Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Studying the neural representations of uncertainty

Abstract

The study of the brain’s representations of uncertainty is a central topic in neuroscience. Unlike most quantities of which the neural representation is studied, uncertainty is a property of an observer’s beliefs about the world, which poses specific methodological challenges. We analyze how the literature on the neural representations of uncertainty addresses those challenges and distinguish between ‘code-driven’ and ‘correlational’ approaches. Code-driven approaches make assumptions about the neural code for representing world states and the associated uncertainty. By contrast, correlational approaches search for relationships between uncertainty and neural activity without constraints on the neural representation of the world state that this uncertainty accompanies. To compare these two approaches, we apply several criteria for neural representations: sensitivity, specificity, invariance and functionality. Our analysis reveals that the two approaches lead to different but complementary findings, shaping new research questions and guiding future experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uncertainty from a generative model.
Fig. 2: Comparison of the correlational and code-driven approaches.
Fig. 3: Empirical criteria for neural representation.

Similar content being viewed by others

References

  1. Ballard, D. H. Brain Computation as Hierarchical Abstraction (MIT Press, 2015).

  2. Hoyer, P. O. & Hyvärinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. In Advances in Neural Information Processing Systems 293–300 (2002). An influential article that proposed that neural activity could be explained with a sampling-based code.

  3. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    Article  PubMed  Google Scholar 

  5. Ma, W. J. & Jazayeri, M. Neural coding of uncertainty and probability. Annu. Rev. Neurosci. 37, 205–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Bach, D. R. & Dolan, R. J. Knowing how much you don’t know: a neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Muller, T. H., Mars, R. B., Behrens, T. E. & O’Reilly, J. X. Control of entropy in neural models of environmental state. eLife 8, e39404 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Tomov, M. S., Truong, V. Q., Hundia, R. A. & Gershman, S. J. Dissociable neural correlates of uncertainty underlie different exploration strategies. Nat. Commun. 11, 2371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. McGuire, J. T., Nassar, M. R., Gold, J. I. & Kable, J. W. Functionally dissociable influences on learning rate in a dynamic environment. Neuron 84, 870–881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyniel, F., Schlunegger, D. & Dehaene, S. The sense of confidence during probabilistic learning: a normative account. PLoS Comput Biol. 11, e1004305 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Reilly, J. X. Making predictions in a changing world—inference, uncertainty, and learning. Front. Neurosci. 7, 105 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    Article  PubMed  Google Scholar 

  15. Qamar, A. T. et al. Trial-to-trial, uncertainty-based adjustment of decision boundaries in visual categorization. Proc. Natl Acad. Sci. USA 110, 20332–20337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Y., Acerbi, L. & Ma, W. J. The role of sensory uncertainty in simple contour integration. PLoS Comput. Biol. 16, e1006308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alais, D. & Burr, D. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14, 257–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Deroy, O., Spence, C. & Noppeney, U. Metacognition in multisensory perception. Trends Cogn. Sci. 20, 736–747 (2016).

    Article  PubMed  Google Scholar 

  19. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Trommershäuser, J., Kording, K. & Landy, M. S. Sensory Cue Integration (Oxford Univ. Press, 2011).

  21. Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trommershäuser, J., Maloney, L. T. & Landy, M. S. Decision making, movement planning and statistical decision theory. Trends Cogn. Sci. 12, 291–297 (2008).

    Article  PubMed  Google Scholar 

  23. Flavell, J. H. & Wellman, H. M. in Perspectives on the Development of Memory and Cognition (eds. Kail, R. V. Jr & Hagen, J. W.) 3–33 (L. Erlbaum, 1977).

  24. Koriat, A., Sheffer, L. & Ma’ayan, H. Comparing objective and subjective learning curves: Judgments of learning exhibit increased underconfidence with practice. J. Exp. Psychol. 131, 147–162 (2002).

    Article  Google Scholar 

  25. Rademaker, R. L., Tredway, C. H. & Tong, F. Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. J. Vis. 12, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoo, A. H., Acerbi, L. & Ma, W. J. Uncertainty is maintained and used in working memory. J. Vis. 21, 13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dekleva, B. M., Ramkumar, P., Wanda, P. A., Kording, K. P. & Miller, L. E. Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex. eLife 5, e14316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Devkar, D., Wright, A. A. & Ma, W. J. Monkeys and humans take local uncertainty into account when localizing a change. J. Vis. 17, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fiorillo, C. D. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci. 16, 749–755 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron 84, 190–201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Odegaard, B. et al. Superior colliculus neuronal ensemble activity signals optimal rather than subjective confidence. Proc. Natl Acad. Sci. USA 115, E1588–E1597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker, E. Y., Cotton, R. J., Ma, W. J. & Tolias, A. S. A neural basis of probabilistic computation in visual cortex. Nat. Neurosci. 23, 122–129 (2020). Example of the code-driven approach that uses a probabilistic population code estimated in a data-driven manner by means of an artificial neural network. The uncertainty derived from multiunit recordings accounts for the monkey choices.

    Article  CAS  PubMed  Google Scholar 

  36. Helmholtz, H. Handbuch der Physiologischen Optik (Leopold Voss, 1867).

  37. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  38. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision making. Behav. Brain Sci. 41, e223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Iglesias, S. et al. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 80, 519–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mathys, C. D. et al. Uncertainty in perception and the hierarchical gaussian filter. Front. Hum. Neurosci. 8, 825 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Norton, E. H., Acerbi, L., Ma, W. J. & Landy, M. S. Human online adaptation to changes in prior probability. PLOS Comput. Biol. 15, e1006681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barthelmé, S. & Mamassian, P. Evaluation of objective uncertainty in the visual system. PLoS Comput. Biol. 5, e1000504 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Necker, L. A. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1, 329–337 (1832).

    Article  Google Scholar 

  45. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyniel, F. Brain dynamics for confidence-weighted learning. PLOS Comput. Biol. 16, e1007935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meyniel, F. & Dehaene, S. Brain networks for confidence weighting and hierarchical inference during probabilistic learning. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1615773114 (2017). Example of a correlational approach that uses an ideal observer model of the input to derive uncertainty about a probability. The study reports fMRI correlates of this uncertainty distinct from correlates of confounding factors like unpredictability and surprise.

  48. O’Reilly, J. X., Jbabdi, S., Rushworth, M. F. S. & Behrens, T. E. J. Brain systems for probabilistic and dynamic prediction: computational specificity and integration. PLoS Biol. 11, e1001662 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Payzan-LeNestour, E., Dunne, S., Bossaerts, P. & O’Doherty, J. P. The neural representation of unexpected uncertainty during value-based decision making. Neuron 79, 191–201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vilares, I., Howard, J. D., Fernandes, H. L., Gottfried, J. A. & Kording, K. P. Differential representations of prior and likelihood uncertainty in the human brain. Curr. Biol. 22, 1641–1648 (2012). Example of correlational approach that used specific features of the input (scatter) as a proxy for uncertainty (about the location of a cloud of dots). The fMRI correlates of this uncertainty are distinct from prior uncertainty.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Geurts, L. S., Cooke, J. R. H., van Bergen, R. S. & Jehee, J. F. M. Subjective confidence reflects representation of Bayesian probability in cortex. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01247-w (2022). Example of a code-driven approach that uses a probabilistic population code estimated in a data-driven manner by means of a generalized linear model. The uncertainty derived from fMRI activity correlates with subjective reports of uncertainty.

  52. Adler, W. T. & Ma, W. J. Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLOS Comput. Biol. 14, e1006572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. Nat. Neurosci. 16, 105–110 (2013).

    Article  PubMed  Google Scholar 

  54. Guggenmos, M., Wilbertz, G., Hebart, M. N. & Sterzer, P. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback. eLife 5, e13388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hebart, M. N., Schriever, Y., Donner, T. H. & Haynes, J.-D. The relationship between perceptual decision variables and confidence in the human brain. Cereb. Cortex https://doi.org/10.1093/cercor/bhu181 (2014).

    Article  PubMed  Google Scholar 

  56. Lebreton, M., Abitbol, R., Daunizeau, J. & Pessiglione, M. Automatic integration of confidence in the brain valuation signal. Nat. Neurosci. 18, 1159–1167 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Li, H.-H., Sprague, T. C., Yoo, A. H., Ma, W. J. & Curtis, C. E. Joint representation of working memory and uncertainty in human cortex. Neuron 109, 3699–3712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as bayesian probability: from neural origins to behavior. Neuron 88, 78–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Peirce, C. S. & Jastrow, J. On small differences in sensation. Mem. Natl Acad. Sci. 3, 75–83 (1884).

    Google Scholar 

  60. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kepecs, A. & Mainen, Z. F. A computational framework for the study of confidence in humans and animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1322–1337 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tzagarakis, C., Ince, N. F., Leuthold, A. C. & Pellizzer, G. Beta-band activity during motor planning reflects response uncertainty. J. Neurosci. 30, 11270–11277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zylberberg, A., Fetsch, C. R. & Shadlen, M. N. The influence of evidence volatility on choice, reaction time and confidence in a perceptual decision. eLife 5, e17688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Masset, P., Ott, T., Lak, A., Hirokawa, J. & Kepecs, A. Behavior- and modality-general representation of confidence in orbitofrontal cortex. Cell 182, 112–126 (2020). Studies decision confidence in rats using waiting times as a proxy for uncertainty and identifies a neural representation of decision confidence in the orbitofrontal cortex that passes the tests of sensitivity, specificity (with respect to the features of the input), invariance (to the sensory modality) and functionality (correlation with learning).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Gherman, S. & Philiastides, M. G. Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage 106, 134–143 (2015).

    Article  PubMed  Google Scholar 

  67. Hampton, R. R. Rhesus monkeys know when they remember. Proc. Natl Acad. Sci. USA 98, 5359–5362 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Middlebrooks, P. G. & Sommer, M. A. Neuronal correlates of metacognition in primate frontal cortex. Neuron 75, 517–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. M. Sensory uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18, 1728–1730 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. van Bergen, R. S. & Jehee, J. F. M. Probabilistic representation in human visual cortex reflects uncertainty in serial decisions. J. Neurosci. 39, 8164–8176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Badre, D., Doll, B. B., Long, N. M. & Frank, M. J. Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron 73, 595–607 (2012). Example of a correlational approach that uses an ideal observer model of the learning process to infer uncertainty in a task. Findings show evidence of a functional role for uncertainty (here, in terms of exploration).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stern, E. R., Gonzalez, R., Welsh, R. C. & Taylor, S. F. Updating beliefs for a decision: neural correlates of uncertainty and underconfidence. J. Neurosci. 30, 8032–8041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sedley, W. et al. Neural signatures of perceptual inference. eLife 5, e11476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Festa, D., Aschner, A., Davila, A., Kohn, A. & Coen-Cagli, R. Neuronal variability reflects probabilistic inference tuned to natural image statistics. Nat. Commun. 12, 3635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hénaff, O. J., Boundy-Singer, Z. M., Meding, K., Ziemba, C. M. & Goris, R. L. T. Representation of visual uncertainty through neural gain variability. Nat. Commun. 11, 2513 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. Neural variability and sampling-based probabilistic representations in the visual cortex. Neuron 92, 530–543 (2016). Example of a code-driven approach that uses a sampling-based code and finds that neural variability (in spiking activity and membrane potential) changes along features of visual input related to uncertainty (for example, it quenches at the stimulus onset, decreases with contrast and aperture).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bang, D. & Fleming, S. M. Distinct encoding of decision confidence in human medial prefrontal cortex. Proc. Natl Acad. Sci. USA 115, 6082–6087 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Friston, K., Ashburner, J., Kiebel, S., Nichols, T. & Penny, W. Statistical Parametric Mapping: the Analysis of Functional Brain Images (Academic, 2007).

  79. Naselaris, T., Kay, K. N., Nishimoto, S. & Gallant, J. L. Encoding and decoding in fMRI. NeuroImage 56, 400–410 (2011).

    Article  PubMed  Google Scholar 

  80. Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry 77, 534–540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lange, R. D., Shivkumar, S., Chattoraj, A. & Haefner, R. M. Bayesian encoding and decoding as distinct perspectives on neural coding. Preprint at bioRxiv https://doi.org/10.1101/2020.10.14.339770 (2021).

  82. Shivkumar, S., Lange, R., Chattoraj, A. & Haefner, R. A probabilistic population code based on neural samples. In Advances in Neural Information Processing Systems (eds. S. Bengio et al.) 31, 1–10 (MIT Press, 2018).

  83. Barlow, H. B. Pattern recognition and the responses of sensory neurons. Ann. N. Y. Acad. Sci. 156, 872–881 (1969).

    Article  CAS  PubMed  Google Scholar 

  84. Deneve, S. Bayesian spiking neurons I: inference. Neural Comput. 20, 91–117 (2008).

    Article  PubMed  Google Scholar 

  85. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Sahani, M. & Dayan, P. Doubly distributional population codes: simultaneous representation of uncertainty and multiplicity. Neural Comput. 15, 2255–2279 (2003).

    Article  PubMed  Google Scholar 

  87. Sohn, H. & Narain, D. Neural implementations of Bayesian inference. Curr. Opin. Neurobiol. 70, 121–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2005).

  89. Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Fetsch, C. R., Pouget, A., DeAngelis, G. C. & Angelaki, D. E. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15, 146–154 (2012).

    Article  CAS  Google Scholar 

  92. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006). Introduced the concept of probabilistic population code as the idea that the representation of probability distribution over a latent world state by a population of neurons, conferred by an internal model of neural variability, allows certain Bayesian computations to be implemented by simple neural operations.

    Article  CAS  PubMed  Google Scholar 

  93. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14, 119–130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference. Nat. Neurosci. 23, 1138–1149 (2020). Shows that an artificial neural network can be trained to emit spikes that correspond to samples from a posterior distribution of some feature of the input. Although not trained to do so, the artificial network shows dynamics similar to those of actual neural networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bach, D. R., Hulme, O., Penny, W. D. & Dolan, R. J. The known unknowns: neural representation of second-order uncertainty, and ambiguity. J. Neurosci. 31, 4811–4820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bányai, M. et al. Stimulus complexity shapes response correlations in primary visual cortex. Proc. Natl Acad. Sci. USA 116, 2723–2732 (2019). Example of a code-driven approach that uses a sampling-based code and shows that the covariance of neural activity in a population of neurons can be explained by hierarchical inference with a prominent impact of the images higher-level features even in regions tuned to local features, such as the primary visual cortex.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Grinband, J., Hirsch, J. & Ferrera, V. P. A neural representation of categorization uncertainty in the human brain. Neuron 49, 757–763 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Trudel, N. et al. Polarity of uncertainty representation during exploration and exploitation in ventromedial prefrontal cortex. Nat. Hum. Behav. 5, 83–98 (2021).

    Article  PubMed  Google Scholar 

  99. Strange, B. A., Duggins, A., Penny, W., Dolan, R. J. & Friston, K. J. Information theory, novelty and hippocampal responses: unpredicted or unpredictable? Neural Netw. 18, 225–230 (2005).

    Article  PubMed  Google Scholar 

  100. Tan, H., Wade, C. & Brown, P. Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. J. Neurosci. 36, 1516–1528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005). Presented a distinction between uncertainty about a latent feature and uncertainty about an outcome (referred to as ambiguity and risk, respectively, in behavioral economics), whose fMRI correlates are anatomically segregated in the human brain.

    Article  CAS  PubMed  Google Scholar 

  102. Monosov, I. E., Leopold, D. A. & Hikosaka, O. Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation. J. Neurosci. 35, 7443–7459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Monosov, I. E. & Hikosaka, O. Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat. Neurosci. 16, 756–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Preuschoff, K., Bossaerts, P. & Quartz, S. R. Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51, 381–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. So, N. & Stuphorn, V. Supplementary eye field encodes confidence in decisions under risk. Cereb. Cortex 26, 764–782 (2016).

    PubMed  Google Scholar 

  106. Michael, E., de Gardelle, V., Nevado-Holgado, A. & Summerfield, C. Unreliable evidence: 2 sources of uncertainty during perceptual choice. Cereb. Cortex 25, 937–947 (2015). Example of a correlational approach that uses a categorization task based on either shape or color from trial to trial and identifies representations of uncertainty about the decision that are invariant to the perceptual feature (shape or color) on which a decision is based.

    Article  PubMed  Google Scholar 

  107. Nastase, S. A., Davis, B. & Hasson, U. Cross-modal and non-monotonic representations of statistical regularity are encoded in local neural response patterns. NeuroImage 173, 509–517 (2018).

    Article  PubMed  Google Scholar 

  108. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: a general Bayesian framework for metacognitive computation. Psychol. Rev. 124, 91–114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zylberberg, A., Roelfsema, P. R. & Sigman, M. Variance misperception explains illusions of confidence in simple perceptual decisions. Conscious. Cognition 27, 246–253 (2014).

    Article  Google Scholar 

  110. Fleming, S. M. & Dolan, R. J. Effects of loss aversion on post-decision wagering: implications for measures of awareness. Conscious. Cognition 19, 352–363 (2010).

    Article  Google Scholar 

  111. Blankenstein, N. E., Peper, J. S., Crone, E. A. & van Duijvenvoorde, A. C. K. Neural mechanisms underlying risk and ambiguity attitudes. J. Cogn. Neurosci. 29, 1845–1859 (2017).

    Article  PubMed  Google Scholar 

  112. Ting, C. -C., Yu, C. -C., Maloney, L. T. & Wu, S. -W. Neural mechanisms for integrating prior knowledge and likelihood in value-based probabilistic inference. J. Neurosci. 35, 1792–1805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haefner, R. M., Berkes, P. & Fiser, J. Perceptual decision-making as probabilistic inference by neural sampling. Neuron 90, 649–660 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Rahnev, D. et al. Attention induces conservative subjective biases in visual perception. Nat. Neurosci. 14, 1513–1515 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Schultz, W. et al. Explicit neural signals reflecting reward uncertainty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3801–3811 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  116. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Koblinger, Á., Fiser, J. & Lengyel, M. Representations of uncertainty: where art thou? Curr. Opin. Behav. Sci. 38, 150–162 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. FitzGerald, T. H. B., Seymour, B., Bach, D. R. & Dolan, R. J. Differentiable neural substrates for learned and described value and risk. Curr. Biol. 20, 1823–1829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huettel, S. A. Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J. Neurosci. 25, 3304–3311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Monosov, I. E. Anterior cingulate is a source of valence-specific information about value and uncertainty. Nat. Commun. 8, 134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Acerbi, L., Vijayakumar, S. & Wolpert, D. M. On the origins of suboptimality in human probabilistic inference. PLoS Comput Biol. 10, e1003661 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yeon, J. & Rahnev, D. The suboptimality of perceptual decision making with multiple alternatives. Nat. Commun. 11, 3857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Park, I. M., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395–1403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haynes, J. -D. A primer on pattern-based approaches to fMRI: principles, pitfalls and perspectives. Neuron 87, 257–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. DeWind, N. K., Adams, G. K., Platt, M. L. & Brannon, E. M. Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition 142, 247–265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Baker, B., Lansdell, B. & Kording, K. A philosophical understanding of representation for neuroscience. Preprint at https://doi.org/10.48550/arXiv.2102.06592 (2021).

  136. Nichols, M. J. & Newsome, W. T. Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22, 9530–9540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cortese, A., Amano, K., Koizumi, A., Kawato, M. & Lau, H. Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance. Nat. Commun. 7, 13669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gherman, S. & Philiastides, M. G. Human VMPFC encodes early signatures of confidence in perceptual decisions. eLife 7, e38293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this Review.

Corresponding author

Correspondence to Florent Meyniel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Máté Lengyel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Glossary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, E.Y., Pohl, S., Denison, R.N. et al. Studying the neural representations of uncertainty. Nat Neurosci 26, 1857–1867 (2023). https://doi.org/10.1038/s41593-023-01444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01444-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing