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Virtual reality-empowered deep-learning 
analysis of brain cells

Doris Kaltenecker1,2,3,4,16, Rami Al-Maskari4,5,6,7,16, Moritz Negwer5,16, 
Luciano Hoeher5, Florian Kofler6,7,8,9, Shan Zhao4,5, Mihail Todorov    4,5, 
Zhouyi Rong4,5, Johannes Christian Paetzold5,7,10, Benedikt Wiestler    8, 
Marie Piraud    9, Daniel Rueckert    10, Julia Geppert1,2,3, Pauline Morigny1,2,3, 
Maria Rohm    1,2,3, Bjoern H. Menze6,11, Stephan Herzig    1,2,3,12, 
Mauricio Berriel Diaz    1,2,3  & Ali Ertürk    4,5,13,14,15 

Automated detection of specific cells in three-dimensional datasets such 
as whole-brain light-sheet image stacks is challenging. Here, we present 
DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ 
cells as markers for neuronal activity in cleared mouse brains. Virtual reality 
annotation substantially accelerated training data generation, enabling 
DELiVR to outperform state-of-the-art cell-segmenting approaches. Our 
pipeline is available in a user-friendly Docker container that runs with a 
standalone Fiji plugin. DELiVR features a comprehensive toolkit for data 
visualization and can be customized to other cell types of interest, as we did 
here for microglia somata, using Fiji for dataset-specific training. We applied 
DELiVR to investigate cancer-related brain activity, unveiling an activation 
pattern that distinguishes weight-stable cancer from cancers associated 
with weight loss. Overall, DELiVR is a robust deep-learning tool that does not 
require advanced coding skills to analyze whole-brain imaging data in health 
and disease.

Analyzing the expression of proteins is essential to understand cellular 
and molecular processes in physiology and disease. While standard 
immunohistochemistry is useful for validating protein expression 
on tissue sections, it does not provide a holistic view of expression 
patterns in larger samples and information can be lost during slic-
ing1,2. Tissue clearing and fluorescent imaging solve many of these 

restrictions and allow unbiased protein expression analysis up to the 
whole-organism scale1,3–5.

Whole-brain analysis is essential for detecting areas involved 
in specific behaviors or conditions. A brain-wide snapshot of the 
neuronal activity of an animal can be obtained by immunostaining 
for the expression of immediate early genes such as c-Fos. Unbiased 
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for a 100³ voxel sub-volume (depicting 83 c-Fos+ cells) as well as the 
annotation quality of cell instances using the F1 score. We found that 
VR annotation was significantly (P = 0.0005, two-sided Mann–Whitney 
U-test) faster than 2D-slice annotation (Fig. 1i) and improved annota-
tion quality (increase in F1 score from 0.7383 to 0.8032 (Fig. 1j)). Thus, 
we decided to generate reference data in VR for our deep-learning 
algorithm for c-Fos activity mapping.

DELiVR outperforms threshold-based c-Fos segmentation
To comprehensively analyze neuronal activity across the entire brain, 
DELiVR detects and aligns the cells to the Allen Brain Atlas. DELiVR then 
visualizes the segmentation in both image and atlas space. Therefore, 
DELiVR consists of multiple steps (Fig. 2a). First, the pipeline downsam-
ples the raw image stack and generates ventricle masks (Extended Data 
Fig. 2a–c). It then upscales the masks and uses them to mask the ventricles 
in the raw image input. DELiVR then utilizes a customized sliding-window 
inferer to identify potential cells. Afterwards, we conduct a connected 
component analysis13 to identify individual cells in the masked images 
and filter by size. DELiVR then aligns the previously downsampled brain 
to the Allen Brain Atlas (CCF3, 50 µm per voxel) with mBrainAligner14 
and assigns the corresponding atlas region to each detected cell. The 
connected component analysis returns a set of center-point coordinates 
and volume for each segmented cell, which DELiVR then automatically 
maps to the Allen Brain Atlas with mBrainAligner.

To train and validate our model, we randomly sampled and 
VR-annotated 48 × 100³ voxel patches (referring to 5,889 cells) from a 
c-Fos-labeled brain. From these we trained a 3D BasicUNet (Extended 
Data Fig. 2d). In addition, we trained recent larger segmentation mod-
els, such as transformers15, SegResNet16 and the MONAI DynUnet17 to 
determine which model was best suited for our data. Assessing the 
instance performance by calculating the overlap between individual 
cells, the 3D BasicUNet architecture showed the best performance 
(based on F1 score) (Fig. 2b and Extended Data Fig. 2e). Therefore, we 
chose the 3D BasicUNet for our DELiVR pipeline.

We also compared DELiVR with previously published 
non-deep-learning models that are applicable to cell detection in 3D 
images and had code available (ClearMap7, ClearMap2 (ref. 18) and 
Ilastik19). Our performance on the test set shows an F1 score of 0.7918 
(+89.03% increase), instance sensitivity of 0.8470 (+181.64% increase), 
instance precision of 0.7434 (+7.74% increase) and a volumetric Dice of 
0.6739 (+581,39% increase) compared to the second-best performing 
method, ClearMap2 (Fig. 2c,d, Extended Data Fig. 2f and Supplemen-
tary Table 1). We increased the performance of ClearMap based on the 
F1 score to 0.65 by manually pre-processing image stacks and optimiz-
ing parameters for cell detection3; however, DELiVR still had a superior 
performance. These scores demonstrate a clear improvement over 
filter and threshold-based segmentation methods as the deep-learning 
model captures 84.8 times more cells (1,611 true positives) than Clear-
Map (19 true positives), 2.8 times more cells than ClearMap2 (572 true 
positives) and 31.2% more than the optimized version of ClearMap 
(1,228 true positives) while not over-segmenting. For visualization, 
DELiVR generates a whole-brain segmentation output that exists in 

quantification methods for system-level examination at the single-cell 
resolution are essential to interpret those brain-wide findings6, but 
current automated methods for cell detection and registration to 
the Allen Mouse Brain Atlas7–9 are difficult to apply consistently to 
three-dimensional (3D) whole-brain datasets. Variations in image 
acquisitions between samples, uneven signal-to-noise ratios across 
the tissue or low abundance of the target protein limit detection sen-
sitivity and specificity. This requires manual adjustments such as 
setting sample and volume-specific thresholds or using conserva-
tive thresholds that will not capture all information in each sample. 
Deep-learning-based cell detection methods offer a promising solu-
tion to address these challenges; however, their implementation 
typically demands advanced coding skills, presenting a challenge for 
users lacking computational expertise.

Here, we developed DELiVR (deep learning and virtual reality mes-
oscale annotation pipeline), a virtual reality (VR)-aided deep-learning 
pipeline for detecting c-Fos+ cells in cleared mouse brains (Fig. 1a) 
that can be extended to other cell types. We generated high-quality 
annotations of light-sheet microscopy data of cleared whole mouse 
brains stained for c-Fos in a VR environment. Next, we trained a deep 
neural network on these data to identify c-Fos+ cells across the brain 
and mapped them automatically to the Allen Brain Atlas. To increase 
the usability of DELiVR, we packaged it into a single Docker container 
that runs via a plugin for the open-source software Fiji. DELiVR can 
also be trained with custom data via Fiji to adapt DELiVR to specific 
datasets. We used DELiVR to study cancer-related cachexia and found 
increased neuronal activity in mice with weight-stable cancer in brain 
areas related to sensory processing and foraging. In contrast, this 
increase was lost in cachectic animals, suggesting a weight-stable 
cancer-specific neurophysiological hyperactivation phenotype.

Results
Reference annotation is faster in VR compared to 2D slices
We used the SHANEL protocol10 for whole-brain c-Fos immunostaining, 
tissue clearing and light-sheet fluorescence microscopy (LSFM). To 
train deep-learning segmentation models in a supervised manner, sub-
stantial amounts of high-quality expert annotations are crucial. As com-
mon annotation approaches such as ITK-SNAP11 rely on time-consuming 
sequential two-dimensional (2D) slice-by-slice annotation, we used a 
VR approach that allows for full immersion into 3D volumetric data 
(Fig. 1b,c). We used two commercial VR annotation software packages 
(Arivis VisionVR and syGlass12) to evaluate the speed and accuracy of 
VR in comparison to 2D slice-based annotation in ITK-SNAP.

For annotation using Arivis VisionVR, the annotator defined a 
region of interest (ROI) in which an adaptive thresholding function 
was applied, according to the annotator’s input (Fig. 1d–h and Supple-
mentary Video 1). In syGlass, the annotation tool allowed the annota-
tor to draw simple 3D shapes as ROIs and adjust a threshold until the 
annotation was acceptable to the annotator (Extended Data Fig. 1a–d 
and Supplementary Video 2). In ITK-SNAP, individual c-Fos+ cells were 
segmented in each plane of the image stack (Extended Data Fig. 1e and 
Supplementary Video 3). We evaluated the time spent by the annotators 

Fig. 1 | Virtual reality-aided annotation is faster than 2D-slice annotation. 
 a, Summary of VR-aided deep learning for antibody-labeled cell segmentation 
in mouse brains. (i) Fixed mouse brains are subjected to SHANEL-based antibody 
labeling, tissue clearing and fluorescent light-sheet imaging. (ii) Volumes of 
raw data are labeled in VR to generate reference annotations. (iii) The DELiVR 
pipeline was packaged in a Docker container, controlled via a Fiji plugin. DELiVR 
segments cells using deep learning and registers them to the Allen Brain Atlas. 
DELiVR produces per-region cell counts and generates visualizations with all 
detected cells color coded by atlas region. b, Patch volume of raw data (c-Fos-
labeled brain imaged with LSFM) and loaded into Arivis VisionVR. Volume size 
represents 2003 voxel, rendered isotropically. c, Illustration of VR goggles 
and VR zoomed-in view of the same data as in b. d–f, Using Arivis VisionVR, 

individual cells were annotated by placing a selection cube on the cell (d), fitting 
the cube to the size of the cell (e) and filling (f). Scale bar, 10 µm. g,h, Zoomed-in 
view of raw data (same volume as in b) (g) and annotation overlay generated in 
VR (h). Scale bar, 10 µm. i, Time spent for annotating a test patch using 2D-slice 
(n = 7) and VR annotation (n = 12 with n = 6 annotations performed with Arivis 
VisonVR and n = 6 annotations performed with syGlass). Data are presented as 
mean ± s.e.m. ***P = 0.0005, two-sided Mann–Whitney U-test. j, Instance Dice of 
2D-slice annotation (n = 7) versus VR annotation (n = 12 with n = 6 annotations 
performed with Arivis VisonVR and n = 6 annotations performed with syGlass). 
Data are presented as mean ± s.e.m. *P = 0.0445, two-sided unpaired t-test. A.U., 
arbitrary units.
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the original image space. Here, each segmented cell corresponds to 
a threshold value fitting to an Area ID of the Allen Brain Atlas and was 
colored according to the brain region that it belongs to (Extended Data 
Fig. 3a,b and Supplementary Video 4). In addition, we used BrainRen-
der20 to plot and visualize the detected cells in the atlas space (Fig. 2e 
and Extended Data Fig. 3c).

To increase usability, the entire DELiVR pipeline, encompassing 
atlas alignment, cell detection and visualization, is available as a single, 

user-friendly Docker container for both Linux and Windows. Docker is 
a software platform that allows to bundle and distribute applications, 
along with their required components, in a uniform container format21. 
We also developed a dedicated Fiji plugin to seamlessly run the DELiVR 
Docker (Fig. 3a–c and Supplementary Video  5).

Moreover, we provide a Docker container for training that inte-
grates with the DELiVR Fiji plugin (Fig. 3a,c). This feature allows users 
to (re-)train DELiVR on other datasets, thereby enhancing DELiVR’s 
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Fig. 2 | DELiVR’s UNet outperforms current methods for c-Fos+ cell detection. 
a, Scheme of the DELiVR inference pipeline. All components are packaged in a 
single Docker container. Raw image stacks serve as input. They are downsampled 
for atlas alignment and optionally masked (to exclude detection on ventricles). 
The masked images are then passed on to deep-learning cell detection 
(inference), which produces binary segmentations. The binarized cell’s center 
points are subsequently transformed to the Allen Brain Atlas CCF3 space. 
The cells are visualized in atlas space as (group-wise) heat maps and in image 
space as color-coded tiff stacks. b, Quantitative comparison of segmentation 
performance based on instance Dice (F1 score) between different deep-learning 

architectures and DELiVR. c, F1 scores for non-deep-learning methods (gray) 
and DELiVR (the same F1 score for DELiVR is used as in b). d, 3D qualitative 
comparison between ClearMap, ClearMap2, ‘Optimized’ ClearMap, Ilastik and 
DELiVR on instance basis. Predicted cells with overlap in reference annotations 
(TP) are masked in green, predicted cells with no overlap in reference annotations 
(FP) are masked in red. Undetected reference annotation cells (FN) are marked in 
blue. TP, true positive; FP, false positive; FN, false negative. Scale bar, 100 µm. e, 
Whole-brain segmentation output of the detected cells is visualized in atlas space 
using BrainRender. Scale bar, 1 mm in CCF3 atlas space.
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precision and adaptability. Users can choose to fine-tune the existing 
c-Fos model or train their own model from scratch. For this, one can 
adjust hyperparameters such as the number of epochs and learning 
rate. The user-trained model can then be used in the DELiVR pipeline 
as the inference model. For a comprehensive guide, please consult our 
‘DELiVR handbook’ (Supplementary Note).

We used our DELiVR training to annotate microglial cell bodies, 
the brain’s resident macrophages22. We performed whole-brain nano-
body labeling in CX3CR1GFP/+ reporter mice, clearing and LSFM, and 
annotated microglia somata in VR (Fig. 3d,e). Training used a dataset 
of 161 VR-annotated 1003 voxel patches with a total of 3,798 annotated 
microglia somata. The newly trained model had an F1 score of 0.92, 
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d

e

h    eGFP staining + segmentation
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Fig. 3 | DELiVR runs end to end and can be adapted to other cell types. a–c, 
The DELiVR plugin will appear in Fiji upon installation. It can launch DELiVR for 
inference (b) or launch the training Docker to train on domain-specific training 
data (c). d,e, Zoomed-in Arivis VisionVR view of raw data from a CX3CR1GFP/+ 
microglia reporter mouse (d) and annotation overlay of cell bodies generated 
in VR (e). Scale bar, 10 µm. f, 3D representation of the training evaluation on 
instance basis; predicted cells with overlap in reference annotations are masked 
in green (TP), predicted cells with no overlap in reference annotations are masked 
in red (FP) and reference annotation cells with no corresponding prediction are 

marked in blue (FN). Following training, DELiVR segments microglia cell bodies 
with a Dice (F1) score of 0.92. Scale bar, 10 µm. g, Optical section of a CX3CR1GFP/+ 
microglia reporter mouse brain hemisphere (n = 1, sagittal), scanned at ×12 
magnification and with inversed brightness (microglia indicates black spots). 
Scale bar, 1 mm. h, Zoomed-in view of the cortex (red inset in g), with overlaid 
segmented cells detected by whole-hemisphere DELiVR analysis shown in green 
(n = 1). Scale bar, 100 µm. i, Visualization of 12.2 million CX3CR1GFP/+ microglia 
across one hemisphere, generated by DELiVR and visualized with Imaris. Color-
coding per Allen Brain Atlas CCF3 regions. Scale bar, 1 mm.
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indicating robust performance23 (Fig. 3f). We applied this model in 
the DELiVR pipeline and could detect and map microglia cell bodies 
throughout the brain. Using DELiVR’s visualization tool, we evaluated 
the microglia cell body segmentation output generated by DELiVR in 
our original images (Fig. 3g–i) and mapped the segmented cells to 
region IDs of the Allen Brain Atlas (Fig. 3i). Thereby, DELiVR allows to 
find and confirm an anatomical or functional sub-area in the original 
image stack of the brain.

DELiVR identifies activation patterns in tumor-bearing mice
Cancer affects normal physiology locally in the surrounding tissue but 
can also lead to profound changes in the systemic metabolism of the 
patient. This is exemplified by the wasting syndrome cancer-associated 
cachexia (CAC) characterized by involuntary loss of body weight24–26 
and specific changes in brain activity27.

To identify brain regions affecting body weight maintenance in 
cancer, we used DELiVR to compare the neuronal activity patterns 
between weight-stable cancer and CAC. We subcutaneously trans-
planted NC26 colon cancer cells that give rise to weight-stable cancer or 
C26 colon cancer cells that induce weight loss (Fig. 4a). As expected28, 

no changes in body weight were observed in NC26 tumor-bearing mice 
compared to controls, whereas C26 tumor-bearing mice showed sig-
nificant (P < 0.0001, one-way analysis of variance (ANOVA) with Sidak 
post hoc analysis) reductions (Fig. 4b). The differences in body weight 
were not due to differences in tumor mass (Fig. 4c). C26 tumor-bearing 
mice displayed reduced weights of the gastrocnemius muscle and white 
adipose tissue depots (Extended Data Fig. 4a–c). We observed a small 
but statistically significant (P = 0.0479, one-way ANOVA with Sidak 
post hoc analysis) decrease in brain weights of cachectic C26 versus 
weight-stable NC26 tumor-bearing mice (Extended Data Fig. 4d). We 
performed c-Fos antibody labeling, clearing and imaging of whole 
brains of these mice and applied DELiVR for whole-brain mapping of 
neuronal activity. c-Fos+ density maps indicated an increase in brain 
activity in weight-stable NC26 tumor-bearing mice compared to 
phosphate-buffered saline (PBS) controls, whereas this increase was 
not present in cachectic C26 tumor-bearing mice (Fig. 4d).

The increase in brain activity in NC26 tumor-bearing mice was 
most pronounced throughout the cortical plate and in the lateral 
septal complex (Fig. 5a,b). Overall, we identified 19 areas in NC26 
tumor-bearing mice that showed statistically significantly (Padj < 0.1, 
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Fig. 4 | DELiVR identifies changes in neuronal activity in weight-stable 
cancer. a, Experimental setup. Adult mice were subcutaneously injected with 
PBS as control; NC26 cells that lead to a weight-stable cancer or cachexia-
inducing C26 cancer cells. b, Body weight change of mice at the end of the 
experiment compared to starting body weight. Tumor weight was subtracted 
from the final body weight. n(PBS) = 12, n(NC26) = 8, n(C26) = 12. Data are 

presented as mean ± s.e.m. ****P < 0.0001, one-way ANOVA with Sidak post hoc 
analysis c, Tumor weight at the end of the experiment. n(NC26) = 8, n(C26) = 12. 
Data are presented as mean ± s.e.m. d, Normalized c-Fos+ cell density in brains 
of PBS controls, mice with weight-stable cancer (NC26) and mice with cancer-
associated weight loss (C26), visualized in CCF3 atlas space. n(PBS) = 12, 
n(NC26) = 8, n(C26) = 12. Scale bars, 2 mm.
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two-sided unpaired t-tests with Benjamini–Hochberg multiple-testing 
correction with family-wise error rate (FWER) = 0.1) increased c-Fos 
expression compared to PBS controls after multiple-testing correction 
(Fig. 5a). We found that NC26-bearing mice also have more c-Fos+ cells 
in the cortical plate, with the most pronounced differences observed 
in the somatomotor areas (Fig. 5a,b). NC26 tumors notably increased 
c-Fos+ density in the somatosensory cortex related to the snout, spe-
cifically in the mouth region (layer 2/3 and 4) and barrel field layer 4. 
Furthermore, NC26-bearing mice showed more c-Fos+ cells than PBS 
controls in the primary (layers 1 and 5) and secondary motor areas (lay-
ers 2/3 and 5; Fig. 5a,b). The primary motor cortex layer 5 is especially 
interesting because it contains extratelencephalic projection neurons 
that project as far as the spinal cord, among others29.

We found seven areas that were significantly altered between 
NC26 and cachectic C26 tumor-bearing mice, whereas we did 
not observe significant changes (Padj > 0.1, two-sided unpaired 
t-tests with Benjamini–Hochberg multiple-testing correction with 
FWER = 0.1) in c-Fos+ expression when comparing PBS and cachectic 
C26 tumor-bearing mice after correcting for multiple testing (Fig. 5a). 
When comparing NC26 to C26 tumor-bearing mice, we found that 
NC26 mice had more c-Fos+ cells overall in the cortical plate, with the 
differences clustering in the dorsal and agranular lateral retrosplenial 
cortex as well as a subset of entorhinal cortex (Fig. 5a,c). Evaluation of 
c-Fos+ density heat maps offer additional details (Fig. 5d). Evaluation 
of layer 2/3 retrosplenial cortex shows that activity clusters in the 
anterior third of retrosplenial cortex in PBS and C26, but not NC26 
retrosplenial cortex, where it is both stronger and spread further to the 
back. The retrosplenial cortex is thought to be a site of multisensory 
integration, spatial integration and environment mapping30 and is 
crucially involved in foraging behavior31.

Overall, our findings showed that brain activity in weight-stable 
NC26 cancer-bearing mice are markedly different from both cachectic 
C26 cancer-bearing mice and PBS controls. Specifically, we find a con-
sistent hyperactivation phenotype in NC26 brains that is detectable 
at the whole-cortex level, but most pronounced in areas relevant to 
somatosensation at the snout and motor planning, as well as spatial 
navigation (all of which would be consistent with a foraging-related 
brain activation pattern). Thus, with DELiVR we were able to identify 
a neuronal activity pattern specific to the NC26 cancer model.

Discussion
Here, we present DELiVR, an end-to-end VR-enabled deep-learning- 
based quantification pipeline for whole-brain cell mapping in cleared 
mouse brains. We designed it to make deep learning accessible to most 
biologists via a Fiji front end, not requiring coding skills. We lever-
aged VR technology to generate reference annotations for training a 
deep-learning-based segmentation network. DELiVR improves seg-
mentation accuracy compared to current cell detection methods and 
generates a registered segmentation output that can be examined in 
the original image and in the atlas spaces. In addition, our Fiji train-
ing feature enables users to adapt DELiVR to their specific datasets, 
increasing its versatility and usability.

Traditional, non-machine-learning solutions for large-scale analy-
sis of c-Fos cell detection, such as ClearMap7,18 rely on a sophisticated 
system of thresholding and filtering to detect small structures and clas-
sify them as cells. While such approaches generated valuable informa-
tion6, their performance is limited for data with variable signal-to-noise 
ratios, as is the case when imaging large volumes such as the entire 
mouse brain. Though parameters can be adjusted, it is difficult to find 
a setting that accounts for all cells. Hence, the thresholds tend to be 
set conservatively, meaning that subtle differences may be lost dur-
ing threshold-based analysis. A trained deep-learning model learns 
these local variances, thus providing more accurate cell number esti-
mates than threshold-based methods, as exemplified by DELiVR’s high 
instance F1 score. Previous approaches for segmenting cells in mouse 

brains ranged from deep learning32–34, random forest algorithms19,35 
and threshold-based solutions7,18,36; however, only a subset of stud-
ies published their analysis pipeline and model weights in a working 
package that makes it applicable for other datasets. We found that 
DELiVR’s 3D BasicUNet consistently outperformed all other approaches 
with available code. In addition to providing highly accurate AI-based 
cell detection, DELiVR provides a unique and accessible open-source 
tool, functioning seamlessly within Fiji. It encompasses all steps of 
brain activity mapping, including cell detection, atlas alignment and 
visualization, in an easily accessible environment without the need for 
writing additional computer code.

Our experiments showed that VR is a superior means of anno-
tation and data exploration for volumetric data analysis. Non-VR 
methods show orthogonal slices, which allows an annotator to outline 
the shape of individual cells in 2D; however, it obfuscates necessary 
volumetric information, making annotation challenging and time 
consuming; an annotator never sees the whole cell, only a cross-section 
and must scroll through slices to ensure that it is in fact a cell and not 
background noise. In contrast, VR allows the annotator to capture 
3D structures in their entirety, enabling the fast generation of more 
reliable annotated data.

In future work, it will be interesting to explore the possibility of 
performing active learning in a VR environment. Active learning is 
a combined machine-learning training and annotation approach, 
where a model selectively chooses the most informative or uncer-
tain data points for manual annotation, allowing for efficient model 
improvement with fewer labeled data points37. This approach is cur-
rently limited by the possibilities of the VR annotation software appli-
cation programming interfaces. Using an ensemble of networks or 
a test time augmentation uncertainty map as well as methods such 
as Monte-Carlo-based sampling using dropout layers38 to highlight 
areas that are ambiguous to the network, the annotator can be guided 
to even more efficient time use in VR annotation. The annotators’ 
choices can then be fed into a fine-tuning step to improve the model 
while annotating.

We used DELiVR to profile the brain activation patterns of 
cancer-bearing mice that were either weight-stable or displayed CAC. 
A mix of reduced food intake, elevated catabolism, increased energy 
expenditure and inflammation drives weight loss in cancer26. The 
brain was shown to contribute to anorexia in CAC, as it responds to 
inflammatory cytokines that modulate the activity of neuronal popu-
lations that regulate appetite39. In addition, activation of neurons in 
the parabrachial nucleus was shown to suppress appetite in mouse 
models of CAC40. The reduction in brain weight among cachectic C26 
tumor-bearing mice aligns with prior reports of decreased brain weight 
in mice with cachexia-inducing pancreatic tumors41. It is currently 
unclear whether this this volume reduction is due to cell death, or 
white matter loss.

Notably, we found a substantial increase in c-Fos+ expression in 
the brains of weight-stable NC26 tumor-bearing mice, especially in 
motor and sensory areas, and higher-order regions such as the retros-
plenial cortex. Those regions are linked to sensorimotor control, motor 
sequencing and foraging30,42,43. The abundance of sensory-related 
regions suggests cancer-specific impairment in GABAergic inhibition44, 
driving a hyperactivation phenotype via disinhibition. If and how these 
increases in neuronal activation in weight-stable cancer-bearing mice 
affect body weight maintenance will be of a high interest to explore in 
future studies.

In conclusion, we present DELiVR: an integrated, easy-to-use pipe-
line to label, scan and analyze neuronal activity markers across the 
entire mouse brain and show how VR increases the speed and accuracy 
of generating reference annotations. Using DELiVR, we find differences 
in c-Fos expression between cachectic and non-cachectic cancer mouse 
brains, pointing us to a previously unknown neurophysiological phe-
notype in cancer-related weight control.
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Methods
Whole-brain immunolabeling and clearing
Immunostaining for c-Fos was performed using a modified version 
of SHANEL10. All incubation steps were carried out under moderate 
shaking (300 rpm). For the pretreatment, samples were dehydrated 
with an ethanol/water series (50%, 70% and 100% ethanol) at room 
temperature for 3 h per step. Next, samples were incubated in dichlo-
romethane (DCM)/methanol (2:1 v/v) at room temperature for 1 day. 
Brains were rehydrated with an ethanol/water series (100%, 70% and 
50% ethanol and diH2O) at room temperature for 3 h per step. Sam-
ples were incubated in 0.5 M acetic acid at room temperature for 5 h 
followed by washing with diH2O. Next, brains were incubated in 4 M 
guanidine HCl, 0.05 M sodium acetate, 2% v/v Triton X-100, pH 6.0, at 
room temperature for 5 h followed by washing with diH2O. Brains were 
incubated in a mix of 10% CHAPS and 25% N-methyldiethanolamine 
at 37 °C for 12 h before washing with diH2O. Blocking was performed 
by incubating the brains in 0.2% Triton X-100, 10% dimethylsulfoxide 
and 10% goat serum in PBS shaking at 37 °C for 2 days. Samples were 
incubated with c-Fos primary antibody (Cell Signaling Technology, 
2250, 1:1,000 dilution) in primary antibody buffer (0.2% Tween-20, 
5% dimethylsulfoxide, 3% goat serum and 100 µl heparin per 100 ml 
PBS) shaking at 37 °C for 7 days. The antibody solution was filtered 
(22-µm pore size) before use. Samples were washed in washing solution 
(0.2% Tween-20 and 100 µl heparin in 100 ml PBS) shaking at 37 °C for 
1 day at which the washing solution was refreshed five times. Brains 
were incubated with the secondary antibody (Alexa Fluor 647 and 
goat anti-rabbit IgG (H + L) from Invitrogen, A-21245, 1:500 dilution) 
in secondary antibody buffer (0.2% Tween-20, 3% goat serum and 
100 µl heparin per 100 ml PBS) shaking at 37 °C for 7 days followed by 
incubating in washing solution shaking at 37 °C for 1 day at which the 
washing solution was refreshed five times. Brains were dehydrated 
using 3DISCO2 with a THF/H2O series (50%, 70%, 90% and 100% THF) 
for 12 h per step followed by an incubation in DCM for 1 h. Tissues were 
incubated in benzyl alcohol/benzyl benzoate (1:2 v/v) until tissue 
transparency was reached (>4 h).

For microglia labeling, brains of CX3CR1GFP/+ mice were 
pretreated via the modified SHANEL protocol as described 
above and incubated with Atto647N-conjugated anti-GFP nano-
booster (Chromotek, gba647n-100, 1:1,000 dilution) with 5% 
2-hydroxypropyl-β-cyclodextrin, 0.2% Tween-20 and 6% goat serum 
in PBS for 5 days at 37 °C. Brains were washed as described in washing 
solution shaking at 37 °C for 1 day at which the washing solution was 
refreshed five times. Brains were dehydrated with an ethanol/dH2O 
series (50%, 70%, 90% and 100% ethanol) at room temperature for 2 h 
each step and incubated in 100% ethanol overnight. Subsequently, 
brains were incubated in DCM for 1 h before incubation in benzyl alco-
hol/benzyl benzoate until tissue transparency was reached.

Light-sheet imaging
Light-sheet imaging for c-Fos labeled brains was conducted through 
a ×4 objective lens (Olympus XLFLUOR 340) equipped with an 
immersion-corrected dipping cap mounted on an UltraMicroscope II 
(LaVision BioTec) coupled to a white light laser module (NKT SuperK 
Extreme EXW-12). The antibody signal was visualized using a 640/40 nm 
excitation and 690/50 nm emission filter. Tiling scans (3 × 3 tiles) 
were acquired with a 15–20% overlap, 60% sheet width and 0.027 NA. 
The images were taken in 16-bit depth and at a nominal resolution of 
1.625 µm per voxel on the xy axes. In the z dimension we took images 
in 6-µm steps using left- and right-sided illumination. Whole-brain 
scans for microglia-labeled CX3CR1GFP/+ brains were generated with 
the LaVision BioTec Ultramicroscope Blaze coupled with LaVision 
BioTec MI PLAN ×12 objective (0.53 NA (WD = 10 mm), nominal pixel 
size of 0.54 µm in xy). Stitching of tile scans was carried out using Fiji’s 
stitching plugin, using the ‘Stitch Sequence of Grids of Images’ plugin45 
and custom Python scripts.

ClearMap
ClearMap7 and the CellMap portion18 of ClearMap2 were used with 
adapted settings for thresholds and cell sizes that fitted to the higher 
resolution and different signal-to-noise ratios in our dataset. Segmenta-
tion masks were saved as tiff stacks by toggling the ‘save’ option in the 
last segmentation step. ClearMap was ported to Python (v.3.5) before 
use, but functioned identically46. We only used the cell segmentation 
portions, no pre-processing (for example ClearMap2’s flat-field correc-
tion) or post-processing, such as atlas alignment, were performed. Both 
pipelines were run for an entire brain and subsequently subdivided into 
test patches that we used for the comparisons with DELiVR. For ‘opti-
mized ClearMap’3, we performed the following pre-processing steps on 
our image stack: (1) Background equalization to homogenize intensity 
distribution and appearance of the c-Fos+ cells over different regions of 
the brain, using pseudo-flat-field correction function from Bio-Voxxel 
toolbox (https://doi.org/10.5281/zenodo.5986129). (2) Convoluted 
background removal, to remove all particles bigger than relevant cells. 
This was performed with the median option in the Bio-Voxxel toolbox. 
(3) A 2D median filter to remove remaining noise after background 
removal. (4) Unsharpen mask to amplify the high-frequency compo-
nents of a signal and increase overall accuracy of the cell detection 
algorithm of ClearMap. (5) A z-wise removal of artifacts by manually 
selecting ROIs in Fiji. After pre-processing, ClearMap7 was applied by 
following the original publication and considering the threshold levels 
that we obtained from the pre-processing steps.

Ventricle masking
We wrote an automated pre-processing script that downsamples the 
image stack to an isotropic 25 × 25 × 25 µm per voxel and then applies 
a custom-trained random forest to identify ventricles. Specifically, 
we integrated Ilastik19 (v.1.4.0b8) with a 3D pixel classifier, which we 
trained on several downsampled brain image stacks to differentiate 
between ventricles and brain parenchyma. The pre-processing script 
then generates a 3D mask stack that our script upsamples to the original 
image stack dimensions, using bicubic interpolation to avoid aliasing 
artifacts at ventricle edges. It then masks each original z-plane image 
with the respective mask, pads it and returns a 16-bit image stack (saved 
as one big .npy file that can be read via np.memmap).

Annotation
VR annotation for c-Fos+ cells was carried out using Arivis VisionVR 
(v.3.4.0, Carl Zeiss Microscopy Software Center Rostock) or syGlass 
(v.1.7.2, ref. 12). For this purpose, the annotator was wearing a VR 
headset (Oculus Rift S) and carried out annotations in VR using hand 
controllers (Oculus Touch). Slice-by-slice annotation was carried out 
using ITK-SNAP (v.3.8, ref. 11). For comparing VR and 2D-sliced based 
annotation, a 1003-voxel volume of c-Fos labeled brain was annotated 
by the participants and the time was recorded until the annotation 
task was finished. For training and testing our deep-learning network, 
we annotated a total of 48 × 100³ voxel patches in VR. All of our train-
ing and test patches were furthermore vetted by an expert biologist 
in ITK-SNAP to ensure that only cells were annotated. We evaluated 
the annotation quality using the formula of Dice as described below. 
For more details about the annotation process in VR, please see our 
‘DELiVR handbook’ provided as a Supplementary Note. Microglia 
cell bodies were annotated in VR similar to c-Fos+ cells using Ari-
vis VisionVR. Only the somata were annotated, while the microglia  
processes were excluded.

Deep learning
To automatically segment the cells in all brains, we trained a 3D BasicU-
Net47 for DELiVR from the MONAI library48. The annotated dataset of 
48 × 100³ patches was split into nine patches for testing and 39 patches 
for training stratified by signal after manual ventricle masking. As an 
activation function, we chose Mish49 and as optimizer Ranger21 (ref. 50).  
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As a loss function, we used binary cross-entropy loss17. For the training 
of 500 epochs, we set the initial learning rate to 1 × 10−3 and the batch 
size to four. The network was then trained on a single GPU (NVIDIA 
RTX8000). Instead of conducting model selection, we selected the 
last checkpoint after 500 epochs of training. To compare the DELiVR 
3D BasicUNet with other segmentation models, we trained UNETR15, 
SegResNet16and MONAI DynUNET17 with similar specifications.

The microglia 3D BasicUNet model was trained in a similar fashion 
for 500 epochs using 161 patches containing 3,798 cells. These were 
split into 129 patches for training and 32 patches for testing. Training 
was performed on an NVIDIA A100 GPU.

Evaluation of the segmentation model
Evaluation of the deep-learning model was conducted in a twofold 
manner. First, we evaluated the volumetric segmentation quality by 
assessing, for each voxel, whether it was correctly classified as fore-
ground or background using pymia51. A volumetric quality assessment 
gave us TPs, FPs, FNs and true negatives by comparing every prediction 
voxel with the reference annotation voxel. Additionally, we conducted 
an instance-wise assessment of the segmentation quality. Therefore, 
we assess detection rates on a single-cell (instance) level52. To fairly 
evaluate every cell irrespective of the patch, we aggregated the counts 
across all patches and computed the instance metrics globally53.

Volumetric and instance scores were calculated according to the 
following equations:

Dice = 2TP
2TP + FP + FN Sensitvity = TP

TP + FN Precision = TP
TP + FP

Comparison with ClearMap, ClearMap2, ‘Optimized ClearMap’ 
and Ilastik was performed on a test brain to generate segmentations 
from which we cropped 100³-voxel patches to avoid artifacts that occur 
when the methods are applied at the patch level. These patches were 
then compared to our reference annotation using the same metrics 
as described above.

Atlas registration and statistical analysis
For atlas registration, we used mBrainAligner14, which worked well with 
our datasets (Supplementary Fig. 1). We manually saved the down-
sampled isotropic 25 × 25 × 25 µm per voxel stacks as .v3draw using 
Vaa3d54. Subsequently, we wrote an automated script that aligned the 
image stacks to mBrainAligner’s 50 × 50 × 50 µm per voxel version of 
the Allen Brain Atlas CCF3 reference atlas, using the LSFM example set-
tings with minor adaptations. Subsequently, we used mBrainAligner’s 
swc transformation tool to map the center-point coordinates of our 
c-Fos+ cells into atlas space.

Furthermore, we wrote a custom cell-to-atlas script (reusing 
parser code from VeSSAP55 and the Allen Brain Atlas CCF3 atlas file 
as provided by the Scalable Brain Atlas56) that filters the cells by size, 
with a user-defined upper and lower limit and returns two tables: a 
table with each cell as a row, including the region and Allen Brain Atlas 
color code, etc. and a region table with one region per row, in which 
the number of c-Fos+ cells per region is summarized. For all datasets, 
the post-processing script generates overview tables that contain cell 
counts for all regions. We used the latter for uncorrected Student’s 
t-tests. Finally, we implemented a level-aware multiple-testing script 
that compares groups at the Allen Brain Atlas’s 11 structure levels. We 
excluded the fiber tracts from our statistical comparisons.

Visualization
For visualizing the cells and regions in atlas space, we used BrainRen-
der20 (v.2) with a modified density plot function46. To visualize the 
segmented cells in the original image space, we combined the area-wise 
color code from the Allen Brain Atlas with the 3D segment mask output 
by the connected component analysis. The result is a cell mask file with 

each cell being color coded according to the brain area that it belongs 
to, which makes overlaying with the original image data in for example 
Fiji easy and allows for direct visual inspection of the segmentation 
results. Finally, we used the Allen Institute for Brain Science’s cortical 
flat-map code (https://github.com/int-brain-lab/atlas) with adaptions46 
to include our heat maps.

DELiVR Docker and Fiji plugin
We packaged the DELiVR pipeline as provided in GitHub (https://
github.com/erturklab/delivr_cfos) into a Docker container (base, 
nvidia/cuda:11.7.2-runtime-ubuntu22.04) including mBrainAligner14 
(https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/
mBrainAligner), Ilastik (https://www.ilastik.org/download.html, 
v.1.4.0b8) and TeraStitcher portable57 (https://github.com/abria/
TeraStitcher/wiki/Binary-packages#terastitcher-portable-no-gu
i-only-command-line-tools, v.1.11.10). The code included Python (v.3.8), 
PyTorch (v.1.11), PyTorch Lightning (v.2.0.5), Nibabel (v.5.1.0), MONAI 
(v.1.2.0), SciPy (v.1.8.1), NumPy (v.1.24.4), Pandas (v.1.4.3), imglib2 
(https://github.com/imglib/imglib2) and cc3d (https://github.com/
seung-lab/connected-components-3d). For details, please see the 
Docker file on GitHub (https://github.com/erturklab/delivr_cfos/blob/
main/Dockerfile).

We wrote the Fiji58 (v.1.52p) plugin in Java (v.1.8, using Maven 
(v.3.9.5) and Jackson, https://github.com/FasterXML/jackson) as a 
front end. This provides a graphical user interface that compiles a 
config.json with path names and analysis parameters. Subsequently, 
the plugin calls the Docker container via a shell command and displays 
the progress of the pipeline. For a more detailed description, please see 
our ‘DELiVR handbook’ provided as a Supplementary Note.

Docker for training and Fiji plugin
We packaged the training code (https://github.com/erturklab/delivr_
train) as a separate Docker container, which is also accessible via the 
Fiji plugin. The training plugin accepts annotated patches and trains 
a model specifically for this dataset. This model can then be imported 
into the inference pipeline for dataset-specific inference for any cell 
type. The Fiji training plugin compiles a config_train.json and arranges 
the file layout for the training Docker. It displays the training progress 
and shows the final test scores at the end.

Cell culture
C26 and NC26 colon cancer cells were cultured in high-glucose 
DMEM with pyruvate (Life Technologies, 41966052), supple-
mented with 10% fetal bovine serum (Sigma-Aldrich, F7524) and 1% 
penicillin-streptomycin (Thermo Fisher, 15140122) as described previ-
ously28,59. Before using the cells for transplantation, cells had a conflu-
ence of 80%. Cells were trypsinized, counted and required cell numbers 
were suspended in Dulbecco’s PBS (Thermo Fisher, 14190250).

Animal experimentation
Experiments were carried out with male BALB/c mice aged 10–12 weeks. 
They were purchased from Charles River Laboratories, maintained on 
a 12-h light–dark cycle and fed a regular unrestricted chow diet. The 
set points in the animal room were set to 20–24 °C temperature and 
45–65% humidity. The mice were injected with 1 × 106 C26 or 1.5 × 106 
NC26 colon cancer cells28,59 in 50 µl PBS subcutaneously into the right 
flank. Control mice were injected with 50 µl PBS. After 5 days from 
cell implantation, mice were monitored daily for tumor growth and 
body weight. Cachectic C26 tumor-bearing mice were considered 
cachectic when they had lost 10–15% of body weight. Mice were killed 
following deep anesthesia with a mix of ketamine/xylazine, followed 
by intracardiac perfusion with heparinized PBS (10 U ml−1 heparin) and 
by a perfusion with 4% paraformaldehyde (PFA). Tissues and organs 
were dissected, weighed and post-fixed at 4 °C overnight. Animal 
experimentation was performed in accordance with European Union 
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directives and the German Animal Welfare Act (Tierschutzgesetz) and 
approved by the state ethics committee and the Government of Upper 
Bavaria (ROB-55.2-2532.Vet_02-18-93).

The 6–8-week-old CX3CR1GFP/+ (B6.129P-Cx3cr1tm1Litt/J) mice 
were purchased from The Jackson Laboratory (strain code 005582). 
They were deeply anesthetized using a combination of midazolam, 
medetomidine and fentanyl, intracardially perfused with 15 ml 0.01 M 
PBS solution (10 U ml−1 heparin) and 15 ml 4% PFA solution. The brain 
was dissected, post-fixed in 4% PFA for 6 h, then proceeded for staining 
and clearing following the SHANEL protocol. CX3CR1GFP/+ mice were 
killed for organ withdrawal (Tötung zu Wissenschaftlichen Zwecken/
Organentnahme) in accordance with the German law for animal experi-
ments (Tierschutzgesetz), paragraph 4, section 3.

Statistical analysis
Results from biological replicates were expressed as mean ± s.e.m. 
Statistical analysis was performed using GraphPad Prism (v.9). Nor-
mality was tested using Shapiro–Wilk normality tests. To compare two 
conditions, unpaired Student’s t-tests or Mann–Whitney U-tests were 
performed. A one-way ANOVA with Sidak’s post hoc test or Kruskal–Wal-
lis tests with Dunn’s multiple comparison test were used to compare 
three groups. For the c-Fos+ density comparison between areas, we used 
two-sided t-tests followed by Benjamini–Hochberg multiple-testing 
correction with a false discovery rate (FWER) of 0.1, as implemented 
in SciPy statsmodels.stats.multitest.multipletests module (https://
www.statsmodels.org/dev/generated/statsmodels.stats.multitest.
multipletests.html).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available from the 
corresponding author. We provide the numerical source files of all 
figures in the supplementary material. Our training and test data as 
well as the trained network is available in GitHub at https://github.com/
erturklab/delivr_cfos (ref. 60) and https://github.com/erturklab/delivr_
train (ref. 61). A subset of representative whole-brain scans is available 
at the EBI Bioimage Repository (accession code S-BIAD1019). Due to 
limitations to share large imaging data online, additional whole-brain 
scans (n = 27 whole brains, ~2 TB data) will be made available upon rea-
sonable request. The Allen Brain Atlas (CCF3) was downloaded from the 
Scalable Brain Atlas repository at https://scalablebrainatlas.incf.org/
mouse/ABA_v3. Source data are provided with this paper.

Code availability
All code to run our pipeline end-to-end is available in GitHub at https://
github.com/erturklab/delivr_cfos (ref. 60). Training code is available 
in GitHub at https://github.com/erturklab/delivr_train (ref. 61). Docker 
containers and the plugin can be obtained from https://discotechnolo-
gies.org/DELiVR. The code is released under the MIT license.
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Extended Data Fig. 1 | VR Segmentation in syGlass and 2D-slice-based 
segmentation using ITK-SNAP. a, Volume of raw data (c-Fos labeled brain) that 
was generated by light-sheet microscopy and loaded into syGlass. Volume size 
represents 2003 voxel, rendered isotropically. b-d, Using VR, individual cells were 

segmented in syGlass by using three-dimensional euclidean shapes as ROI and 
adjusting a threshold until the segmentation was acceptable. Scale bar indicates 
5 µm. e, ITK-SNAP view of a single plane of the image stack. Cells were labeled in 
2D, slice by slice. Segmentations are color coded by cell ID.
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Extended Data Fig. 2 | DELiVR pre-processing automatically removes 
artefacts. a-c, Horizontal view of an original image slice (a), the proposed  
mask (b) and the masked image slice generated (c). Scale bar = 1 mm. d, 
Architecture of the c-Fos deep-learning network; a MONAI 3D BasicUNet.  

e, Quantitative comparison (instance precision and sensitivity) of segmentation 
performance between deep-learning architectures and DELiVR’s 3D BasicUNet.  
f, Segmentation performance of non-deep-learning methods and DELiVR (Scores 
for DELiVR are the same as used in e).
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Extended Data Fig. 3 | Whole-brain segmentation output generated with 
DELiVR. a, 3D visualization of a whole raw light-sheet image stack. b, 3D view 
of whole-brain segmentation output of detected cells by DELiVR. The area-wise 
color code from the Allen Brain Atlas was combined with the 3D segmentation. 

Thereby each cell is color coded according to the brain area it was detected 
in. The segmentation of cells is shown in the original image space. Scale bar 
= 500 µm. c, Visualization of the detected cells in CCF3 atlas space using 
BrainRender (same image as in Fig. 2e). Scale bar = 1 mm.
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Extended Data Fig. 4 | Tissue weights of mice with weight-stable cancer (NC26) 
and cancer-associated weight loss (C26). a, Gastrocnemius (GC) muscle weight. 
n(PBS) = 12, n(NC26) = 8, n(C26) = 12, ****p < 0.0001,***p = 0.0004, One-way 
ANOVA with Sidak post hoc analysis. b, Epididymal white adipose tissue (eWAT) 
weight. n(PBS) = 12, n(NC26) = 8, n(C26) = 12, **p(PBS vs C26) = 0.0040,**p(NC26 

vs C26) = 0.0015, Kruskal-Wallis test with Dunn´s multiple comparison test. 
c, Subcutaneous WAT (scWAT) weight. ***p = 0.0003, **p = 0.0019, Kruskal-
Wallis test with Dunn´s multiple comparison test. d, Brain weight. n(PBS) = 12, 
n(NC26) = 7, n(C26) = 12, *p = 0.0479, One-way ANOVA with Sidak post hoc 
analysis. All data are presented as mean values +/− SEM.
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