Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils

Abstract

Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2–3 d, while functional genomics assays may require up to 1 month.

Key points

  • This protocol describes a method for single-cell RNA sequencing of tissue-resident murine eosinophils and a procedure for genome-wide CRISPR pooled genetic screens in bone marrow-derived eosinophils.

  • The protocol is optimized to reduce RNA degradation during isolation by reducing shear stress and processing time using magnetic cell sorting techniques and microwell-based single-cell RNA capture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comparison of methods for isolation and RNA capture from murine eosinophils.
Fig. 2: A schematic overview of scRNASeq of murine eosinophils.
Fig. 3: A schematic overview of the CRISPRi screen in murine bone marrow-derived eosinophils.
Fig. 4: Purification of murine eosinophils from the blood: comparison of red blood cell lysis methods.
Fig. 5: Assessment of murine eosinophil enrichment and viability.
Fig. 6: Exemplary pipeline for scRNASeq data processing and eosinophil identification.
Fig. 7: Transduction, differentiation and sorting of murine BMSCs.

Similar content being viewed by others

Data availability

ScRNAseq data used to illustrate this protocol have been deposited at the Gene Expression Omnibus under the accession number GSE182001.

Code availability

The code used to analyze the data is available at https://github.com/Moors-Code/Eosinophils_scRNASeq.

References

  1. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heng, T. S. P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, J. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity and functional multiplicity in the early stage of severe burn patients. Front. Immunol. 12, 792122 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Miyake, K. et al. Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils. Nat. Commun. 14, 2694 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wechsler, M. E. et al. Eosinophils in health and disease: a state-of-the-art review. Mayo Clin. Proc. 96, 2694–2707 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Gurtner, A. et al. Active eosinophils regulate host defence and immune responses in colitis. Nature 615, 151–157 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Shah, K., Ignacio, A., McCoy, K. D. & Harris, N. L. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. 13, 574–583 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Mao, H. et al. Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS ONE 8, e68143 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knuplez, E. et al. Frontline science: superior mouse eosinophil depletion in vivo targeting transgenic Siglec-8 instead of endogenous Siglec-F: mechanisms and pitfalls. J. Leukoc. Biol. 108, 43–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Shamri, R. et al. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. FASEB J. 26, 2084–2093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenberg, H. F. Eosinophil-derived neurotoxin (EDN/RNase 2) and the mouse eosinophil-associated RNases (mEars): expanding roles in promoting host defense. Int. J. Mol. Sci. 16, 15442–15455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shum, E. Y., Walczak, E. M., Chang, C. & Christina Fan, H. in Single Molecule and Single Cell Sequencing. (ed. Suzuki, Y.) 63–79 (Springer, 2019).

  17. Fan, H. C., Fu, G. K. & Fodor, S. P. A. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

    Article  PubMed  Google Scholar 

  18. Dent, L. A., Strath, M., Mellor, A. L. & Sanderson, C. J. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med. 172, 1425–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Dyer, K. D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 181 4004–4009 (2008).

  20. Wang, L. et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc. Natl Acad. Sci. USA 118, e2005590118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, W. et al. Single-cell RNA-sequencing in asthma research. Front. Immunol. 13, 988573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kong, L. et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 56, 444–458.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho, Y.-T. et al. Longitudinal single-cell transcriptomics reveals a role for Serpina3n-mediated resolution of inflammation in a mouse colitis model. Cell Mol. Gastroenterol. Hepatol. 12, 547–566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui, A. et al. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.02.040 (2023).

    Article  PubMed  Google Scholar 

  29. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwarzfischer, M. et al. TiO2 nanoparticles abrogate the protective effect of the Crohn’s disease-associated variation within the PTPN22 gene locus. Gut https://doi.org/10.1136/gutjnl-2021-325911 (2022).

    Article  PubMed  Google Scholar 

  31. Gao, C., Zhang, M. & Chen, L. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium. Curr. Genomics 21, 602–609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayer, A. T. et al. A tissue atlas of ulcerative colitis revealing evidence of sex-dependent differences in disease-driving inflammatory cell types and resistance to TNF inhibitor therapy. Sci. Adv. 9, eadd1166 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lafzi, A. et al. Identifying spatial co-occurrence in healthy and inflamed tissues (ISCHIA). Mol. Syst. Biol. 20, 98–119 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 1–23 (2022).

    ADS  Google Scholar 

  35. Shi, H., Doench, J. G. & Chi, H. CRISPR screens for functional interrogation of immunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00802-4 (2022).

    Article  PubMed  Google Scholar 

  36. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeung, A. T. Y. et al. A genome-wide knockout screen in human macrophages identified host factors modulating Salmonella infection. mBio 10, e02169–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lai, Y. et al. High-throughput CRISPR screens to dissect macrophage-shigella interactions. mBio 12, e0215821 (2021).

    Article  PubMed  Google Scholar 

  39. Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416–420 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Gurtner, A., Gonzalez-Perez, I. & Arnold, I. C. Intestinal eosinophils, homeostasis and response to bacterial intrusion. Semin. Immunopathol. 43, 295–306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mair, F. et al. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep. 31, 107499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, J. J. et al. Human versus mouse eosinophils: ‘that which we call an eosinophil, by any other name would stain as red’. J. Allergy Clin. Immunol. 130, 572–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chu, D. K. et al. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J. Exp. Med. 211, 1657–1672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng, Y.-H. & Mao, H. Expression and preliminary functional analysis of Siglec-F on mouse macrophages. J. Zhejiang Univ. Sci. B 13, 386–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DelGiorno, K. E. et al. Tuft cell formation reflects epithelial plasticity in pancreatic injury: implications for modeling human pancreatitis. Front. Physiol. 11, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Percopo, C. M., Limkar, A. R., Sek, A. C. & Rosenberg, H. F. in Eosinophils: Methods and Protocols. (ed. Walsh, G. M.) 49–58 (Springer, 2021).

  50. Olbrich, C. L., Larsen, L. D. & Spencer, L. A. Assessing phenotypic heterogeneity in intestinal tissue eosinophils. Methods Mol. Biol. 2241, 243–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Munoz, N. M. & Leff, A. R. Highly purified selective isolation of eosinophils from human peripheral blood by negative immunomagnetic selection. Nat. Protoc. 1, 2613–2620 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ide, M., Weiler, D., Kita, H. & Gleich, G. J. Ammonium chloride exposure inhibits cytokine-mediated eosinophil survival. J. Immunol. Methods 168, 187–196 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Handler, K. et al. Fragment-sequencing unveils local tissue microenvironments at single-cell resolution. Nat. Commun. 14, 7775 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs—a fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience 7, giy059 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, T. X. & Rothenberg, M. E. Bone marrow derived eosinophil cultures. Bio. Protoc. 4, e1161–e1161 (2014).

    Article  PubMed  Google Scholar 

  60. Hudak, S. et al. FLT3/FLK2 ligand promotes the growth of murine stem cells and the expansion of colony-forming cells and spleen colony-forming units. Blood 85, 2747–2755 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Metcalf, D., Mifsud, S. & Di Rago, L. Stem cell factor can stimulate the formation of eosinophils by two types of murine eosinophil progenitor cells. Stem Cells 20, 460–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Gouvarchin Ghaleh, H. E., Bolandian, M., Dorostkar, R., Jafari, A. & Pour, M. F. Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed. Pharmacother. 128, 110276 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Colic, M. & Hart, T. Common computational tools for analyzing CRISPR screens. Emerg. Top. Life Sci. 5, 779–788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  67. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Handler, D. Eletto, A. Ozga, F. Mhamedi Baccouche, M.-D. Hussherr and the Arnold laboratory for technical support and ideas. We are also thankful to the Single Cell Facility from BSSE and the Genomics Facility Basel for their help. This study was supported by an Eccellenza Professorial Fellowship from the Swiss National Science Foundation to I.C.A. (PCEFP3_187021) and A.E.M (PCEFP3_ 181249), by a Consolidator Grant from the Swiss National Science Foundation (TMCG-3_213857), by a TANDEM grant from the ISREC Foundation and by the Vontobel Foundation (1120/2022) to I.C.A., and by the Helmsley Charitable Trust grant no. 1903-03791 to A.E.M.

Author information

Authors and Affiliations

Authors

Contributions

C.B. and A.G designed the protocols, performed the experiments, analyzed the data and wrote the manuscript. I.C.A. and A.E.M supervised the study.

Corresponding authors

Correspondence to Isabelle C. Arnold or Andreas E. Moor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ariel Munitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Gurtner, A. et al. Nature 615, 151–157 (2023): https://doi.org/10.1038/s41586-022-05628-7

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Table 1

Sequences for the primers used in the protocol.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, C., Gurtner, A., Arnold, I.C. et al. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00967-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing