Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural basis of temperature sensation by the TRP channel TRPV3

An Author Correction to this article was published on 13 January 2020

This article has been updated

Abstract

We present structures of mouse TRPV3 in temperature-dependent open, closed and intermediate states that suggest two-step activation of TRPV3 by heat. During the strongly temperature-dependent first step, sensitization, the channel pore remains closed while S6 helices undergo α-to-π transitions. During the weakly temperature-dependent second step, channel opening, tight association of the S1–S4 and pore domains is stabilized by changes in the carboxy-terminal and linker domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional characterization and structures of TRPV3WT at 42 °C.
Fig. 2: Functional characterization and structures of TRPV3Y564A at 4 °C and 37 °C.
Fig. 3: Conformational changes in response to heat.

Similar content being viewed by others

Data availability

Cryo-EM density maps have been deposited in the Electron Microscopy Data Bank (EMDB) under accession numbers EMD-20492 for TRPV3WT-Closed-42 °C, EMD-20493 for TRPV3WT-Sensitized-42 °C, EMD-20494 for TRPV3Y564A-Sensitized-4 °C, EMD-20495 for TRPV3Y564A-Sensitized-37 °C, EMD-20496 for TRPV3Y564A-Open-37 °C and EMD-20497 for TRPV3Y564A-Intermediate-37 °C. Model coordinates have been deposited in the Protein Data Bank (PDB) under accession numbers 6PVL for TRPV3WT-Closed-42 °C, 6PVM for TRPV3WT-Sensitized-42 °C, 6PVN for TRPV3Y564A-Sensitized-4 °C, 6PVO for TRPV3Y564A-Sensitized-37 °C, 6PVP for TRPV3Y564A-Open-37 °C and 6PVQ for TRPV3Y564A-Intermediate-37 °C. All other data are available from the corresponding author upon request.

Change history

  • 13 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Caterina, M. J. et al. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Patapoutian, A., Peier, A. M., Story, G. M. & Viswanath, V. Nat. Rev. Neurosci. 4, 529–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Jordt, S. E., McKemy, D. D. & Julius, D. Curr. Opin. Neurobiol. 13, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Clapham, D. E. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Peier, A. M. et al. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Guler, A. D. et al. J. Neurosci. 22, 6408–6414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, G. D. et al. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, B. Y., Yao, J., Zhu, M. X. & Qin, F. J. Gen. Physiol. 138, 509–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zubcevic, L. et al. Nat. Commun. 9, 4773 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Singh, A. K., McGoldrick, L. L. & Sobolevsky, A. I. Nat. Struct. Mol. Biol. 25, 805–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diaz-Franulic, I., Poblete, H., Mino-Galaz, G., Gonzalez, C. & Latorre, R. Annu. Rev. Biophys. 45, 371–398 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Feng, Q. Curr. Top. Membr. 74, 19–50 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Voets, T. Rev. Physiol. Biochem. Pharmacol. 162, 91–119 (2012).

    CAS  PubMed  Google Scholar 

  15. Xu, H. X. et al. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kasimova, M. A. et al. J. Gen. Physiol. 150, 1554–1566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, B. & Qin, F. Proc. Natl Acad. Sci. USA 114, 1589–1594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, E., Liao, M., Cheng, Y. & Julius, D. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vlachova, V. et al. J. Neurosci. 23, 1340–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brauchi, S., Orio, P. & Latorre, R. Proc. Natl Acad. Sci. USA 101, 15494–15499 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grandl, J. et al. Nat. Neurosci. 11, 1007–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grandl, J. et al. Nat. Neurosci. 13, 708–714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao, J., Liu, B. Y. & Qin, F. Proc. Natl Acad. Sci. USA 108, 11109–11114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macikova, L., Vyklicka, L., Barvik, I., Sobolevsky, A. I. & Vlachova, V. Int. J. Mol. Sci. 20, 3990 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  26. Brauchi, S. et al. Proc. Natl Acad. Sci. USA 104, 10246–10251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zubcevic, L., Borschel, W. F., Hsu, A. L., Borgnia, M. J. & Lee, S.-Y. Elife 8, e47746 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shi, D. J., Ye, S., Cao, X., Zhang, R. G. & Wang, K. W. Protein Cell 4, 942–950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. J. Mol. Graph. Model. 14, 354–360 (1996).

    Article  CAS  Google Scholar 

  30. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Goehring, A. et al. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russo, C. J. & Passmore, L. A. Science 346, 1377–1380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suloway, C. et al. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Zivanov, J. et al. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, K. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheres, S. H. & Chen, S. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, S. et al. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pettersen, E. F. et al. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Afonine, P. V. et al. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, G. et al. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zakharian, E. Methods Mol. Biol. 998, 109–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Grassucci for assistance with microscope operation, U. Baxa and T. Edwards for help with data collection and H. Kao for computational support. We thank J. Yoder for comments on the manuscript and M. Yelshanskaya for helpful discussions. L.L.M. is supported by the National Institutes of Health (NIH) (F31 CA232391-01). A.I.S. is supported by the NIH (R01 CA206573, R01 NS083660, R01 NS107253), National Science Foundation (1818213) and the Irma T. Hirschl Career Scientist Award. Data were collected at the Frederick National Laboratory for Cancer Research National Cryo-EM Facility (NIH) and at the Simons Electron Microscopy Center and National Resource for Automated Molecular Microscopy (New York Structural Biology Center) supported by grants from the Simons Foundation (349247), NYSTAR and the NIH (GM103310).

Author information

Authors and Affiliations

Authors

Contributions

A.K.S. and A.I.S. designed the project. A.K.S., L.L.M., L.D., E.Z. and A.I.S. analyzed data. A.K.S. and L.L.M. made constructs, prepared protein samples, carried out cryo-EM data collection and processing. A.K.S. and A.I.S. built molecular models. L.D. and M.L. carried out bilayer experiments. A.K.S., L.L.M., L.D., E.Z. and A.I.S. wrote the manuscript.

Corresponding author

Correspondence to Alexander I. Sobolevsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of cryo-EM data collected for TRPV3WT and TRPV3Y564A.

a, Example micrographs from different TRPV3-construct collections with example particles circled in red. b, Reference-free 2D class averages in different orientations. c, Euler angle distribution of particles contributing to the final reconstructions with larger red cylinders representing orientations comprising more particles.

Extended Data Fig. 2 Resolution of TRPV3WT and TRPV3Y564A cryo-EM reconstructions.

a, FSC curves calculated between half maps. b, FSC curves calculated between two unfiltered half-maps and the final map and a model whose coordinates were randomized and refined against only half map 1. c, Local resolution predicted by ResMap30.

Extended Data Fig. 3 Comparison of TRPV3WT closed-state structures at 4 °C and 42 °C.

a-b, Overall superposition of TRPV3WT-closed-4 °C (red) and TRPV3WT-closed-42 °C (blue) structures viewed from the side (a) or the bottom (b). c, Pore radii calculated using HOLE29. The vertical dashed line denotes the radius of a water molecule, 1.4 Å. d-e, Expanded view of the transmembrane domain of one TRPV3WT-Closed-4 °C (d) or TRPV3WT-Closed-42 °C (e) subunit with lipid-like densities shown as purple mesh.

Extended Data Fig. 4 Architecture and domain organization of TRPV3.

a-b, Top (a) and side (b) views of the TRPV3 tetramer, with each subunit shown in a different color. c, Domain organization diagram of the TRPV3 subunit. d, Structure of TRPV3 subunit, with domains colored as in c. Alanine substituting tyrosine 564 in TRPV3Y564A is shown in red space-filling representation (a, b and d) or indicated by the red circle (c).

Extended Data Fig. 5

3D reconstruction workflow for TRPV3Y564A.

Extended Data Fig. 6 C-terminus unlatching during channel opening.

a-b, Expanded view of the cytosolic intersubunit interface in TRPV3Y564A-Sensitized-4 °C (a) and TRPV3Y564A-Open-37 °C (b). The C-termini and the putative N-terminus fragment from the TRPV3Y564A-Open-37 °C adjacent subunit are thickened for clarity. Conserved residues at the C-terminus-ARD interfaces are shown as sticks. Movement of the AR5 loop in the open state relative to the sensitized or closed state is indicated by a red arrow.

Extended Data Fig. 7 Comparison of heat- and ligand-activated open states.

a-c, Overall superposition of TRPV3Y564A-Open-37 °C (orange) and TRPV3Y564A-Open-2-APB (grey) viewed from the top (a) and the side (b) and an expanded view of the transmembrane domain of one subunit (c). 2-APB molecules bound to TRPV3Y564A-Open-2-APB structure are shown as space-filling models. d-f, Expanded views of binding sites 2 (d), 3 (e) and 4 (f). The 2-APB molecules bound to TRPV3Y564A-Open-2-APB are shown as sticks and the TRPV3Y564A-Open-37 °C density is shown as blue mesh. TRPV3Y564A-Open-37 °C residues that would clash with the 2-APB molecules are shown in stick representation.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., McGoldrick, L.L., Demirkhanyan, L. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat Struct Mol Biol 26, 994–998 (2019). https://doi.org/10.1038/s41594-019-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0318-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing