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Deep generative modeling of transcriptional 
dynamics for RNA velocity analysis in  
single cells

Adam Gayoso    1,10, Philipp Weiler    2,3,10, Mohammad Lotfollahi    2,4, 
Dominik Klein2,3, Justin Hong    1,9, Aaron Streets    1,5,6, Fabian J. Theis    2,3,7    
& Nir Yosef    1,8 

RNA velocity has been rapidly adopted to guide interpretation of 
transcriptional dynamics in snapshot single-cell data; however, current 
approaches for estimating RNA velocity lack effective strategies for 
quantifying uncertainty and determining the overall applicability to the 
system of interest. Here, we present veloVI (velocity variational inference), 
a deep generative modeling framework for estimating RNA velocity. 
veloVI learns a gene-specific dynamical model of RNA metabolism and 
provides a transcriptome-wide quantification of velocity uncertainty. We 
show that veloVI compares favorably to previous approaches with respect 
to goodness of fit, consistency across transcriptionally similar cells and 
stability across preprocessing pipelines for quantifying RNA abundance. 
Further, we demonstrate that veloVI’s posterior velocity uncertainty 
can be used to assess whether velocity analysis is appropriate for a given 
dataset. Finally, we highlight veloVI as a flexible framework for modeling 
transcriptional dynamics by adapting the underlying dynamical model to 
use time-dependent transcription rates.

Advances in single-cell RNA sequencing (scRNA-seq) technologies 
have facilitated the high-resolution dissection of the mechanisms 
underlying cellular differentiation and other temporal processes1–3. 
Although scRNA-seq is a destructive assay, a widely used set of com-
putational approaches leverage the asynchronous nature of dynami-
cal biological processes to order cells along a so-called pseudotime  
in the task of trajectory inference4–7. Traditional methods for tra-
jectory inference typically require the initial state of the underly-
ing biological process to be known and use manifold learning to 
determine a metric space in which distances capture changes in 
differentiation state.

Recently, RNA velocity has emerged as a bottom-up, mechanis-
tic approach for the trajectory inference task. RNA velocity, which 
describes the change of spliced messenger RNA (mRNA) over time, 
makes use of concomitant detection of unspliced and spliced RNA 
transcripts with standard scRNA-seq protocols8. Upon estimation, 
RNA velocity is typically incorporated into analyses in two ways: (1) 
inferring a cell-specific differentiation pseudotime or (2) constructing 
a transition matrix inducing a Markov chain over the data to determine 
initial, transient and terminal subpopulations of cells9.

There are currently two popular methods for estimating RNA 
velocity. The first, referred to as the steady-state model, assumes (1) 
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Results
Variational inference for estimating RNA velocity
VeloVI posits that the unspliced and spliced abundances of RNA for 
each gene in a cell are generated as a function of kinetic parameters 
(transcription, splicing and degradation rates), a latent time and a 
latent transcriptional state (induction state, repression state and their 
respective steady states). Additionally, veloVI posits that each gene’s 
latent times (per cell) are tied via a low-dimensional latent variable 
that we call the cell representation. These representations capture 
the notion that the observed state of a cell is a composition of multiple 
concomitant processes that together span the phenotypic manifold1. 
This modeling choice is justified by the observation that with the EM 
model, which is fit independently per gene, the inferred latent time 
matrix (of shape cells by genes) has a low-rank structure (but notably, 
not rank one; Extended Data Fig. 1).

The complete architecture of veloVI manifests as a variational 
autoencoder26. The encoder neural networks take the unspliced and 
spliced abundances of a cell as input and output the posterior param-
eters for the cell representation and latent transcriptional state vari-
ables. The gene-wise, state-specific, latent time is parametrized by a 
neural network that takes a sample of the cell representation as input. 
The likelihood of cellular unspliced and spliced abundances is then a 
function of the latent time, the kinetic rate parameters and the state 
assignment probabilities (Fig. 1a and Methods). The model’s param-
eters are optimized simultaneously using standard gradient-based 
procedures. After optimization, the cell-gene-specific velocity is com-
puted as a function of the degradation rate, the splicing rate and the 
fitted unspliced and spliced abundances, which directly incorporate 
the posterior distributions over time and transcriptional state.

As a Bayesian deep generative model, veloVI can output a posterior 
distribution over velocities at the cell-gene level. This distribution can 
be used to quantify an intrinsic uncertainty over the first-order direc-
tions that a cell can take in the gene space. In downstream analyses, 
velocity is often used to construct a cell–cell transition matrix that 
reweights the edges of a nearest-neighbors graph according to the simi-
larity of the first-order displacement of a cell and its neighborhood8,11. 
By piping posterior velocity samples through this computation, we 
also quantify an extrinsic uncertainty, which reflects both the intrin-
sic uncertainty and the variability among the cell’s neighbors in gene 
space (Fig. 1b and Methods). In contrast, the EM model and steady-state 
model do not carry any explicit notion of uncertainty. Indeed, both 
previous models only allow evaluating an uncertainty post-hoc based 
on quantifying velocity variation over a cell’s neighbors9. Finally, a 
point estimate of the velocity averaged over samples for a cell allows 
veloVI’s output to be used directly in scVelo’s downstream visualiza-
tion and graph construction functionalities as well as other packages 
building upon scVelo9,27.

veloVI improves data fit over the EM model and is stable
We performed a multifaceted analysis to evaluate veloVI’s ability to 
robustly fit transcriptional dynamics across a range of simulated and 
real datasets, comparing to both the EM model and the steady-state 
formulation of RNA velocity as implemented in the scVelo package11.

We first assessed each model’s ability to recover kinetic parameters 
in simulated data (Methods). With an increasing number of observa-
tions, veloVI outperformed the EM model and was better than the 
steady-state model in recovering the simulated ratio of degradation 
and splicing rate for each gene (Supplementary Fig. 1a). Similarly, 
veloVI’s inferred latent time and velocity correlated significantly bet-
ter (two-sided Welch’s t-test, P < 0.001) with ground truth compared 
to EM estimates when simulating data with parameters previously 
estimated on real data (Methods and Fig. 2a). It is notable that these 
simulations reflect an idealized scenario as cells are simulated via the 
EM model generative process, which assumes gene-wise independ-
ence, induction followed by repression states and a single lineage 

constant rates of transcription and degradation of RNA; (2) a single, 
global splicing rate8,10; (3) that the cellular dynamics reached an  
equilibrium in the induction phase and do not include basal tran-
scription; and (4) gene-wise independence. The second method, 
referred to as the EM model, was previously described and imple-
mented in the scVelo package11. The EM model relaxes the assump-
tion of the system having reached a steady-state, infers the full set of 
transcriptional parameters and estimates a latent time per cell, per 
gene by formulating the problem in an expectation-maximization 
(EM) framework.

While these approaches for estimating RNA velocity have been 
successfully used to interpret single-cell dynamics12,13, they also suf-
fer from limitations derived from their modeling assumptions and 
downstream usage14–17. For example, both methods lack a global notion 
of uncertainty. Thus, assessing the robustness of the RNA velocity 
estimate, or deciding to what extent velocity analysis is appropriate 
for a given dataset can be difficult. Although the EM model can be used 
to rank putative ‘driving’ genes by their likelihood, there is no direct 
connection between gene likelihood, visualization and correctness. 
For example, in the case of dentate gyrus neurogenesis, visualization 
of RNA velocity suggests that granule mature cells develop into their 
immature counterparts even though a selection of high likelihood 
genes suggests the reverse (correct) dynamics11.

Estimation of RNA velocity with current approaches is also tightly 
coupled to the parameterization of the differential equations underly-
ing transcription. Assumptions such as constant transcription, splicing 
and degradation rates may be too simple to explain dynamics that 
arise in multi-lineage14 or even single-lineage18 cell differentiation. 
The methods outlined to estimate RNA velocity lack extensibility and 
flexibility to adapt to more complicated, real-world scenarios. Emerg-
ing technologies such as VASA-seq19, which have greater sensitivity 
for unspliced RNA detection, may provide sufficient signal to fit more 
complex models.

To address these issues, we present veloVI (velocity variational 
inference), a deep generative model for estimating RNA velocity. 
VeloVI reformulates the inference of RNA velocity via a model that 
shares information between all cells and genes, while learning the 
same quantities, namely kinetic parameters and latent time, as in the 
EM model. This reformulation leverages advances in deep generative 
modeling20, which have become integral to many single-cell omics 
analytical tasks such as multimodal data integration21,22, perturba-
tion modeling23,24 and data correction25. As its output, veloVI returns 
an empirical posterior distribution of RNA velocity (matrix of cells by 
genes by posterior samples), which can be incorporated into the down-
stream analysis of the results. Here, we show that veloVI represents a 
substantial improvement over the EM model in terms of fit to the data. 
Additionally, it provides a layer of interpretation and model criticism 
lacking from previous methods while also greatly improving flexibility 
for model extensions.

We use veloVI to enhance analyses of velocity at the level of cells, 
genes and whole datasets. At the level of a cell, veloVI illuminates cell 
states that have directionality estimated with high uncertainty, which 
adds a notion of confidence to the velocity stream and highlights 
regions of the phenotypic manifold that warrant further investigation 
and more careful interpretation. We couple this analysis with a metric 
called velocity coherence that explains the extent to which a gene 
agrees/disagrees with the inferred directionality. At the level of genes 
and datasets, we propose a permutation-based technique using veloVI 
that can identify partially observed dynamics or systems in steady 
states. This can be used to determine the extent to which RNA velocity 
analysis is suitable for a particular dataset.

Finally, veloVI is an extensible framework to fit more sophisticated 
transcriptional models. We highlight this flexibility by extending the 
current transcriptional model with a time-dependent transcription 
rate and show how this extension can improve the model fit.
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(Methods). Nonetheless, veloVI outperforms the EM model even in 
these EM-favorable conditions. We also benchmarked the runtime of 
veloVI and EM model. For this comparison, we ran both models on sub-
samples of a mouse retina dataset28 containing approximately 114,000 
cells. Across multiple subsamples, inference was substantially faster 
using veloVI compared to the EM model (Supplementary Fig. 1b). Spe-
cifically, considering 20,000 cells, veloVI achieved a fivefold speed-up.

To further validate the accuracy of veloVI, we compared veloVI and 
the EM model on cell-cycle datasets of fluorescent ubiquitination-based 
cell-cycle indicator (FUCCI) RPE1 and U2OS cells13,29 as it offers orthogo-
nal validation of directionality/time via a protein-derived cell-cycle 
score (Fig. 2b). To assess model performance, we first compared the 
local consistency of the velocity vector fields generated by each model. 
This consistency measure quantifies the extent to which the velocities 
of cells with similar transcriptomic profiles (nearest neighbors) agree 
and relies on the assumption that velocities change smoothly over the 
phenotypic manifold. Compared to the EM model, veloVI achieves a 
higher velocity consistency (Fig. 2c). We also tested whether the direc-
tion of the velocity at the gene level aligns with a ground truth heuristic 
based on the cell cycle (Methods). As before, veloVI yielded consistent 
results and outperformed the EM model (RPE1 (resp. U2OS), 66% (resp. 
68%) genes have higher velocity sign accuracy under veloVI; Fig. 2d) 
significantly (one-sided Welch’s t-test, P < 0.001). As a complementary 
validation of these findings, we confirmed that the velocities of indi-
vidual genes inferred by veloVI change more smoothly (are less noisy) 
with respect to the ground truth ‘time’ compared to the EM model (RPE1 
(resp. U2OS), 78% (resp. 65%) genes have higher R2 under veloVI) (Fig. 2e,  
Supplementary Fig. 2 and Methods).

We then evaluated the stability of velocity estimates on real 
datasets processed with 12 different RNA abundance quantification 
algorithms8,28,30–33, based on previous work that highlighted general 
inconsistencies in velocity estimation34 (Methods). To do so, we meas-
ured the correlation of velocity of each cell between pairs of quan-
tification flavors on five benchmarking examples, namely pancreas 
endocrinogenesis at embryonic day 15.5 (ref. 35) as well as datasets of 
spermatogenesis36, mouse developing dentate gyrus37, the prefrontal 
cortex of a mouse38 and 21–22-month-old mouse brains39. When aggre-
gating these correlations for each pair of quantification algorithms, 
veloVI scored both a higher mean correlation and lower variance com-
pared to the EM model. Compared to the much simpler steady-state 

model, veloVI tended to have a similar mean correlation, but with lower 
variance (Fig. 3a, Extended Data Fig. 2 and Supplementary Figs. 3–7).

To assess how well the inferred dynamics reflect the observed data, 
we computed the mean squared error (MSE) of the fit for the unspliced 
and spliced abundances and compared the MSE to that of the EM model 
on a selection of datasets (Supplementary Table 1). For each dataset, 
we computed the ratio of the MSE for veloVI and the EM model at the 
level of a gene. VeloVI had better performance for a majority of the 
genes in each dataset (Fig. 3b). Additionally, across all datasets, veloVI 
had higher velocity consistency among cells (Fig. 3b). We attribute this 
increase to the explicit low-dimensional modeling in veloVI that shares 
statistical strength across all cells and genes.

Despite sharing many model assumptions, the velocities estimated 
for a gene with veloVI were partially correlated on average with their EM 
counterpart (Fig. 3b). To highlight the differences in velocity estimation 
at the level of individual genes, we examined Sulf2, a marker of endo-
crine progenitor cells and Top2a, a cell-cycle marker, in the pancreas 
dataset (Fig. 3c). For both of these genes, the EM model predicted a 
wide range of velocities for cells that had near-zero unspliced and 
spliced abundances. For example, terminal beta cells had substantially 
positive velocity under the EM model for Sulf2 despite being located 
at the bottom-left of the phase portrait (defined as the scatter-plot of 
unspliced versus spliced abundance of a gene) and with known develop-
ment occurring later than endocrine progenitors and pre-endocrine 
cells. In the case of veloVI, beta cells had nearly zero velocity, reflecting 
their belonging to the putative repression steady state for this gene. 
We attribute this result to veloVI’s velocity directly marginalizing over 
the latent cell representations, which explicitly incorporates the prob-
ability that a cell belongs to induction, repression, or their respective 
steady states (Methods). We observed similar results for Top2a, in 
which cell types without a strong cell-cycle signature and near-zero 
unspliced/spliced abundance had positive velocity in the EM model, 
but near-zero velocity using veloVI.

veloVI enables interpretable velocity analysis
We then investigated how the uncertainty in the velocity estimates of 
veloVI could be used to scrutinize its output, both at the level of cells 
(which might be incorrectly modeled) and at the level of individual 
genes (which might be inconsistent with the aggregated, cell-level 
output). We used this uncertainty to (1) measure the variability in the 
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optimized end-to-end using stochastic variational inference techniques.  
b, The variational inference formulation quantifies the intrinsic uncertainty of 
a velocity estimate by sampling from the posterior distribution and measuring 
variability around the mean velocity vector. This notion is contrasted by its 
extrinsic counterpart, which quantifies variation of velocity extrapolated cell 
states within a cell’s neighborhood defined by transcriptomic similarity. KNN, 
k-nearest neighbor.
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Fig. 2 | Benchmarking of velocity and latent time recovery. a, Accuracy of VI 
and EM models on recovering ground truth latent time and velocity. For each 
quantity, we provide results in the form of box plots (n = 1,074 genes) and scatter 
plots (VI model y axis, EM model x axis). Rate parameters were estimated by each 
model on the pancreas dataset. Following this, a subset of these parameters 
was used to simulate new data, which each model was fitted to. In these plots, 
each point corresponds to a gene, where the value is the correlation between 
the estimated time/velocity versus the ground truth. The color coding in the 
scatter plots indicates whether the simulated rate parameters were derived 
from the original EM or VI model fit. Box plots indicate the median (center line), 
interquartile range (hinges) and whiskers at 1.5× interquartile range. b, UMAP 
colored with FUCCI-derived cell-cycle score for the RPE1- (top) and U2OS-FUCCI 

cells (bottom). c, Comparison of the velocity consistency from veloVI (blue) 
and the EM model (orange). The cell-wise velocity consistency in case of RPE1-
FUCCI cells is shown on top, their U2OS counterparts on the bottom (n = 2,793 
cells, top; n = 1,146 cells, bottom). Box plots indicate the median (center line) 
and interquartile range (hinges). d, Comparison of veloVI’s and the EM model’s 
estimated velocities. The violin plots show the log-transformed ratio of each 
method’s velocity sign accuracy, which were computed per gene. Box plots 
indicate the median (center line) and interquartile range (hinges) (n = 140 genes, 
top; n = 395 genes, bottom). Significance was assessed with a one-sided Welch’s 
t-test (P < 0.001). e, Spliced abundance of PIF1 versus cell cycle score for each cell 
in the U2OS-FUCCI dataset (left). Estimated velocity in PIF1 using the VI (middle) 
and EM model (right) plotted against the cell-cycle score.
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phenotypic directionality suggested by the velocity vector in each cell 
(here, intrinsic uncertainty) and (2) quantify the variability of predicted 
future cell states under the velocity-induced cell–cell transition matrix 
(here, extrinsic uncertainty; Fig. 1b and Methods).

We applied these uncertainty metrics to the pancreas dataset  
(Fig. 4a). We observed that the intrinsic uncertainty was elevated in 
ductal and Ngn3-low endocrine progenitor populations, while the 
extrinsic uncertainty highlighted these same populations in addition 
to terminal alpha and beta cells. These results demonstrate that lower 
intrinsic uncertainty does not necessarily preclude higher extrinsic 
uncertainty. While the former relies on estimating the velocity vector 
(which is cell-intrinsic), most velocity pipelines also account for other 
cells in the dataset, which presumably represent the potential past and 
future states of the cell, to determine cell transitions (Fig. 1b). In the case 
of alpha and beta cells, these cells represent terminal populations in the 
pancreas dataset, which may explain the high extrinsic uncertainty as 
there are no observed successor states. Conversely, in the case of tran-
sient cell populations, such as Ngn3-high endocrine progenitors and 
pre-endocrine cells, both metrics assign a low uncertainty. We attribute 
the low intrinsic uncertainty of these cells to the fact that their dynam-
ics agree well with the underlying model assumptions (Extended Data  
Fig. 3). The addition of low extrinsic uncertainty further suggests that 
these cell types have clear successor populations in this dataset (Fig. 4a).

To further understand what aspects of the data these uncertainty 
metrics capture, we (in silico) perturbed the pancreas dataset by either 
(1) downsampling the total counts of each cell to mimic changes in 
sequencing depth and capture efficiency; (2) subsampling unspliced 
counts for a subset of genes to mimic the biased capture of unspliced 
molecules; or (3) adding random multiplicative noise to each abun-
dance value (Methods). We applied each perturbation at various 
strengths and found that for each perturbation source, the intrinsic 

uncertainty increased with the perturbation strength. We found a 
similar response for the extrinsic uncertainty except in the case of 
total count downsampling, which required a high strength to shift the 
extrinsic uncertainty (Extended Data Fig. 4). These results suggest that 
the uncertainty metrics can capture random noise in the data, as well 
as bias in how the transcripts are measured.

Finally, we asked whether we could use veloVI’s uncertainty 
to address the common behavior of unexpected ‘backflow’ in 
two-dimensional velocity visualizations; when projecting the average 
veloVI velocity onto a Uniform Manifold Approximation and Projec-
tion (UMAP)40 plot (using procedures from elsewhere11), we observed 
an incorrect ‘backflow’ of directionality in alpha and beta cells, which 
showed transitions toward their known progenitors. While these ter-
minal populations have high extrinsic uncertainty according to veloVI, 
it remains difficult to explain which genes cause the inconsistency. In 
the case of scVelo, it has been proposed to use the likelihood of a gene 
as a proxy; however, the likelihood has no direct connection to cell–cell 
transition-based analyses.

To this end, we sought to score genes in each cell according to 
how well their velocity agrees with the predicted future cell state that 
is derived via the velocity-induced transition matrix (incorporat-
ing velocity information from all genes as well as gene expression in 
neighboring cells; Methods). We reasoned that this score, which we 
call velocity coherence, could help gain insight into why a particular 
directionality might manifest. A positive score of a gene indicates the 
velocity value of that gene (the time derivative of its spliced mRNA) 
agrees with its expression in the inferred future cell state (same direc-
tion) and likewise, a negative score indicates disagreement (Fig. 4b 
and Extended Data Fig. 5a).

In the alpha cells, for example, there are both positively and nega-
tively scoring genes. Genes with a negative score, such as Gcg and 
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Sphkap, were fit correctly by veloVI (alpha cells after pre-endocrine 
cells in time along the inferred trajectory on the phase portrait), but dis-
agree with the predicted future cell state, suggesting that other genes 
are outweighing these genes in the transition matrix computation 
(Extended Data Fig. 5b). Indeed, genes such as Rnf130, Etv1 and Grb10, 
which had a positive score that agrees with the backflow, seemed to 
have been fit incorrectly (alpha cells precede pre-endocrine cells along 
the inferred trajectory on the phase portrait) (Extended Data Fig. 5c).  
The incorrect fits can putatively be explained by violated model 
assumptions such as a transcriptional burst in alpha cells (Rnf130), 
ambiguous phase portraits (Etv1) and multi-kinetics (Grb10).

Conversely, the dynamics in Ngn3-high cells are correctly visual-
ized in the UMAP representation (Fig. 4a). We attribute this result to the 
presence of many genes agreeing with both the model assumptions and 
the predicted future state of a cell (Extended Data Fig. 5d). Compared to 
the 95% percentile of the coherence score in alpha cells, more than twice 
as many genes ranked above this threshold in the Ngn3-high cluster (135 
versus 54); however, even in this case, we found that many genes were 
fit with incorrect dynamics for this cell type (Extended Data Fig. 5e).

Taken together, these results suggest that the visualization of 
dynamics on a two-dimensional embedding with previously described 
procedures is explained by small subsets of genes. Thus, caution is 

warranted when analyzing projections of velocity estimates onto a 
two-dimensional embedding of the data. We urge users to investigate 
the dynamics at the level of individual genes to identify which genes 
meet the model assumptions. Putative candidates are given by our 
proposed velocity coherence score. Additionally, to identify genes 
viable for RNA velocity analysis due to the presence of transient cell 
populations, we propose a score outlined next.

veloVI identifies insufficiently observed or steady-state 
dynamics
In datasets with non-differentiating, hierarchically-related cell types, 
spurious cell state transitions may manifest when applying RNA veloc-
ity14,15. Indeed, the underlying transcriptional likelihood model cannot 
readily distinguish between the case of a transient population and that 
of multiple steady-state populations. Therefore, we devised a proce-
dure to use a trained veloVI model to identify genes with phase portraits 
that are consistent with a developmental process versus ones that are 
consistent with steady-state dynamics or are confounded by noise.

We reasoned that the model fit of genes showing only steady-state 
dynamics would be robust to a permutation of the data while the model 
fit of genes with transient populations would worsen. Specifically for 
every gene, cell type and species (spliced/unspliced) independently, 
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Fig. 4 | Velocity uncertainty and permutation score analysis. a, From left to 
right: velocity stream, intrinsic and extrinsic uncertainty of the pancreas dataset 
estimated by veloVI. The left UMAP embedding is colored by cell type according 
to original cluster annotations11,35. Uncertainty is defined as the variance of the 
cosine similarity between samples of the velocity vector (intrinsic) and future 
cell states (extrinsic) and their respective mean (Methods). b, The corresponding 
cumulative distribution functions (CDFs) of the gene velocity coherence score 
is shown for alpha and Ngn3-high EP cells. The velocity coherence, defined for 

one cell and gene as the product of the velocity and the expected displacement 
of that cell/gene, is averaged within cell types. w.r.t., with regard to. c, The effect 
on the error between inferred dynamics and data when permuting unspliced 
and spliced abundance in the case of Top2a (top) and Sst (bottom). Coloring 
of cell types is according to a. d, Permutation score densities of datasets of the 
pancreas35, hippocampus8, forebrain8, spermatogenesis36, retina43, brain39, 
prefrontal cortex38, PBMCs and simulated data15 (top). Kurtosis (left) and skew 
(right) for each dataset (bottom).
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we permuted the abundances of cells in a manner equivalent to shuf-
fling cell barcodes. Subsequently, we passed this perturbed dataset 
through the veloVI model’s trained encoder and decoder and recorded 
the absolute error of the fit grouped by genes and cell types. We then 
used the t-test statistic to compare the mean absolute error in each 
cell-type-gene group between the perturbed and original dataset 
(Extended Data Fig. 6 and Methods). We hypothesized that the t-test 
statistic, capturing the effect of the permutation, would be elevated in 
transient populations with strong time dependence and, conversely, 
near-zero in steady-state populations.

In the pancreas dataset, the permutation strongly affects the 
ductal and Ngn3 low EP cells for the cell-cycle gene Top2a. Indeed, 
these cell types trace fully-observed induction and repression states for 
Top2a. In the case of the delta-specific gene Sst, where no such transient 
connection is observed, for example from ductal to pre-endocrine 
to delta cells, no single cell type is strongly affected when permuting 
(Fig. 4c). Consequently, even though Sst is essential for the identity of 
delta cells, the gene does not display continuous dynamics from ductal 
progenitor cells and, thus, does not include the necessary information 
to be analyzed with RNA velocity.

We then applied this procedure to a variety of datasets. In one set 
of tests, we used datasets describing cellular development. These data-
sets serve as partial positive controls as we expect directed dynamical 
processes, as modeled by RNA velocity, to take place in at least a subset 
of cells in the dataset. As negative controls, we used simulated data of 
bursty kinetics15 with no overall differentiation of cell state and datasets 
containing multiple cell types that are in steady-state. To summarize 
the permutation for a gene, we used the maximum permutation effect 
t-test statistic across cell types (permutation score). Two clusters of 
datasets emerged when characterizing the per-gene permutation 
score distribution (Fig. 4d). One cluster, with a fatter right tail (quan-
tified by skewness and kurtosis), contained positive control datasets 
such as the pancreas and spermatogenesis. Despite having relatively 
many genes sensitive to permutation, the datasets of this cluster also 
contained many genes that were not sensitive, suggesting that there 
are likely many non-dynamical genes used for downstream analysis 
with RNA velocity. The other cluster, with less density in the right tail, 
contained negative controls such as the peripheral blood mononuclear 
cells (PBMCs), null-data simulation and the prefrontal cortex.

Between these two clusters of datasets, we also found a few 
ambiguous datasets, such as the mouse retina (positive control) and 
brain (negative control), which suggests that there exist some cell 
subsets within these datasets that are affected by the permutation and 
hence, possibly reflect a directed dynamical process that is appropri-
ate for modeling with RNA velocity; however, upon closer inspection 
of the brain dataset, we identified mature neurons as responsible for 
skewing the permutation score density (Extended Data Fig. 7a). The 
cluster of mature neurons was singled out as it attributes for about 
one-third of the highest permutation scores (Extended Data Fig. 7b). 
For the genes with the highest permutation score, these neuronal cells 
exhibit a bimodal distribution in which one mode has low unspliced and 
spliced abundance while the other has respectively higher abundances 
(Extended Data Fig. 7c). Thus, we attribute this skewing to coarse 
labeling of this population (Extended Data Fig. 7d). When excluding 
mature neurons from this analysis, the distribution shifted and its 
key characteristics moved toward the cluster formed by the negative 
control cases (Extended Data Fig. 7e).

In the accompanying code to this manuscript, we provide these 
permutation score densities as a resource for users of RNA velocity, 
which will enable the datasets we analyzed here to serve as references 
for the score distribution and thus as a systematic approach to meas-
ure the overall transient dynamics of a dataset. For example, datasets 
exhibiting similar permutation score distributions as the given nega-
tive control cases (for example, via kurtosis or skew) are not suitable 
for RNA velocity analysis with current models.

In Supplementary Notes 1 and 2, we provide case studies outlin-
ing how veloVI can be used in practice on PBMCs (negative control) 
and mouse developing dentate gyrus (partial positive control). These 
demonstrations synthesize veloVI’s uncertainty quantification and 
permutation procedure along with the velocity coherence. When 
applying the permutation procedure, we were able to provide further 
evidence for the lack of transient populations in the case of PBMCs 
(Supplementary Note 1), as well as identify transient populations of 
neuroblasts and granule immature cells for many genes in dentate 
gyrus (Supplementary Note 2). Taken together, these results dem-
onstrate that the permutation score is also useful for identifying cell 
populations that lack detectable transient dynamics.

veloVI is an extensible framework for dynamical modeling
The transcriptional model assumptions at the level of one gene (for 
example, constant rates that impose a specific structure of phase por-
traits) can be shown to be violated in many cases. For example, in the 
case of transcriptional bursts in which the transcription rate increases 
with time18 or multiple kinetics within a single gene14, the assumption 
of constant kinetic rates is violated. Thus, there remains a need for 
modeling frameworks that are extensible and support varied and more 
nuanced dynamical assumptions. While veloVI makes many of the same 
assumptions as in the EM model, it leverages black-box computational 
and statistical techniques that allow its generative model to be altered 
to include new assumptions without needing to extensively rewrite 
inference recipes or generally sacrifice scalability.

To explore veloVI as a general modeling framework, we adapted it 
to use gene-specific, time-dependent transcription rates. Under this 
extension, transcription rates are free to monotonically increase or 
decrease with respect to time14, thus allowing for modeling the acceler-
ation of RNA abundance, which can impact the curvature of the model 
fit (Methods and Fig. 5a). To infer these additional parameters, only 
the likelihood function of veloVI needed to be adapted. Applying this 
modified version of veloVI to the pancreas, dentate gyrus and forebrain 
datasets, we observed improved fit for the majority of genes (Fig. 5b). 
In the case of the pancreas dataset, the added flexibility allowed veloVI 
to better fit genes that seem more linear in their phase portraits, for 
example, as it can reduce the curvature of the fitted dynamics (Fig. 5c).

In the case of Smarca1, the model using a constant transcription 
rate inferred a downregulation (repression) of alpha cells differentiat-
ing into their progenitor populations of pre-endocrine cell and ductal 
cells (Fig. 5c). Contrastingly, using a time-dependent transcription rate, 
the upregulation of ductal to pre-endocrine to alpha cells is inferred 
by the generalized model. Similar observations apply to Atad2 and 
Cdkn1a. While the constant transcription rate model inferred the cor-
rect regulation type for Ppp1r1a, its generalized counterpart captures 
the underlying dynamics more accurately (Fig. 5c). Overall, for most 
genes, we observed a decreasing transcription rate over time (Sup-
plementary Fig. 8).

Altogether, this exemplary model extension demonstrates the 
flexibility of veloVI’s modeling approach. The flexibility allows us to 
quickly prototype extensions and infer additional parameters within 
a single, consistent framework. We, thus, expect future models to 
benefit from such flexibility.

Discussion
Here, we reformulated the estimation of RNA velocity in a variational 
inference framework with veloVI. Our method compares favorably 
to previously proposed methods8,11 and adds actionable metrics into 
downstream data analyses at the cell level via uncertainty quantifica-
tion and at the level of a gene and dataset with the permutation score. 
We believe that veloVI will facilitate more systematic analyses with 
RNA velocity and help reduce the strong reliance on prior knowledge 
to guide whether results are sensible. As an example, our permuta-
tion score could be used to filter genes that are considered for further 
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analysis. We also note that related work has very recently incorporated 
deep learning with RNA velocity and we review these methods and 
compare them to veloVI in Supplementary Note 3.

We view this formulation of modeling transcriptional dynamics 
with probabilistic models and deep learning as a step toward a more 
rigorous pipeline that faithfully captures the biophysical phenomenon 
of RNA metabolism. In this work, we relied on previously described data 
processing approaches that smooth unspliced/spliced abundances 
across nearest neighbors before velocity estimation. We also borrowed 
many assumptions from the EM model, including, for example, the lack 
of explicit support for multiple diverging lineages that would result in 
genes reflecting a superposition of dynamical signals.

In contrast to previous models, veloVI is built in an extensible 
way using the scvi-tools framework21. As a proof of concept, we dem-
onstrated that veloVI could be easily extended to use time-dependent 
transcription rates, which improved model fit for many genes. We 
anticipate that the veloVI framework will be further adapted to over-
come other computational challenges including estimating velocity 
while accounting for batch effects, using multimodal technologies 
with measurements that span biology’s central dogma41,42 and directly 
modeling the unspliced and spliced RNA counts with count-based 

likelihoods. Furthermore, while veloVI’s estimated velocities are rela-
tive to a given maximum time of the process (similar as for the EM 
model), they are no longer relative with respect to the splicing rate as 
in the steady-state model. In future iterations, we anticipate including 
prior information from metabolic labeling data to estimate absolute 
velocities. We discuss these challenges, other considerations and future 
opportunities in Supplementary Note 4.

A philosophical challenge with RNA velocity relates to the notion 
that models should use bottom-up mechanistic approaches while also 
being general enough to be applied across a variety of biological sys-
tems, each with their own caveats and unique dynamics. In this work, 
we use a low-dimensional representation of a cell’s phenotypic state to 
capture multiple biological processes (for example, differentiation and 
cell cycle). More complex models likely need prior information, such as 
known experimental time points or cell type lineages to solve issues of 
statistical identifiability that arise in these more general modeling sce-
narios; however, incorporating such priors can contradict the usage of 
RNA velocity as a de novo discovery tool for the trajectory inference task. 
Despite all these outlined challenges, we envision that veloVI will facilitate 
applications of RNA velocity via uncertainty-aware analysis as well as 
easier model prototyping, benefiting both users and method developers.
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Methods
veloVI model specification
We begin with the formulation of the ‘dynamical’ model of RNA veloc-
ity as presented by ref. 11. We posit transcriptional states k ∈ {1, 2, 3, 4}, 
where k = 1 indicates induction, k = 2 indicates the induction steady 
state, k = 3 indicates repression and k = 4 indicates the repression  
steady state.

Let αgk be the gene-state-specific reaction rate of transcription. 
Let βg be the gene-specific splicing rate constant and let γg be the 
gene-specific degradation rate constant. Each gene has a switching 
time tsg  when the system switches from induction phase to repression 
phase.

Given the solution to the ordinary differential equations11, the 
unspliced transcript abundance at time tng for cell n and gene g is 
defined as

ū(g)(tng, k) ∶= u0gke
−βg(tng−t0gk) +

αgk

βg
(1 − e−βg(tng−t0gk)) , (1)

where t0gk is the initial time of the system in state k. The spliced transcript 
abundance is defined as

̄s(g)(tng, k) ∶= s0gke
−γgτ + αgk

γg
(1 − e−γg(tng−t

0
gk))

+
αgk−βgu0gk
γg−βg

(e−γg(tng−t
0
gk) − e−βg(tng−t0gk)) .

(2)

Induction state. For the induction state, k = 1, we have u0g1 = 0, s0g1 = 0, 
αg1 > 0 and t0g1 = 0. Thus, the unspliced transcript abundance can then 
be expressed as

ū(g)(tng, k = 1) ∶=
αg1

βg
(1 − e−βgtng ) . (3)

Likewise, the spliced transcript abundance can be simplified to

̄s(g)(tng, k = 1) ∶=
αg1

γg
(1 − e−γgtng ) +

αg1

γg − βg
(e−γgtng − e−βgtng ) . (4)

Induction steady state. For the induction steady state, k = 2, the 
unspliced and spliced transcript abundances are defined as limits of 
the system:

ū(g)(tng, k = 1) ∶= lim
tng→∞

ū(g)(tng, k = 1) =
αg1

βg
(5)

̄s(g)(tng, k = 2) ∶= lim
tng→∞

̄s(g)(tsg, k = 1) =
αg1

γg
. (6)

Repression state. For the repression state, k = 3, we have αg3 = 0 and 
t0g3 = t sg . Thus, the number of unspliced transcripts can then be 
expressed as

ū(g)(tng, k = 3) ∶= u0g3e
−βg(tng−t0g3). (7)

Likewise, the number of spliced transcripts can be simplified to

̄s(g)(tng, k = 3) ∶= s0g3e
−γg(tng−t0g3) −

βgu0g3
γg − βg

(e−γgτ − e−βg(tng−t0g3)) . (8)

The initial conditions, u0g3 and s0g3 are defined by the induction 
model at the switching time tsg, such that

u0g3 = ū(g)(tsg, k = 2) (9)

s0g3 = ̄s(g)(tsg, k = 2). (10)

Repression steady state. For the repression steady state, the limit 
upon which tng → ∞, there is no expression, so we have

ū(g)(tng, k = 4) ∶= 0 (11)

̄s(g)(tng, k = 4) ∶= 0. (12)

Model assumptions. As in ref. 11, this model assumes that for one gene, 
at the initial time of the system, cells are first in induction phase in which 
both spliced and unspliced expression increases. Then cells potentially 
reach a steady state of this induction state. Next at some future time tsg  
the system switches to repression state. Finally, the repression reaches 
a steady state in which there is no expression. Further assumptions are 
necessary to identify the dynamical model parameters44; thus, we 
assume that each gene is on the same time scale (precisely each gene 
has a maximum time of t = 20 as shown previously11).

veloVI generative process
We posit a generative process that takes into account the underly-
ing dynamics of the system. Compared to Bergen et al.11, the model 
here does not treat each gene independently; instead, the latent time 
and states for each (cell and gene) pair are tied together via a local 
low-dimensional latent variable.

For each cell we draw a low-dimensional (d = 10 dimensions 
throughout this manuscript) latent variable

zn ∼ Normal(0, Id) (13)

that summarizes the latent state of each cell. Next, for each gene g in 
cell n we draw the distribution over the state assignments as well as the 
state assignment itself

πng ∼ Dirichlet(0.25,0.25,0.25,0.25) (14)

kng ∼ Categorical(πng) (15)

Here πng is sampled from a Dirichlet distribution, which has the 
support of the probability simplex. In other words, the Dirichlet pro-
vides a distribution over discrete probability distributions. If kng = 1 
(induction), then the time is a function of zn,

ρ(1)ng = [hind(zn)]g (16)

t(1)ng = ρ(1)ng t
s
g (17)

where hind ∶ ℝd → (0, 1)G  is parameterized as a fully connected neural 
network. Notably, this parameterization results in an induction-specific 
time that is constrained to be less than the switching time.

Else, if kng = 3 (repression),

ρ(3)ng = [hrep(zn)]g (18)

t(3)ng = (tmax − t sg)ρ
(3)
ng + t sg (19)

where tmax ∶= 20 is used to fix the time scale across genes and identify 
the rate parameters of the model. Similarly to the previously defined 
function, hrep ∶ ℝd → (0, 1)G and is also a neural network.

We also consider two potential steady states. If kng = 2 (induction 
steady state) or if kng = 4 (repression steady state), we consider the 
limit as time approaches ∞, which is described in the previous section.
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Finally, the observed data are sampled from normal distributions 
as

ung ∼ Normal (ū(g)(t
(kng)
ng , kng), (ckσu

g )
2) (20)

sng ∼ Normal ( ̄s(g)(t(kng)ng , kng), (ckσs
g)
2) (21)

For veloVI, we consider the observed data {(sn,un)}
N
n=1  to be the 

nearest-neighbor smoothed expression data that is also used as input 
to scVelo as well as velocyto. In addition, we assume the data have been 
preprocessed such that for each gene, the smoothed spliced and 
unspliced abundances are independently min-max scaled into [0, 1]. By 
using the normal distribution, we assume that the smoothed expression 
(which represents an average of random variables) has a sampling 
distribution centered on some mean value and that this sampling dis-
tribution is approximately normal; however, the flexibility of this mod-
eling framework will enable extensions that consider the discrete nature 
of unique molecular identifiers used in standard scRNA-seq assays.

We include a state-dependent scaling factor on the variance. For all 
experiments in this manuscript, we used ck = 1 except for the repression 
steady state in which c4 = 0.1. This hyperparameter choice forces the 
variance of abundance in the repression steady state to be less than that 
of other transcriptional states, which reflects the notion that the repres-
sion steady state corresponds to zero transcriptional activity. Despite 
the assumption of zero transcriptional activity, the normal distribu-
tion here captures noise that arises during the experimental process 
(ambient transcripts) as well as during preprocessing (for example, 
KNN smoothing). Finally, in the following, let θ be the set of parameters 
of the generative process (α, β, γ, ts and neural network parameters).

veloVI inference procedure
We seek the following: (1) point estimates of the transcription rate, 
degradation and splicing rate constants and the switching time point; 
(2) point estimates of the parameters of the neural networks; and (3), 
a posterior distribution over the latent variables, which in this case 
includes z and π. Noting that the model evidence pθ(u, s) cannot be 
computed in closed form, we use variational inference45 to approxi-
mate the posterior distribution as well as accomplish the other tasks. 
Following inference, velocity can be calculated as a functional of the 
variational posterior distribution.

Variational posterior. We posit the following factorization on the 
approximate posterior distribution

qϕ(z,π |u, s) ∶=
N

∏
n

qϕ(zn |un, sn)
G

∏
g

qϕ(πng | zn), (22)

in which dependencies are specified using neural networks with param-
eter set ϕ. Here z factorizes over all n cells and πng over all n cells and 
g genes.

For the likelihoods, we integrate over the choice of transcriptional 
state kng, such that the likelihoods for unspliced and spliced transcript 
abundances,

pθ(ung | zn,πn) = ∑
kng∈{1,2,3,4}

πngkngNormal (ū
(g)(t(kng)ng , kng), (ckσu

g )
2) (23)

pθ(sng | zn,πn) = ∑
kng∈{1,2,3,4}

πngkngNormal ( ̄s(g)(t(kng)ng , kng), (ckσs
g)
2) (24)

are mixtures of normal distributions.

Objective. The objective that is minimized during inference is com-
posed of two terms

ℒvelo(θ,ϕ;u, s) = ℒelbo(θ,ϕ;u, s) + λℒswitch(θ;u, s), (25)

where ℒelbo is the negative evidence lower bound45 of logpθ(u, s) and 
ℒswitch is an additional penalty that regularizes the location of the tran-
scriptional switch in the phase portrait. In more detail,

ℒelbo(θ,ϕ;u, s) = ∑
n
−𝔼𝔼qϕ(zn ,πn |un ,sn) [logpθ(un, sn | zn,πn)]

+KL (qϕ(zn |un, sn) ∥ p(z))

+𝔼𝔼qϕ(zn |un ,sn) [∑
g
KL (qϕ(πng | zn) ∥ p(πng))] ,

(26)

which can be estimated using minibatches of data. In particular, we 
use randomly sampled minibatches of 256 cells for inference. For 
the penalty term ℒswitch, we start by only considering cells that are 
above the 99th percentile of unspliced abundance for each gene. 
Using these cells we compute the median unspliced and spliced 
abundance for each gene separately. Let u* and s* be the outcome of 
this procedure, then

ℒswitch(θ;u, s) = ∑
g
(u0g3 − u∗g)

2
+ (s0g3 − s∗g)

2
, (27)

where u0g3 and s0g3 were defined as the initial conditions of the repression 
phase at the switch time tsg.

Initialization. We initialize αg1 to be equal to the median unspliced 
abundance for the cells above the 99th percentile for each gene. The 
other global parameters, including the splicing, degradation and switch 
time are initialized to a constant value shared by all genes. All neural 
network initialization uses the default implementation in PyTorch.

Optimization. To optimize ℒvelo we use stochastic gradients26 along 
with the Adam optimizer with weight decay46 as implemented in 
PyTorch47. For all experiments we use λ = 0.2 for scaling the regulariza-
tion term in the loss. As a result of minibatching, veloVI’s memory usage 
is constant throughout training. Unless otherwise specified, all neural 
networks are fully connected feedforward networks that use standard 
activation functions such as ReLU for hidden layers and softplus or 
exponential for parameterizing non-negative distributional 
parameters.

Architecture. An overview of the veloVI architecture is shown in Sup-
plementary Fig. 9.

Downstream tasks
Fitted abundance values. The fitted values (used, for example, in MSE 
benchmarks) for unspliced and spliced abundance are the posterior 
predictive mean:

𝔼𝔼p(u∗n |un ,sn) [u∗n] , 𝔼𝔼p(s∗n |un ,sn) [s∗n] ,

where u∗n and s∗n are unobserved random variables representing pos-
terior predictive values of unspliced and spliced abundances for cell 
n. The posterior predictive in the case of unspliced abundance is 
defined as

p(u∗n |un, sn) = ∫ pθ(u∗n | zn,πn)qϕ(zn,πn |un, sn)dπndzn, (28)

which uses the variational posterior distribution as a plug-in estimator 
for the true (unknown) posterior distribution.

We compare these fitted abundance values from veloVI to the 
analog of the EM model, which itself can be interpreted as a posterior 
predictive mean. Considering just the unspliced values, for example, 
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the EM model posits a normal likelihood p(ung∣tng, kng) similar to veloVI 
but without the latent cell state zn and learns posterior distributions 
q(tng∣ung, sng) and q(kng∣ung, sng). Under the EM model, the posterior distri-
butions are Dirac delta distributions and the corresponding posterior 
predictive is expressed as

p(u∗ng |ung, sng) = ∫ pθ(u∗ng | tng, kng)qϕ(tng, kng |ung, sng)dkngdtng. (29)

State assignment. The state assignment for each gene and cell is the 
approximate posterior mean

𝔼𝔼qϕ(zn |un ,sn) [𝔼𝔼qϕ(πng |zn)[πng]] .

Gene-wise latent time. The latent time is computed for each gene 
and cell as

𝔼𝔼qϕ(zn |un ,sn) [𝔼𝔼qϕ(πng |zn) [t
(kng)
ng ]] ,

where the outer expectation with respect to qϕ(zn∣un, sn) is estimated 
with Monte Carlo samples, while the inner expectation is computed 
analytically over the transcriptional states kng.

RNA velocity. The velocity of a particular gene in a particular cell is 
similarly a function of the variational posterior. Recall that the veloc-
ity is computed as

v(g)(t(k), k) ∶= d ̄s(g)(t, k)
dt

||||t(k)
= βgū

(g)(t(k), k) − γg ̄s(g)(t(k), k).

Thus, we can compute samples of a posterior predictive velocity dis-
tribution via the following process

	1.	 Sample zn from qϕ(zn∣un, sn).
	2.	 Compute 𝔼𝔼qϕ(πng |zn) [v(g) (t

(kng)
ng , kng)] for each gene.

This provides samples from a distribution over the velocity for 
every gene–cell pair, which we then use in downstream tasks.

Intrinsic uncertainty. Let ̄vn be the posterior predictive velocity mean 
from the procedure above. The intrinsic uncertainty is then computed 
as 𝕍𝕍arqϕ(vn |un ,sn)[c(vn, ̄vn)] where c denotes the cosine similarity. In effect, 
denote by {v(l)n }Ll=1 the set of L velocity vector samples of cell n from the 
variational posterior. Then we have:

σ̂2n =
1

L − 1

L

∑
l=1

( v(l)n ⋅ ̄vn
∥ v(l)n ∥∥ ̄vn ∥

− 1
L

L

∑
j=1

v(j)n ⋅ ̄vn
∥ v(j)n ∥∥ ̄vn ∥

)
2

. (30)

In this manuscript, we use L = 100 samples.

Extrinsic uncertainty. Let T(v1:N, s1:N) be a function that maps the veloc-
ity vectors and spliced abundances of the entire dataset (with n cells) 
to a cell–cell transition matrix computed as described previously11. 
Namely, this function compares the similarity of the displacement δij 
of nearest neighbors si and sj (defined using s1:N) to the velocity of cell 
i, vi, via the cosine similarity

cos(δij, vi) =
δTijvi

∥ δij ∥∥ vi ∥
(31)

as the basis for computing transition probabilities between pairs  
of cells.

Following the construction of T(v1:N, s1:N) for one sample of velocity, 
the predicted future cell state is computed by the matrix multiplica-
tion T(v1:N, s1:N)S, where S is the cells by genes matrix of spliced RNA 

abundances. These predicted future cell state vectors (over samples 
of velocity) then undergo the same variance computation procedure 
as described for the intrinsic uncertainty (namely, variance of the 
cosine similarity).

Time-dependent transcription rate
To highlight veloVI’s extensibility with respect to model choice, we 
consider the time-dependent transcription rate

α(k)(t) = {
α1 − (α1 − α0)e−λαt, k ∈ {1, 2},

0, k ∈ {3,4},
(32)

with parameters α0,α1, λα ∈ ℝ+ and k indicating the transcriptional state. 
The system of differential equations describing the process of splicing 
stays otherwise unchanged and is, thus, given by

̇u = α(k)(t) − βu

̇s = βu − γs.
(33)

Consequently, it is of the general form

̇x = Ax + g(t), (34)

with dependent variable x, system matrix A, inhomogeneity g(t) and 
solution

x(t) = x0eA(t−t0) + eAt∫
t

t0

e−Asg(s)ds. (35)

As the abundance of unspliced mRNA is modeled independently 
of its spliced counterpart, its solution of equation (33) can be found 
directly. Comparing equation (33) with equations (34) and (35), we 
find that x = u, A = − β, g(t) = α(k)(t). Consequently, the abundance of 
unspliced mRNA at time t is given by

u(t) = u(k)0 e−βτ(k) + α(k)1 e−βt∫
t

t(k)0

eβsds − (α(k)1 − α(k)0 ) e−βt∫
t

t(k)0

eβse−λ
(k)
α sds

= u(k)0 e−βτ(k) + α(k)1
β
(1 − e−βτ(k) )

− α(k)1 −α(k)0
β−λ(k)α

e−λ
(k)
α t(k)0 (e−λ

(k)
α τ(k) − e−βτ(k) ) ,

(36)

with state-dependent initial time t(k)0 , τ(k) = t − t(k)0  and u(k)0 = u(t(k)0 ).
Similarly, this allows solving for s(t), with x = s, A = − γ, g(t) = βu(t). 

Applying solution formula (35), the abundance of spliced mRNA at 
time t is given by

s(t) = s(k)0 e−γτ(k) + e−γt∫
t

t(k)0

eγt′βu(t′)dt′

= s(k)0 e−γτ(k) + α(k)1
γ
(1 − e−γτ(k) ) + α(k)1 −βu(k)0

γ−β
(e−γτ(k) − e−βτ(k) )

−
β(α(k)1 −α(k)0 )

(β−λ(k)α )(γ−λ(k)α )
e−λ

(k)
α t(k)0 (e−λ

(k)
α τ(k) − e−γτ(k) )

+ β(α(k)1 −α(k)0 )

(β−λ(k)α )(γ−β)
e−λ

(k)
α t(k)0 (e−βτ(k) − e−γτ(k) ) ,

(37)

These new functions can be used as the mean in the veloVI likeli-
hood, thus allowing optimization in a similar manner as described 
previously, with the addition of the new parameters α0,α1, λα ∈ ℝ+.

Data preprocessing
All datasets were pre-processed following the same steps. Genes 
with fewer than 20 unspliced or spliced counts were removed. 
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Transcriptomic counts of each cell were normalized by their median, 
pre-filtered library size and the 2,000 most highly variable genes 
selected based on dispersion. The aforementioned steps are performed 
using scVelo’s11filter_and_normalize function.

Following gene filtering and count normalization, the first 30 
principal components were calculated and a nearest neighbor graph 
with k = 30 neighbors was constructed. In a final step, counts were 
smoothed by the mean expression across their neighbors to com-
pute final RNA abundances. These steps were performed by scVelo’s 
moments function.

To estimate RNA velocity, the preprocessed unspliced and spliced 
abundances were (gene-wise) min−max scaled to the unit interval. Fol-
lowing, the steady-state model was applied to the entire dataset. Genes 
for which the estimated steady-state ratio and R2 statistic are positive 
were considered for further analysis. If not stated otherwise, this subset 
of genes was used for parameter inference of veloVI and the EM model.

All datasets used, with the exception of the PBMC dataset, were 
obtained with spliced and unspliced RNA quantification and details 
can be obtained from the original publication (Supplementary Table 1).  
In the case of the PBMC dataset, we quantified RNA abundances using 
the kallisto bustools RNA velocity workflow28, using an index and 
defaults as described in the tutorial on the software’s website and 
automatically annotated via totalVI48 using the Seurat v.3 CITE-seq 
PBMC dataset49,50 as a reference.

Benchmarking against EM and steady-state models
VeloVI was benchmarked against the EM and steady-state model by 
first comparing the accuracy of inferred parameters on simulated data. 
For each number of observations (1,000, 2,000, 3,000, 4,000 and 
5,000), we simulated ten datasets of unspliced and spliced counts with 
1,000 kinetic parameter tuples (transcription rate αg, splicing rate βg, 
degradation rate γg) following a multivariate log-normal distribution. 
Latent time is Poisson distributed with a maximum of 20 h with the 
switch from induction to transcription, tsg, taking place after 2–10 h. 
The simulations were performed using the simulation function as 
implemented in scVelo11 with noise_level=0.8.

As an additional validation, we inferred kinetic rates for the pan-
creas data using both veloVI and the EM model. Following, we randomly 
sampled overall 2,000 estimated parameter tuples (transcription rate 
αg, splicing rate βg, degradation rate γg, switch time tsg) from the union 
of the parameters estimated by either algorithm and simulated splicing 
kinetics with noise_level=1. As the data are simulated and rate 
parameters and time are known, the ground truth velocities are defined 
as well. For each model, the Spearman correlations between ground 
truth and inferred latent time were compared. We used the Spearman 
correlation as it is an order statistic. Contrastingly, in the case of veloc-
ity estimates, we relied on Pearson correlation.

To compare the runtimes of veloVI and EM model were run on 
random subsets a mouse retina dataset12 containing 1,000, 3,000, 
5,000, 7,500, 10,000, 15,000 and 20,000 cells. The EM model was run 
on an Intel(R) Core i9-10900K CPU @ 3.70GHz CPU using eight cores. 
VeloVI was run on an Nvidia RTX3090 GPU.

In the case of real-world data, for each gene, we compared the MSE 
between the observed abundance and the model-predicted abundance. 
We did this for each of the veloVI and EM models and separately for 
spliced and unspliced abundances. The result is the MSE per gene, per 
method and per species. In the case of the EM model, the abundance 
prediction is directly a function of the rates, time and transcriptional 
state and in the case of veloVI, this is the posterior predictive mean. 
Additionally, for each gene, velocity estimates from the veloVI and EM 
models were compared through Pearson correlation.

In addition to the MSE, the model-specific velocity consistency11 
was also compared. The velocity consistency c quantifies the mean 
Pearson correlation of the velocity v(xj) of a reference cell xj with the 
velocities of its neighbors 𝒩𝒩k(xj) in a KNN graph.

c = 1
k

∑
x∈𝒩𝒩k(xj)

corr (v(xj), v(x))

To calculate the consistency, we rely on scVelo’s velocity_con-
fidence function. This evaluation metric makes the assumption that 
better local consistency is inherently good, reflecting smooth changes 
in velocity over the phenotypic manifold. We note that this is a heu-
ristic evaluation and the validity of this metric can be affected by, for 
example, low density of similar cell states, misspecification of the KNN 
graph due to only considering spliced RNA, etc.

If a ‘ground truth’ cellular ordering, for example, a cell-cycle 
score13,29, is given, we can make use of this source of information to 
estimate ‘ground truth’ velocities ̂v via finite differences. We estimated 
this heuristic by first taking the median per gene of the first-order 
moment smoothed, spliced RNA abundance of all cells at a given 
cell-cycle position pi, which we denote by ̄s(i). Then, assuming the pi are 
ordered (pi < pi+1), ̂v(i) is defined as

̂v(i) ∝ ̄s(i+1) − ̄s(i) (38)

Finally, we compared the sign of all ground truth velocities with 
their inferred counterparts of veloVI and the EM model (which are 
aggregated per position in the same way) by computing the sign 
accuracy per gene. The sign accuracy, which is the fraction of times 
that the signs agree, accounts for positive velocity, negative veloc-
ity and zero velocity. As a baseline, we included a random predictor 
that chose positive, negative or zero velocity with equal probabil-
ity. The scEU-seq cell-cycle data (RPE1-FUCCI cells)29 included, on 
average, 9.63 (s.d. 7.01) observations per cell cycle position and the 
U2OS-FUCCI13 dataset provided 1.15 (s.d. 0.36) observations per cell 
cycle position. In the case of the U2OS-FUCCI dataset, the ground 
truth ordering was derived by the original authors using a polar 
regression on the scatter-plot of the two FUCCI protein markers. 
In the case of the RPE1-FUCCI cells, the ground-truth ordering was 
derived by the original authors using a pseudotime method on the 
FUCCI protein marker values.

As an additional validation, for each gene, we fitted a GAM to 
the inferred velocities of the two models versus the cell-cycle score. 
Similarly to ref. 13, we transformed the cell-cycle score in each dataset 
to I = [0, 2π]. To take the periodic nature of the cell cycle into account, 
we fitted the GAM per gene using spliced RNA abundance sng as the 
response and the score as the variable, where the cell-cycle score was 
transformed to the range [I − 2π, I, 2π]. For each gene, a GAM with a 
univariate spline term for the triple of (shifted) cell-cycle positions 
was fitted. For each feature, 20 splines of degree three were used. For 
each gene, we reported the R2 score.

Stability analysis across quantification algorithms
To assess the robustness of estimation using different means of quanti-
fying unspliced and spliced reads, we relied on previously preprocessed 
and published data34. The collection contains outputs of variants of 
the alevin32, kallisto/bustools28 velocyto8, dropEST31 and starsolo51 
pipelines. For details of how the data were generated, we refer to the 
original work34.

To compare estimation across quantification algorithms, we first 
defined a reference set of genes for which to calculate RNA velocity. 
The set of reference genes was defined as the set of genes kept by pre-
processing the data of one quantification method. In the case of the 
dentate gyrus data, starsolo was chosen for the quantification method, 
for all others velocyto. Data were pre-processed according to our 
described pre-processing pipeline. Counts from all other quantifica-
tion approaches the same pre-processing steps were followed, except 
for gene filtering. To prevent the reference genes from being filtered 
out, they are passed to the filter_and_normalize function via the 
argument retain_genes.
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Velocities were estimated for the steady-state model, EM model 
and veloVI. The velocities of the first two models were quantified 
using the function velocity with mode=‘deterministic’ and 
mode=‘dynamics’, respectively, implemented in scVelo11. For veloVI, 
model parameters were inferred using default parameters and mean 
velocities estimated from 25 samples drawn from the posterior.

To compare estimates across quantification algorithms, for 
each model, cell and pair of quantification algorithms, the Pearson 
correlation between the paired velocity estimates, was calculated. 
For each model, the correlation scores were aggregated by tak-
ing the mean over cells for one quantification algorithm pair to 
assess robustness. The distribution of this mean correlation over 
all quantification algorithm pairs is used for visualization in Fig. 4 
and Extended Data Fig. 2.

Analysis with uncertainty quantification and velocity 
coherence
We used extrapolated future states Tsn of a cell to evaluate if inferred 
velocities are coherent. The velocity vn of a given cell n is coherent if it 
points in the same direction as the empirical displacement δn = Tsn − sn. 
Directionality is compared by calculating the Hadamard product δn∘vn. 
In case both vectors point in the same direction for a given cell, the 
resulting entry will be positive and negative otherwise. To aggregate 
the score we report its mean per gene and cell type.

To benchmark the uncertainty quantification, we started with 
the pancreas dataset and added one of three kinds of perturbations 
at various strengths. After applying each perturbation, we ran the 
standard veloVI pipeline and recorded the uncertainty metrics. 
The first perturbation consisted of downsampling the cells to X% of 
their original library size (thus removing (1 − X)% of their transcripts; 
and for unspliced and spliced separately). This was achieved with 
scanpy.pp.downsample_counts. The second perturbation con-
sisted of binomial thinning of the unspliced counts with probability P 
(unspliced = np.random.binomial(unspliced, 1 − P)). The final 
perturbation was multiplicative random noise. To each spliced and 
unspliced abundance value (this time after library size normaliza-
tion) we multiplied the value with lognormally distributed noise (np.
exp(np.random.normal(0, scale))). Across all perturbations we 
used a common gene set that was derived from the standard veloVI 
pipeline; this ensures that the uncertainty values are comparable as 
they incorporate information across all genes.

Permutation scoring
To quantify how robust the inferred dynamics are with respect to 
random permutations in the input data, we define a gene- and 
cell-type-specific permutation effect, which is then aggregated to 
a gene-specific permutation score (Extended Data Fig. 6). For this 
analysis, we considered all highly variable genes and did not filter our 
genes based on estimates of the steady-state model.

To calculate the score, the unspliced and spliced abundances 
belonging to one (cell type, gene) pair are independently permuted 
(cell barcodes are shuffled independently per unspliced/spliced). 
Repeating over all pairs, this results in a permuted data matrix. We 
then estimate the model fit of the unspliced and spliced abundance 
for permuted data matrix (the posterior predictive mean, Supple-
mentary Methods). Note that because veloVI can handle held-out 
data, computing the model fit of permuted data does not require 
any additional training. Finally, for each (cell type and gene) pair we 
compute μp and μ0, which denote the mean absolute error between 
the model fit abundances and the observed abundances (spliced and 
unspliced errors added together) for the permuted and original data 
matrices, respectively.

To quantify the extent to which the mean absolute errors of the 
two samples are not equal, we define the permutation effect as the 
t-test statistic

T =
μp − μ0

√2 S2

n

,

with number of cells n and pooled variance S2 of the absolute errors. 
To limit the effect of dataset size, we consider the maximum sample 
size of n = 200 observations. The permutation score is aggregated 
on a gene level by considering the maximum test statistic across cell 
types. This aggregation allows comparing the permutation score across 
different datasets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The processed pancreas data, including spliced and unspliced count 
abundances, can be downloaded from scVelo’s GitHub (https://github.
com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrin-
ogenesis_day15.h5ad). The forebrain and dentate gyrus datasets can be 
downloaded from the Kharchenko laboratory at Harvard (forebrain, 
http://pklab.med.harvard.edu/velocyto/DG1/10X43_1.loom and den-
tate gyrus, http://pklab.med.harvard.edu/velocyto/hgForebrainGlut/
hgForebrainGlut.loom). The Friedrich Miescher Institute for Biomedi-
cal Research (https://www.fmi.ch/groups/gbioinfo/RNAVeloQuant/
RNAVeloQuant.html) provides the processed data of the dentate gyrus, 
mouse brain, pancreas, prefrontal cortex and spermatogenesis. The 
mouse retina and PBMC data are available for download via figshare 
(https://figshare.com/projects/veloVI_datasets/145476).

Code availability
veloVI is implemented in a standalone package at https://github.com/
YosefLab/velovi, which has also been deposited via Zenodo (https://
doi.org/10.5281/zenodo.7897641) (ref. 52). Code to reproduce the 
results in the manuscript can be found at https://github.com/YosefLab/
velovi_reproducibility, as well as deposited via Zenodo (https://doi.
org/10.5281/zenodo.7931042) (ref. 53).
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Extended Data Fig. 1 | Low-rank structure of latent time. PCA variance ratio of gene-cell specific latent time as inferred by the EM model.
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Extended Data Fig. 2 | Preprocessing stability of inference methods. 
Correlation of velocities derived from pairs of quantification algorithms and from 
velocities estimating using one of veloVI (VI), the EM (EM), and steady-state model 
(SS) on datasets of prefrontal cortex (PFC) (left, N=78 pairs of quantification 
methods), 21-22 months old mouse brains (middle, N=78 pairs of quantification 

methods), and hippocampus (right, N=55 pairs of quantification methods). 
Unspliced and spliced counts are quantified with different algorithms46–51,54. 
Velocities are estimated by veloVI (VI, blue), the EM model (EM, orange), and 
the steady-state model (SS, green). Box plots indicate the median (center line), 
interquartile range (hinges), and whiskers at 1.5x interquartile range.
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Extended Data Fig. 3 | Phase portraits in pancreas endocrinogenesis. Phase portraits of Rbfox3, Sulf2, Igfbpl1, and Cbfa2t3. Each cell is colored by its cell type.
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Extended Data Fig. 4 | Effect of data perturbation on uncertainty. a. The effect 
of downsampling (0%, 25%, 50%, 75%) counts on phase portraits of Sulf2 (left) 
colored by cell type, intrinsic uncertainty per cell (middle, N=3696 cells), and 
extrinsic uncertainty per cell (right, N=3696 cells). b. The effect of unobserved 
unspliced reads (dropout probability 0.0, 0.5, 0.9, 0.98) in 400 and 800 genes on 
phase portraits of Fam135a (left), intrinsic uncertainty per cell (middle, N=3696 

cells), and extrinsic uncertainty per cell (right, N=3696 cells). c. The effect of 
multiplicative noise (scale 0.1, 0.5, 1.0, 1.5) on phase portraits of Sulf2 (left), 
intrinsic uncertainty per cell (middle, N=3696 cells), and extrinsic uncertainty 
per cell (right, N=3696 cells). Box plots indicate the median (center line), and 
interquartile range (hinges).
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Extended Data Fig. 5 | Gene analysis based on extrinsic uncertainty. a. UMAP 
embedding of the Pancreas dataset colored by extrinsic uncertainty (left); The 
velocity coherence score across all genes for Alpha and Ngn3-high cells (right). 

b, c. Genes with the lowest/highest velocity coherence in Alpha cells, respectively. 
c, d. Genes with the lowest/highest velocity coherence in Ngn3-high cells, 
respectively. e, Genes fit with incorrect dynamics in Ngn3-high cells.
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Extended Data Fig. 6 | Overview of permutation score construction.  
a. First, the cells of one cell type are selected. These are shuffled independently 
for each genes (and independently in each of unspliced and spliced matrices). 
This is repeated for each cell type and the data are concatenated. This new 
permuted dataset is fed into a pre-trained veloVI model (trained on the same 
original dataset). The fit of unspliced and spliced abundance is obtained for 

each new perturbed cell. Following this, for each gene, the mean absolute error 
(spliced and unspliced) is computed per cell type. The original and perturbed 
mean absolute errors are compared with the T-test statistic. This provides 
a permutation effect statistic for each gene and each cell type. To obtain 
the permutation score, a scalar score for each gene, we take the maximum 
permutation effect statistic across cell types.
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Extended Data Fig. 7 | Permutation score analysis of old mouse brain.  
a. Density of permutation score per cell type: arachnoid barrier cells (ABC), 
astrocyte-restricted precursors (ARP), astrocytes (ASC), choroid plexus 
epithelial cells (CPC), dendritic cells (DC), endothelial cells (EC), ependymocytes 
(EPC), hemoglobin-expressing vascular cells (Hb-VC), macrophages (MAC), 
microglia (MG), monocytes (MNC), neural stem cells (NSC), neuroendocrine 
cells (NendC), olfactory ensheathing glia (OEG), oligodendrocytes (OLG), 
oligodendrocyte precursor cells (OPC), pericytes (PC), vascular and 

leptomeningeal cells (VLMC), vascular smooth muscle cells (VSMC), mature 
neurons (mNEUR) (N=2000 genes each). b. Percentage of cell types scoring 
assigned the highest permutation socre for a given gene. c. Genes assigned the 
highest permutation score. d, UMAP embedding of dataset colored by whether 
cells are mature neurons (mNEUR). e, Permutation score densities (left), and their 
kurtosis and skew when using the full dataset (brown) compared to excluding 
mature neurons.
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