Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Centering cognitive neuroscience on task demands and generalization

Abstract

Cognitive neuroscience seeks generalizable theories explaining the relationship between behavioral, physiological and mental states. In pursuit of such theories, we propose a theoretical and empirical framework that centers on understanding task demands and the mutual constraints they impose on behavior and neural activity. Task demands emerge from the interaction between an agent’s sensory impressions, goals and behavior, which jointly shape the activity and structure of the nervous system on multiple spatiotemporal scales. Understanding this interaction requires multitask studies that vary more than one experimental component (for example, stimuli and instructions) combined with dense behavioral and neural sampling and explicit testing for generalization across tasks and data modalities. By centering task demands rather than mental processes that tasks are assumed to engage, this framework paves the way for the discovery of new generalizable concepts unconstrained by existing taxonomies, and moves cognitive neuroscience toward an action-oriented, dynamic and integrated view of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Centering task demands in our thinking.
Fig. 2: Interconnected neural circuits generate activity dynamics in service of mental and behavioral flexibility.
Fig. 3: Task demands bridge mental concepts and data.

Similar content being viewed by others

References

  1. Gibson, J. J. The ecological approach to visual perception. J. Aesthet. Art. Crit. 39, 203 (1979).

    Google Scholar 

  2. Ledergerber, D. et al. Task-dependent mixed selectivity in the subiculum. Cell Rep. 35, 109175 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J. & Barack, D. L. Tasks and their role in visual neuroscience. Neuron https://doi.org/10.1016/j.neuron.2023.03.022 (2023).

  4. Burlingham, C. S. et al. Task-related hemodynamic responses in human early visual cortex are modulated by task difficulty and behavioral performance. eLife 11, e73018 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ito, T. & Murray, J. D. Multitask representations in the human cortex transform along a sensory-to-motor hierarchy. Nat. Neurosci. 26, 306–315 (2023).

    Article  PubMed  CAS  Google Scholar 

  6. Koida, K. & Komatsu, H. Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nat. Neurosci. 10, 108–116 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J. J., Krumin, M., Harris, K. D. & Carandini, M. Task specificity in mouse parietal cortex. Neuron 110, 2961–2969 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cox, P. H., Kravitz, D. J. & Mitroff, S. R. Great expectations: minor differences in initial instructions have a major impact on visual search in the absence of feedback. Cogn. Res. Princ. Implic. 6, 19 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage 222, 117254 (2020).

    Article  PubMed  Google Scholar 

  11. Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. https://doi.org/10.1038/s41593-023-01260-4 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schmid, A. C., Barla, P. & Doerschner, K. Material category of visual objects computed from specular image structure. Nat. Hum. Behav. 7, 1152–1169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nau, M., Navarro Schröder, T., Frey, M. & Doeller, C. F. Behavior-dependent directional tuning in the human visual-navigation network. Nat. Commun. 11, 3247 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chiu, C. Q., Barberis, A. & Higley, M. J. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat. Rev. Neurosci. 20, 272–281 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Lindenberger, U. & Lövdén, M. Brain plasticity in human lifespan development: the exploration–selection–refinement model. Annu. Rev. Dev. Psychol. 1, 197–222 (2019).

    Article  Google Scholar 

  16. Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hedrick, N. G. et al. Learning binds new inputs into functional synaptic clusters via spinogenesis. Nat. Neurosci. 25, 726–737 (2022).

    Article  PubMed  CAS  Google Scholar 

  18. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Article  CAS  Google Scholar 

  20. Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31, 317–338 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rolfs, M. & Schweitzer, R. Coupling perception to action through incidental sensory consequences of motor behaviour. Nat. Rev. Psychol. 1, 112–123 (2022).

    Article  Google Scholar 

  22. Wynn, J. S., Shen, K. & Ryan, J. D. Eye movements actively reinstate spatiotemporal mnemonic content. Vision 3, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao, W. et al. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. NeuroImage 270, 119946 (2023).

    Article  PubMed  Google Scholar 

  24. Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022).

    Article  PubMed  CAS  Google Scholar 

  25. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Driscoll, L. N., Duncker, L. & Harvey, C. D. Representational drift: emerging theories for continual learning and experimental future directions. Curr. Opin. Neurobiol. 76, 102609 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021).

    Article  PubMed  CAS  Google Scholar 

  28. Kramer, M. R., Cox, P. H., Mitroff, S. R. & Kravitz, D. J. A precise quantification of how prior experience informs current behavior. J. Exp. Psychol. Gen. 151, 1854–1865 (2022).

    Article  PubMed  Google Scholar 

  29. Sadeh, S. & Clopath, C. Contribution of behavioural variability to representational drift. eLife 11, e77907 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jangraw, D. C. et al. A highly replicable decline in mood during rest and simple tasks. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01519-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Busch, E. L. et al. Multi-view manifold learning of human brain-state trajectories. Nat. Comput. Sci. https://doi.org/10.1038/s43588-023-00419-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A. & Fellows, L. K. Lesion studies in contemporary neuroscience. Trends Cogn. Sci. 23, 653–671 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. Pessoa, L. The entangled brain. J. Cogn. Neurosci. 35, 349–360 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bechtel, W. & Bich, L. Grounding cognition: heterarchical control mechanisms in biology. Philos. Trans. R. Soc. B Biol. Sci. 376, 20190751 (2021).

    Article  Google Scholar 

  36. Long, M. A. & Fee, M. S. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Folloni, D. et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 101, 1109–1116 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jun, S., Lee, S. A., Kim, J. S., Jeong, W. & Chung, C. K. Task-dependent effects of intracranial hippocampal stimulation on human memory and hippocampal theta power. Brain Stimul. 13, 603–613 (2020).

    Article  PubMed  Google Scholar 

  40. Basile, B. M., Templer, V. L., Gazes, R. P. & Hampton, R. R. Preserved visual memory and relational cognition performance in monkeys with selective hippocampal lesions. Sci. Adv. 6, eaaz0484 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ausra, J. et al. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc. Natl Acad. Sci. USA 118, e2025775118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Uselman, T. W., Medina, C. S., Gray, H. B., Jacobs, R. E. & Bearer, E. L. Longitudinal manganese‐enhanced magnetic resonance imaging of neural projections and activity. NMR Biomed. 35, e4675 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rust, N. C. & LeDoux, J. E. The tricky business of defining brain functions. Trends Neurosci. 46, 3–4 (2023).

    Article  PubMed  CAS  Google Scholar 

  44. Burnston, D. C. A contextualist approach to functional localization in the brain. Biol. Philos. 31, 527–550 (2016).

    Article  Google Scholar 

  45. Huk, A. C. & Shadlen, M. N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Levi, A. J., Zhao, Y., Park, I. M. & Huk, A. C. Sensory and choice responses in MT distinct from motion encoding. J. Neurosci. 43, 2090–2103 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E. & Saxe, R. Language processing in the occipital cortex of congenitally blind adults. Proc. Natl Acad. Sci. USA 108, 4429–4434 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu, Y., Vannuscorps, G., Caramazza, A. & Striem-Amit, E. Evidence for an effector-independent action system from people born without hands. Proc. Natl Acad. Sci. USA 117, 28433–28441 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Levenstein, D. et al. On the role of theory and modeling in neuroscience. J. Neurosci. 43, 1074–1088 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Haji-Abolhassani, A. & Clark, J. J. An inverse Yarbus process: predicting observers’ task from eye movement patterns. Vis. Res. 103, 127–142 (2014).

    Article  PubMed  Google Scholar 

  52. Kay, L., Keogh, R., Andrillon, T. & Pearson, J. The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife 11, e72484 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Bimbard, C. et al. Behavioral origin of sound-evoked activity in mouse visual cortex. Nat. Neurosci. 26, 251–258 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Miller, C. T. et al. Natural behavior is the language of the brain. Curr. Biol. 32, R482–R493 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A. Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Frey, M., Nau, M. & Doeller, C. F. Magnetic resonance-based eye tracking using deep neural networks. Nat. Neurosci. 24, 1772–1779 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature https://doi.org/10.1038/s41586-023-06031-6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hazeltine, E., Dykstra, T. & Schumacher, E. In Experimental Psychology (eds. Gozli, D. & Valsiner, J.) 75–95 https://doi.org/10.1007/978-3-031-17053-9_6 (Springer International Publishing, 2022).

  61. Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

    Article  PubMed  CAS  Google Scholar 

  62. Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S. & Armañanzas, R. Win–win data sharing in neuroscience. Nat. Methods 14, 112–116 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Buzsáki, G. The Brain From Inside Out (Oxford University Press, 2019).

  64. Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. A data-driven framework for mapping domains of human neurobiology. Nat. Neurosci. 24, 1733–1744 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Poeppel, D. & Adolfi, F. Against the epistemological primacy of the hardware: the brain from inside out, turned upside down. eNeuro 7, ENEURO.0215-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fiebelkorn, I. C. & Kastner, S. Functional specialization in the attention network. Annu. Rev. Psychol. 71, 221–249 (2020).

    Article  PubMed  Google Scholar 

  67. Zhang, X. et al. Active information maintenance in working memory by a sensory cortex. eLife 8, e43191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rademaker, R. L., Chunharas, C. & Serences, J. T. Coexisting representations of sensory and mnemonic information in human visual cortex. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0428-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Teng, C. & Kravitz, D. J. Visual working memory directly alters perception. Nat. Hum. Behav. 3, 827–836 (2019).

    Article  PubMed  Google Scholar 

  70. Lee, S.-H., Kravitz, D. J. & Baker, C. I. Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat. Neurosci. 16, 997–999 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Favila, S. E., Kuhl, B. A. & Winawer, J. Perception and memory have distinct spatial tuning properties in human visual cortex. Nat. Commun. 13, 5864 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dijkstra, N. & Fleming, S. M. Subjective signal strength distinguishes reality from imagination. Nat. Commun. 14, 1627 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & de Lange, F. P. Shared representations for working memory and mental imagery in early visual cortex. Curr. Biol. 23, 1427–1431 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

    Article  PubMed  CAS  Google Scholar 

  77. Nakai, T. & Nishimoto, S. Quantitative models reveal the organization of diverse cognitive functions in the brain. Nat. Commun. 11, 1142 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gitelman, D. R., Nobre, A. C., Sonty, S., Parrish, T. B. & Mesulam, M.-M. Language network specializations: an analysis with parallel task designs and functional magnetic resonance imaging. NeuroImage 26, 975–985 (2005).

    Article  PubMed  Google Scholar 

  79. Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135, 601–609 (2021).

    Article  PubMed  Google Scholar 

  80. Hebart, M. N., Zheng, C. Y., Pereira, F. & Baker, C. I. Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nat. Hum. Behav. 4, 1173–1185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Moncrieff, J. et al. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01661-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Malik-Moraleda, S. et al. An investigation across 45 languages and 12 language families reveals a universal language network. Nat. Neurosci. 25, 1014–1019 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jaffe, P. I., Poldrack, R. A., Schafer, R. J. & Bissett, P. G. Modelling human behaviour in cognitive tasks with latent dynamical systems. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01510-8 (2023).

    Article  PubMed  Google Scholar 

  86. Gschwind, T. et al. Hidden behavioral fingerprints in epilepsy. Neuron https://doi.org/10.1016/j.neuron.2023.02.003 (2023).

  87. Porsteinsson, A. P., Isaacson, R. S., Knox, S., Sabbagh, M. N. & Rubino, I. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J. Prev. Alzheimers Dis. https://doi.org/10.14283/jpad.2021.23 (2021).

  88. Montague, P. R., Dolan, R. J., Friston, K. J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    Article  PubMed  Google Scholar 

  89. Zador, A. et al. Catalyzing next-generation artificial intelligence through NeuroAI. Nat. Commun. 14, 1597 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  PubMed  Google Scholar 

  91. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: a process theory. Neural Comput. 29, 1–49 (2017).

    Article  PubMed  Google Scholar 

  92. Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).

    Article  PubMed  Google Scholar 

  93. de Cothi, W. et al. Predictive maps in rats and humans for spatial navigation. Curr. Biol. 32, 3676–3689 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Momennejad, I. Learning structures: predictive representations, replay, and generalization. Curr. Opin. Behav. Sci. 32, 155–166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tomov, M. S., Schulz, E. & Gershman, S. J. Multi-task reinforcement learning in humans. Nat. Hum. Behav. 5, 764–773 (2021).

    Article  PubMed  Google Scholar 

  96. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

    Article  PubMed  CAS  Google Scholar 

  97. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Johnston, W. J. & Fusi, S. Abstract representations emerge naturally in neural networks trained to perform multiple tasks. Nat. Commun. 14, 1040 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Scholte, H. S., Losch, M. M., Ramakrishnan, K., de Haan, E. H. F. & Bohte, S. M. Visual pathways from the perspective of cost functions and multi-task deep neural networks. Cortex 98, 249–261 (2018).

    Article  PubMed  Google Scholar 

  100. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis. Neurosci. 26, 147–155 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Averbeck, B. Conway, K. Kay, J. B. Ritchie, and M. Rolfs for helpful comments on an earlier version of this paper. M.N. was supported by a Feodor Lynen Research Fellowship funded by the Alexander von Humboldt Foundation. A.C.S. was supported by a Walter Benjamin Fellowship funded by the German Research Foundation (DFG). M.N., A.C.S. and C.I.B. were further supported by C.I.B.’s funding provided by the Intramural Research Program of the NIMH (ZIAMH002909). S.M.K. and D.J.K. were supported by D.J.K.’s funding provided by the National Science Foundation (grant no. BCS2022572).

Author information

Authors and Affiliations

Authors

Contributions

The framework presented in this article was developed through the collaborative efforts of all authors. C.I.B. and D.J.K. initiated the project. M.N., C.I.B., and D.J.K. conceptualized the key points of the article. M.N. wrote the manuscript, created the figures, and incorporated feedback from A.C.S., S.K., C.I.B., and D.J.K. All authors contributed to the ideas and writing of the manuscript over the course of weekly meetings, with M.N. and A.C.S. drafting the final version of the manuscript together, with edits from C.I.B. and D.J.K.

Corresponding authors

Correspondence to Matthias Nau, Chris I. Baker or Dwight J. Kravitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks David Barack, Rachel Denison and Luiz Pessoa for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nau, M., Schmid, A.C., Kaplan, S.M. et al. Centering cognitive neuroscience on task demands and generalization. Nat Neurosci (2024). https://doi.org/10.1038/s41593-024-01711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41593-024-01711-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing