2024). https://doi.org/10.1038/s41596-024-00987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-00987-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research