Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design, assembly, and characterization of membrane-spanning DNA nanopores

Abstract

DNA nanopores are bio-inspired nanostructures that control molecular transport across lipid bilayer membranes. Researchers can readily engineer the structure and function of DNA nanopores to synergistically combine the strengths of DNA nanotechnology and nanopores. The pores can be harnessed in a wide range of areas, including biosensing, single-molecule chemistry, and single-molecule biophysics, as well as in cell biology and synthetic biology. Here, we provide a protocol for the rational design of nanobarrel-like DNA pores and larger DNA origami nanopores for targeted applications. We discuss strategies for the pores’ chemical modification with lipid anchors to enable them to be inserted into membranes such as small unilamellar vesicles (SUVs) and planar lipid bilayers. The procedure covers the self-assembly of DNA nanopores via thermal annealing, their characterization using gel electrophoresis, purification, and direct visualization with transmission electron microscopy and atomic force microscopy. We also describe a gel assay to determine pore–membrane binding and discuss how to use single-channel current recordings and dye flux assays to confirm transport through the pores. We expect this protocol to take approximately 1 week to complete for DNA nanobarrel pores and 2–3 weeks for DNA origami pores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the design, assembly and characterization of DNA nanopores.
Fig. 2: Overview of several existing DNA nanopores.
Fig. 3: DNA nanopores designed via the nanobarrel or DNA origami method.
Fig. 4: Nanobarrel 2D strand maps showing the connectivity of various designs for nanobarrel-type DNA pores.
Fig. 5: Screenshots taken from CaDNAno showing the two types of lattice network.
Fig. 6: The 72HB DNA origami nanopore designed using the CaDNAno interface with Maya 2015.
Fig. 7: Using CaDNAno to generate the DNA origami structure and staple sequences.
Fig. 8: Gel electrophoretic characterization of DNA nanopores.
Fig. 9: Representative TEM images of nanobarrel and DNA origami nanopores and their interaction with lipid membranes.
Fig. 10: Gel-shift assay for electrophoretic quantification of DNA nanopore binding to SUVs.
Fig. 11: Single-channel current analysis of DNA nanopores using planar lipid bilayer recordings.
Fig. 12: Extracting data from single-channel current traces of DNA nanopores.
Fig. 13: Example traces of the dye flux assay.

Similar content being viewed by others

Data availability

All data are available from the corresponding author upon reasonable request.

References

  1. Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 Dalton resolution. Nat. Commun. 10, 835 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wei, R. S., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Thakur, A. K. & Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2019).

    Article  CAS  Google Scholar 

  7. Pulcu, G. S., Mikhailova, E., Choi, L. S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotechnol. 10, 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 15–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Varongchayakul, N., Song, J., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Alberts, B. et al. Molecular Biology of the Cell 6th edn (Garland Publishing, 2014).

  12. Quick, J. et al. Real-time, portable genome sequencing for ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Majd, S. et al. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 21, 439–476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 9, 4085 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Howorka, S. Building membrane nanopores. Nat. Nanotechnol. 12, 619–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839 (2008).

    Article  CAS  Google Scholar 

  20. Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Gopfrich, K. et al. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett. 16, 4665–4669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gopfrich, K. et al. DNA-tile structures induce ionic currents through lipid membranes. Nano Lett. 15, 3134–3138 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Burns, J., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Seifert, A. et al. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9, 1117–1126 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Arnott, P. M., Joshi, H., Aksimentiev, A. & Howorka, S. Dynamic interactions between lipid-tethered DNA and phospholipid membranes. Langmuir 34, 15084–15092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, L., Liang, S., Chen, Y., Wu, M. & Zhang, Y. Destructing the plasma membrane with activatable vesicular DNA nanopores. ACS Appl. Mater. Interfaces 12, 96–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, R. et al. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gopfrich, K. et al. Large-conductance transmembrane porin made from DNA origami. ACS Nano 10, 8207–8214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishnan, S. et al. Molecular transport through large-diameter DNA nanopores. Nat. Commun. 7, 12787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diederichs, T. et al. Synthetic protein-conductive membrane nanopores built with DNA. Nat. Commun. 10, 5018 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Thomsen, R. P. et al. A large size-selective DNA nanopore with sensing applications. Nat. Commun. 10, 5655 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chidchob, P. et al. Spatial presentation of cholesterol units on a DNA cube as a determinant of membrane protein-mimicking functions. J. Am. Chem. Soc. 141, 1100–1108 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Li, C. et al. Single-stranded DNA designed lipophilic G-quadruplexes as transmembrane channels for switchable potassium transport. Chem. Commun. 55, 12004–12007 (2019).

    Article  CAS  Google Scholar 

  36. Burns, J. R. et al. Lipid bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).

    Article  CAS  Google Scholar 

  37. Burns, J. R., Al-Juffali, N., Janes, S. M. & Howorka, S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew. Chem. Int. Ed. 53, 12466–12470 (2014).

    Article  CAS  Google Scholar 

  38. Messager, L. et al. Biomimetic hybrid nanocontainers of designed permeability. Angew. Chem. Int. Ed. 55, 11106–11109 (2016).

    Article  CAS  Google Scholar 

  39. Arnott, P. M. & Howorka, S. A temperature-gated nanovalve self-assembled from DNA to control molecular transport across membranes. ACS Nano 13, 3334–3340 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Kuzuya, A., Wang, R., Sha, R. & Seeman, N. C. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett. 7, 1757–1763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langecker, M., Arnaut, V., List, J. & Simmel, F. C. DNA nanostructures interacting with lipid bilayer membranes. Acc. Chem. Res. 47, 1807–1815 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Ohmann, A. et al. Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Res. 47, 11441–11451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sacca, B. & Niemeyer, C. M. DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012).

    Article  CAS  Google Scholar 

  45. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  CAS  Google Scholar 

  47. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Pugh, G. C., Burns, J. R. & Howorka, S. Comparing proteins and nucleic acids for next-generation biomolecular engineering. Nat. Rev. Chem. 2, 113–130 (2018).

    Article  CAS  Google Scholar 

  50. Litvinchuk, S. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nat. Mater. 6, 576–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sprengel, A. et al. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions. Nat. Commun. 8, 14472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bae, W., Kocabey, S. & Liedl, T. DNA nanostructures in vitro, in vivo and on membranes. Nano Today 26, 98–107 (2019).

    Article  CAS  Google Scholar 

  53. Burns, J. R. & Howorka, S. Structural and functional stability of DNA nanopores in biological media. Nanomaterials 9, 490 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  54. Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Hogberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Z., Yang, Y., Pincet, F., C. L., M. & Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. W. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    Article  CAS  Google Scholar 

  59. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Ohmann, A. et al. A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat. Commun. 9, 2426 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gut, I. G. & Beck, S. A procedure for selective DNA alkylation and detection by mass-spectrometry. Nucleic Acids Res. 23, 1367–1373 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maingi, V. et al. Stability and dynamics of membrane-spanning DNA nanopores. Nat. Commun. 8, 14784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, P. et al. Charge neutralization drives the shape reconfiguration of DNA nanotubes. Angew. Chem. Int. Ed. 57, 5418–5422 (2018).

    Article  CAS  Google Scholar 

  66. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, D. N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bellot, G., McClintock, M. A., Lin, C. & Shih, W. M. Recovery of intact DNA nanostructures after agarose gel-based separation. Nat. Methods 8, 192–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. 53, 12735–12740 (2014).

    Article  CAS  Google Scholar 

  70. Xing, S. et al. Constructing higher-order DNA nanoarchitectures with highly purified DNA nanocages. ACS Appl. Mater. Interfaces 7, 13174–13179 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Shaw, A., Benson, E. & Hogberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 9, 4968–4975 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schreiber, R. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Endo, M. & Sugiyama, H. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy. Acc. Chem. Res. 47, 1645–1653 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beckwitt, E. C., Kong, M. & Van Houten, B. Studying protein-DNA interactions using atomic force microscopy. Semin. Cell Dev. Biol. 73, 220–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Raghavan, G., Hidaka, K., Sugiyama, H. & Endo, M. Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. Angew. Chem. Int. Ed. 58, 7626–7630 (2019).

    Article  CAS  Google Scholar 

  79. Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 8052 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Hansma, H. G. & Laney, D. E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys. J. 70, 1933–1939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mitchell, N., Ebner, A., Hinterdorfer, P., Tampe, R. & Howorka, S. Chemical tags mediate the orthogonal self-assembly of DNA duplexes into supramolecular structures. Small 6, 1732–1735 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Pyne, A., Thompson, R., Leung, C., Roy, D. & Hoogenboom, B. W. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10, 3257–3261 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Lyubchenko, Y. L., Shlyakhtenko, L. S. & Gall, A. A. Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol. Biol. 543, 337–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kučerka, N., Nieh, M. P. & Katsaras, J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochem. Biphys. Acta 1808, 2761–2771 (2011).

    Article  CAS  Google Scholar 

  87. Burns, J. R. & Howorka, S. Defined bilayer interactions of DNA nanopores revealed with a nuclease-based nanoprobe strategy. ACS Nano 12, 3263–3271 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Birkholz, O. et al. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 9, 1521 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Fogarty, J. C., Arjunwadkar, M., Pandit, S. A. & Pan, J. Atomically detailed lipid bilayer models for the interpretation of small angle neutron and x-ray scattering data. Biochim. Biophys. Acta 1848, 662–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Baaken, G., Ankri, N., Schuler, A. K., Ruhe, J. & Behrends, J. C. Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5, 8080–8088 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Jun, H. et al. Autonomously designed free-form 2D DNA origami. Sci. Adv. 5, eaav0655 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. de Llano, E. et al. Adenita: interactive 3D modeling and visualization of DNA nanostructures. Nucleic Acids Res. 48, 8269–8275 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Lacroix, A., Edwardson, T. G. W., Hancock, M. A., Dore, M. D. & Sleiman, H. F. Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc. 139, 7355–7362 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Ciccone, R. Dickman, and H. Philpott for helping with figures and providing valuable feedback. Furthermore, the authors thank C. Weichbrodt from Nanion Technologies for providing feedback on the section of single-channel current recordings. The Howorka Group receives funding from the EPSRC (EP/ N009282/1), the BBSRC (BB/M025373/1, BB/N017331/1), and the Leverhulme Trust (RPG-2017-015). C.L. and E.G. are supported by the Biotechnology and Biological Sciences Research Council (BB/MO09513/1). C.L. is also supported by the National Physical Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

C.L., D.O.-S., G.P., and J.R.B. provided the protocols for design and assembly. D.O.-S. and G.P. supplied the protocol for CanDo. C.L., D.O.-S, Y.X., and J.R.B. prepared the protocol for cholesterol lipid anchors. J.R.B. contributed the protocol for the alkyl modification of DNA. C.L. and D.O.-S. generated the protocol for gel electrophoretic characterization. E.G. prepared the protocols for purification of DNA origami structures. Y.X. provided the protocols for TEM analysis, and J.R.B. provided the protocols for AFM. C.L. provided the protocol for gel-binding assays. A.D. wrote the protocol for single-channel current recordings. C.L. provided the protocol for dye flux assays. D.O.-S. compiled the list of and set up materials and equipment. C.L., A.D., and J.R.B. supplied the troubleshooting advice. C.L., D.O.-S., J.R.B., and S.H. wrote the manuscript with input from all authors. C.L., D.O.-S, J.R.B., and S.H. edited the manuscript. C.L., A.D., G.P., and J.R.B. generated the figures, and J.R.B. edited them. All authors were part of the data analysis and discussions.

Corresponding authors

Correspondence to Jonathan R. Burns or Stefan Howorka.

Ethics declarations

Competing interests

G.P., J.R.B., and S.H. hold patents on DNA nanopores that have been licensed to Oxford Nanopore Technologies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Diederichs, T. et al. Nat. Comm. 10, 5018 (2019): https://doi.org/10.1038/s41467-019-12639-y

Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. Nat. Nanotechnol. 11, 152–156 (2016): https://doi.org/10.1038/nnano.2015.279

Langecker, M. Science 338, 932–936 (2012): https://doi.org/10.1126/science.1225624

Burns, J. R., Stulz, E. & Howorka, S. Nano Lett. 13, 2351–2356 (2013): https://doi.org/10.1021/nl304147f

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanphere, C., Offenbartl-Stiegert, D., Dorey, A. et al. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat Protoc 16, 86–130 (2021). https://doi.org/10.1038/s41596-020-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0331-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing