Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optogenetics at the presynapse

Abstract

Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of optogenetic actuators.
Fig. 2: Axonal transport and presynaptic targeting of optogenetic actuators.
Fig. 3: Concept and pitfalls of light-evoked neurotransmitter release by CCR stimulation.
Fig. 4: Different principles of optogenetic inhibition of transmitter release.
Fig. 5: Validation of optogenetic presynaptic inhibition.

Similar content being viewed by others

References

  1. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou, X. X., Pan, M. & Lin, M. Z. Investigating neuronal function with optically controllable proteins. Front. Mol. Neurosci. 8, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rozenberg, A., Inoue, K., Kandori, H. & Beja, O. Microbial rhodopsins: the last two decades. Annu. Rev. Microbiol. 75, 427–447 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: diversity, mechanisms and optogenetic applications. Annu. Rev. Biochem. 86, 845–872 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhne, J. et al. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc. Natl Acad. Sci. USA 116, 9380–9389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    Article  CAS  Google Scholar 

  10. Wietek, J. & Prigge, M. Enhancing channelrhodopsins: an overview. Methods Mol. Biol. 1408, 141–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Vierock, J., Grimm, C., Nitzan, N. & Hegemann, P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci. Rep. 7, 9928 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wietek, J. et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344, 409–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Berndt, A., Lee, S. Y., Ramakrishnan, C. & Deisseroth, K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344, 420–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun. 9, 4125 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Messier, J. E., Chen, H., Cai, Z. L. & Xue, M. Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon. Elife 7, e38506 (2018).

  17. Malyshev, A. Y. et al. Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light. Neurosci. Lett. 640, 76–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Inoue, K. Diversity Mechanism, and optogenetic application of light-driven ion pump rhodopsins. Adv. Exp. Med. Biol. 1293, 89–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19, 554–556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raimondo, J. V., Kay, L., Ellender, T. J. & Akerman, C. J. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, S. et al. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat. Commun. 6, 8046 (2015).

    Article  PubMed  Google Scholar 

  22. Scheib, U. et al. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Nat. Commun. 9, 2046 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bailes, H. J., Zhuang, L. Y. & Lucas, R. J. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool. PLoS ONE 7, e30774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koyanagi, M. & Terakita, A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim. Biophys. Acta 1837, 710–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita, T., Terakita, A. & Shichida, Y. Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G-protein activation. J. Biol. Chem. 275, 34272–34279 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. M. et al. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44, 2284–2292 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Masseck, O. A. et al. Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81, 1263–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Tichy, A. M., Gerrard, E. J., Sexton, P. M. & Janovjak, H. Light-activated chimeric GPCRs: limitations and opportunities. Curr. Opin. Struct. Biol. 57, 196–203 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Morri, M. et al. Optical functionalization of human class A orphan G-protein-coupled receptors. Nat. Commun. 9, 1950 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tichy, A.-M., So, W. L., Gerrard, E. J. & Janovjak, H. Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure https://doi.org/10.1016/j.str.2022.04.012 (2022).

    Article  PubMed  Google Scholar 

  32. Scott, K. & Zuker, C. Lights out: deactivation of the phototransduction cascade. Trends Biochem. Sci. 22, 350–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Huhner, J., Ingles-Prieto, A., Neususs, C., Lammerhofer, M. & Janovjak, H. Quantification of riboflavin, flavin mononucleotide and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Electrophoresis 36, 518–525 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Homans, R. J. et al. Two-photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys. Chem. Chem. Phys. 20, 16949–16955 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Losi, A., Gardner, K. H. & Moglich, A. Blue-light receptors for optogenetics. Chem. Rev. 118, 10659–10709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karapinar, R. et al. Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks. Nat. Commun. 12, 4488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guntas, G. et al. Engineering an improved light-induced dimer for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zimmerman, S. P. et al. Tuning the binding affinities and reversion kinetics of a light inducible dimer allows control of transmembrane protein localization. Biochemistry 55, 5264–5271 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Q. et al. A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron 101, 863–875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujisawa, T. & Masuda, S. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys. Rev. 10, 327–337 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, S. et al. PACmn for improved optogenetic control of intracellular cAMP. BMC Biol. 19, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Q. & Lin, C. Mechanisms of cryptochrome-mediated photoresponses in plants. Annu. Rev. Plant Biol. 71, 103–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, H. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Kolar, K., Knobloch, C., Stork, H., Znidaric, M. & Weber, W. OptoBase: a Web platform for molecular optogenetics. ACS Synth. Biol. 7, 1825–1828 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Hilgers, F. et al. Genetically encoded photosensitizers as light-triggered antimicrobial agents. Int. J. Mol. Sci. 20, 4608 (2019).

  48. Trewin, A. J. et al. Light-induced oxidant production by fluorescent proteins. Free Radic. Biol. Med. 128, 157–164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Westberg, M., Bregnhoj, M., Etzerodt, M. & Ogilby, P. R. No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. J. Phys. Chem. B 121, 9366–9371 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Onukwufor, J. O. et al. Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic. Biol. Med. 147, 1–7 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sarkisyan, K. S. et al. KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS ONE 10, e0145287 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Takemoto, K. et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci. Rep. 3, 2629 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Riani, Y. D., Matsuda, T., Takemoto, K. & Nagai, T. Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biol. 16, 50 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makhijani, K. et al. Precision optogenetic tool for selective single- and multiple-cell ablation in a live animal model system. Cell Chem. Biol. 24, 110–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baleisyte, A., Schneggenburger, R. & Kochubey, O. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes. Cell Rep. 39, 110850 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Kavalali, E. T. & Jorgensen, E. M. Visualizing presynaptic function. Nat. Neurosci. 17, 10–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gobbo, F. & Cattaneo, A. Neuronal activity at synapse resolution: reporters and effectors for synaptic neuroscience. Front. Mol. Neurosci. 13, 572312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci. Res. 152, 3–14 (2020).

    Article  PubMed  Google Scholar 

  62. Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Allen, B. D., Singer, A. C. & Boyden, E. S. Principles of designing interpretable optogenetic behavior experiments. Learn Mem. 22, 232–238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Britt, J. P., McDevitt, R. A. & Bonci, A. Use of channelrhodopsin for activation of CNS neurons. Curr. Protoc. Neurosci. 2, 16 (2012).

    PubMed  Google Scholar 

  66. Rizalar, F. S., Roosen, D. A. & Haucke, V. A presynaptic perspective on transport and assembly mechanisms for synapse formation. Neuron 109, 27–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Rost, B. R. et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat. Neurosci. 18, 1845–1852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Oldani, S. et al. SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity. J. Neurochem. 156, 324–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Leterrier, C. The axon initial segment: an updated viewpoint. J. Neurosci. 38, 2135–2145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sampo, B., Kaech, S., Kunz, S. & Banker, G. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37, 611–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro, L. F. et al. SorCS1-mediated sorting in dendrites maintains neurexin axonal surface polarization required for synaptic function. PLoS Biol. 17, e3000466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lewis, T. L. Jr., Mao, T. & Arnold, D. B. A role for myosin VI in the localization of axonal proteins. PLoS Biol. 9, e1001021 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stachniak, T. J., Ghosh, A. & Sternson, S. M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xiao, L. et al. A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98, 208–221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kearney, M. G., Warren, T. L., Hisey, E., Qi, J. & Mooney, R. Discrete evaluative and premotor circuits enable vocal learning in songbirds. Neuron 104, 559–575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamada, S. et al. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping. Commun. Biol. 4, 461 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jackman, S. L., Beneduce, B. M., Drew, I. R. & Regehr, W. G. Achieving high-frequency optical control of synaptic transmission. J. Neurosci. 34, 7704–7714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barthet, G. et al. Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat. Commun. 9, 4780 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, C., Lavoie, A., Liu, J., Chen, S. X. & Liu, B. H. Light up the brain: the application of optogenetics in cell-type-specific dissection of mouse brain circuits. Front. Neural Circuits 14, 18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McCall, J. G. et al. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife 6, e18247 (2017).

  86. Zhang, Y. P. & Oertner, T. G. Optical induction of synaptic plasticity using a light-sensitive channel. Nat. Methods 4, 139–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Sabatini, B. L. & Regehr, W. G. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J. Neurosci. 17, 3425–3435 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Alle, H. & Geiger, J. R. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Cruikshank, S. J., Urabe, H., Nurmikko, A. V. & Connors, B. W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Regehr, W. G. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4, a005702 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Creed, M., Pascoli, V. J. & Luscher, C. Addiction therapy. refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Klavir, O., Prigge, M., Sarel, A., Paz, R. & Yizhar, O. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat. Neurosci. 20, 836–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Pascoli, V., Turiault, M. & Luscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2011).

    Article  PubMed  CAS  Google Scholar 

  96. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nitzan, N. et al. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat. Commun. 11, 1947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yamamoto, J. & Tonegawa, S. Direct medial entorhinal cortex input to hippocampal CA1 Is crucial for extended quiet awake replay. Neuron 96, 217–227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mangieri, L. R. et al. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun. 9, 52 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Spellman, T. et al. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 522, 309–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lafferty, C. K. & Britt, J. P. Off-target influences of arch-mediated axon terminal inhibition on network activity and behavior. Front. Neural Circuits 14, 10 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ferenczi, E. A. et al. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci. Rep. 6, 23947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. El-Gaby, M. et al. Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH. Cell Rep. 16, 2259–2268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Turecek, R. & Trussell, L. O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Baldi, R., Varga, C. & Tamas, G. Differential distribution of KCC2 along the axo-somato-dendritic axis of hippocampal principal cells. Eur. J. Neurosci. 32, 1319–1325 (2010).

    Article  PubMed  Google Scholar 

  112. Bernal Sierra, Y. A. et al. Potassium channel-based optogenetic silencing. Nat. Commun. 9, 4611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Alberio, L. et al. A light-gated potassium channel for sustained neuronal inhibition. Nat. Methods 15, 969–976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Govorunova, E. G. et al. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01094-6 (2022).

    Article  PubMed  Google Scholar 

  115. Herlitze, S. et al. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Ikeda, S. R. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380, 255–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, L. G. & Saggau, P. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12, 1139–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Dodge, F. A. Jr. & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 419–432 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zurawski, Z., Yim, Y. Y., Alford, S. & Hamm, H. E. The expanding roles and mechanisms of G-protein-mediated presynaptic inhibition. J. Biol. Chem. 294, 1661–1670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kawano-Yamashita, E. et al. Activation of transducin by bistable pigment parapinopsin in the pineal organ of lower vertebrates. PLoS ONE 10, e0141280 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Koyanagi, M., Takada, E., Nagata, T., Tsukamoto, H. & Terakita, A. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc. Natl Acad. Sci. USA 110, 4998–5003 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Copits, B. A. et al. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 109, 1791–1809 (2021).

  125. Mahn, M. et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109, 1621–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eickelbeck, D. et al. Lamprey parapinopsin (‘UVLamP’): a bistable UV-sensitive optogenetic switch for ultrafast control of GPCR pathways. Chembiochem 21, 612–617 (2019).

  127. Rodgers, J. et al. Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Rep. 22, e51866 (2021).

  128. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Lin, J. Y. et al. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation. Neuron 79, 241–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu, S. & Chisholm, A. D. Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci. Rep. 6, 21271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Humeau, Y. & Choquet, D. The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat. Neurosci. 22, 1536–1543 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Won, J. et al. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, and behavior. Neuron 110, 423–435 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Brody, D. L. & Yue, D. T. Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J. Neurosci. 20, 889–898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takeuchi, T., Duszkiewicz, A. J. & Morris, R. G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Monday, H. R., Younts, T. J. & Castillo, P. E. Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu. Rev. Neurosci. 41, 299–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang, Y. & Calakos, N. Presynaptic long-term plasticity. Front. Synaptic Neurosci. 5, 8 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fernandes, H. B. et al. Epac2 Mediates cAMP-dependent potentiation of neurotransmission in the hippocampus. J. Neurosci. 35, 6544–6553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–1882 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Orlando, M. et al. Recruitment of release sites underlies chemical presynaptic potentiation at hippocampal mossy fiber boutons. PLoS Biol. 19, e3001149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kees, A. L., Marneffe, C. & Mulle, C. Lighting up pre-synaptic potentiation: an editorial for ‘SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity’ on page 324. J. Neurochem. 156, 270–272 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Heck, J. et al. Transient confinement of CaV2.1 Ca2+-channel splice variants shapes synaptic short-term plasticity. Neuron 103, 66–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Hoffmann, S. et al. Light-activated ROS production induces synaptic autophagy. J. Neurosci. 39, 2163–2183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. E. Long-term channelrhodopsin-2 expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front. Neural Circuits 7, 8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Henss, T. et al. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels. Br. J. Pharmacol. 179, 2519–2537 (2021).

  147. Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Elife 8, e48622 (2019).

  149. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Willems, J. et al. ORANGE: a CRISPR–Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol. 18, e3000665 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, C. K. et al. A molecular calcium integrator reveals a striatal cell type driving aversion. Cell 183, 2003–2019 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Yook, J. S., Kim, J. & Kim, J. Convergence circuit mapping: genetic approaches from structure to function. Front. Syst. Neurosci. 15, 688673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Prakash, M. et al. Selective control of synaptically-connected circuit elements by all-optical synapses. Commun. Biol. 5, 33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Vierock, J. et al. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nat. Commun. 12, 4527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. van Bergeijk, P., Adrian, M., Hoogenraad, C. C. & Kapitein, L. C. Optogenetic control of organelle transport and positioning. Nature 518, 111–114 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171 e114 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Rabut, C. et al. Ultrasound technologies for imaging and modulating neural activity. Neuron 108, 93–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. 9, 3949 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Govorunova, E. G. et al. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc. Natl Acad. Sci. USA 117, 22833–22840 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shevchenko, V. et al. Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).

    Article  PubMed  CAS  Google Scholar 

  165. Feroz, H. et al. Light-driven chloride transport kinetics of halorhodopsin. Biophys. J. 115, 353–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. AzimiHashemi, N. et al. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nat. Commun. 5, 5810 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Broser, M. et al. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 11, 5682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Luck, M. et al. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287, 40083–40090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Koyanagi, M. et al. Bistable UV pigment in the lamprey pineal. Proc. Natl Acad. Sci. USA 101, 6687–6691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Heintz, U. & Schlichting, I. Blue light-induced LOV domain dimerization enhances the affinity of aureochrome 1a for its target DNA sequence. Elife 5, e11860 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Jung, A. et al. Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction. Proc. Natl Acad. Sci. USA 102, 12350–12355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Banerjee, R. et al. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 282, 14916–14922 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Bulina, M. E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Neupert, C. et al. Regulated dynamic trafficking of neurexins inside and outside of synaptic terminals. J. Neurosci. 35, 13629–13647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G-protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burke, K. J. Jr., Keeshen, C. M. & Bender, K. J. Two forms of synaptic depression produced by differential neuromodulation of presynaptic calcium channels. Neuron 99, 969–984 2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the many participants in our online survey on presynaptic silencing tools. We thank I. Saraf-Sinik, Y. Livneh, S. -A. Kunde, M. Pulin and F. Brüntgens for fruitful discussions and comments on the manuscript. Studies in the authors’ laboratories are supported by grants from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) SPP 1926 (to B.R.R. and O.Y.), EXC-2049–390688087, SPP 1665, SFB 1315 and SFB 958 (to D.S.) and by the European Research Commission (ERC CoG PrefrontalMap 819496 and H2020-RIA DEEPER 101016787 to O.Y., ERC SyG BrainPlay 810580 to D.S.) and the Israel Science Foundation (ISF 3131/20 to O.Y.). J.W. is supported by the EMBO ALTF 378-2019 and Amos de Shalit-Minerva fellowship. O.Y. is supported by the Joseph and Wolf Lebovic Charitable Foundation Chair for Research in Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin R. Rost or Ofer Yizhar.

Ethics declarations

Competing interests

O.Y. is an author on a patent covering bistable type II opsins (US20210403518A1). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Hillel Adesnik, Matthew Kennedy, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rost, B.R., Wietek, J., Yizhar, O. et al. Optogenetics at the presynapse. Nat Neurosci 25, 984–998 (2022). https://doi.org/10.1038/s41593-022-01113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01113-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing