Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Unlocking gene regulation with sequence-to-function models

By exploiting recent advances in modern artificial intelligence and large-scale functional genomic datasets, sequence-to-function models learn the relationship between genomic DNA and its multilayer gene regulatory functions. These models are poised to uncover mechanistic relationships across layers of cellular biology, which will transform our understanding of cis gene regulation and open new avenues for discovering disease mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The complexity of genotype-to-phenotype relationship.

References

  1. Uffelmann, E. et al. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  CAS  Google Scholar 

  2. Li, Z. et al. Cell Rep. Methods 3, 100384 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo, Y. et al. Nucleic Acids Res 48, D882–D889 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Avsec, Ž. et al. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avsec, Ž. et al. Nat. Genet. 53, 354–366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou, J. et al. Nat. Genet. 50, 1171–1179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, J. Nat. Genet 54, 725–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sasse, A. et al. Nat. Genet. 55, 2060–2064 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, C. et al. Nat. Genet. 55, 2056–2059 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelley, D. R. PLOS Comput. Biol. 16, e1008050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Boer, C. G. & Taipale, J. Nature 625, 41–50 (2024).

    Article  PubMed  Google Scholar 

  12. Dalla-Torre, H. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.01.11.523679 (2023).

  13. Tang, Z. & Koo, P. K. Preprint at bioRxiv https://doi.org/10.1101/2024.02.29.582810 (2024).

  14. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Nat. Genet. 55, 1866–1875 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Arthur, T. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2024.04.10.588874 (2024).

Download references

Acknowledgements

We thank C. de Boer and X. Tu for helpful comments. ChatGPT was used to refine some of the sentences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Chikina or Sara Mostafavi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasse, A., Chikina, M. & Mostafavi, S. Unlocking gene regulation with sequence-to-function models. Nat Methods 21, 1374–1377 (2024). https://doi.org/10.1038/s41592-024-02331-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02331-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research