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Vision–language foundation model for 
echocardiogram interpretation

Matthew Christensen    1, Milos Vukadinovic1,2, Neal Yuan    3,4 & 
David Ouyang    1,5 

The development of robust artificial intelligence models for 
echocardiography has been limited by the availability of annotated clinical 
data. Here, to address this challenge and improve the performance of 
cardiac imaging models, we developed EchoCLIP, a vision–language 
foundation model for echocardiography, that learns the relationship 
between cardiac ultrasound images and the interpretations of expert 
cardiologists across a wide range of patients and indications for imaging. 
After training on 1,032,975 cardiac ultrasound videos and corresponding 
expert text, EchoCLIP performs well on a diverse range of benchmarks for 
cardiac image interpretation, despite not having been explicitly trained  
for individual interpretation tasks. EchoCLIP can assess cardiac function 
(mean absolute error of 7.1% when predicting left ventricular ejection 
fraction in an external validation dataset) and identify implanted 
intracardiac devices (area under the curve (AUC) of 0.84, 0.92 and 0.97 for 
pacemakers, percutaneous mitral valve repair and artificial aortic valves, 
respectively). We also developed a long-context variant (EchoCLIP-R) 
using a custom tokenizer based on common echocardiography concepts. 
EchoCLIP-R accurately identified unique patients across multiple videos 
(AUC of 0.86), identified clinical transitions such as heart transplants  
(AUC of 0.79) and cardiac surgery (AUC 0.77) and enabled robust 
image-to-text search (mean cross-modal retrieval rank in the top 1% of 
candidate text reports). These capabilities represent a substantial step 
toward understanding and applying foundation models in cardiovascular 
imaging for preliminary interpretation o f e ch ocardiographic findings.

Echocardiography, or cardiac ultrasound, is the most common, non-
invasive method of evaluating heart function and identifying heart 
disease. Echocardiography routinely guides clinical cardiology 
decision-making1–3 and is used for disease diagnosis, risk stratifica-
tion and assessment of treatment response1,4. Recent work has used 
artificial intelligence (AI) to improve the accuracy of echocardiographic 

measurements5–7 and disease diagnoses8–10; however, these AI 
approaches focus on narrow individual tasks that require specific train-
ing for each task and do not use vision–language foundation models11.

Recent advances in AI have leveraged representation learning on 
large image and text datasets to develop vision–language foundation 
models that generalize beyond narrow sets of predefined tasks12,13. 
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In this work, we introduce EchoCLIP, a foundation model for echo-
cardiography trained on a dataset of 1,032,975 echocardiogram videos 
sourced from over a decade of clinical imaging. We developed a method 
for substantially compressing echocardiography reports, simplify-
ing the matching of clinical text assessments to images to focus on 
important clinical concepts. To assess the model’s performance, we 
tested the model’s ability to assess cardiac function, pulmonary artery 
pressure (PAP) and chamber size, as well as identify common intracar-
diac devices in both held-out internal test cohorts as well as external 
test cohorts. By using the model to compare pairs of echocardiogram 
studies, we can assess the model’s ability to identify unique patients 
across time, identify clinically important changes in disease state and 
retrieve relevant clinical text for given images. Finally, we propose a new 
vision–language model interpretation approach based on matching 
relevant text with important regions of interest in images.

These models learn to encode images and text into compact repre-
sentations that can then be used to perform a wide variety of separate 
prediction tasks for which the model was never specifically trained 
(‘zero-shot’ tasks). Given the broad range of data used to train these 
models, the performance of foundation models are often more robust 
than with conventional convolutional neural networks14,15. In biomedi-
cal applications, foundation models have been developed to organize 
biological16–18 and medical19 datasets, including modality-specific mod-
els for chest X-rays, retinal imaging, wearable waveforms and pathol-
ogy images20–25. Training of foundation models on medical imaging 
has been bottlenecked by dataset size and is often limited to publicly 
available data that may not represent the range of disease severities 
and possible presentations. While text information might be imprecise, 
clinician evaluations of medical imaging provide an information-rich 
distillation of complex data.

Table 1 | Clinical characteristics of Cedars-Sinai Medical Center study cohort, reported per echocardiography study

Total Training Validation Test

n 224,685 195,082 8,119 21,484

Age (mean (s.d.)) 66.26 (16.74) 66.3 (16.7) 65.8 (17.0) 65.7 (16.9)

Female = true (%) 96,451 (42.9) 83,700 (42.9) 3,363 (41.4) 9,388 (43.7)

Race (%)

 Native American 526 (0.2) 456 (0.2) 23 (0.3) 47 (0.2)

 Asian 16,601 (7.5) 14,450 (7.5) 555 (6.9) 1,596 (7.5)

 Black 29,546 (13.3) 25,624 (13.3) 1,104 (13.8) 2,818 (13.3)

 Hispanic 22,424 (10.1) 19,394 (10.0) 842 (10.5) 2,188 (10.3)

 Non-Hispanic white 133,399 (60.0) 116,044 (60.1) 4,699 (58.6) 12,656 (59.6)

 Other 15,376 (6.9) 13,243 (6.9) 612 (7.6) 1,521 (7.2)

 Pacific Islander 767 (0.3) 688 (0.4) 36 (0.4) 43 (0.2)

 Unknown 3,700 (1.7) 3,182 (1.6) 149 (1.9) 369 (1.7)

 AF 46,994 (20.9) 41,214 (21.1) 1,633 (20.1) 4,147 (19.3)

 HF 75,358 (33.5) 65,802 (33.7) 2,764 (34.0) 6,792 (31.6)

 HTN 90,738 (40.4) 79,229 (40.6) 3,250 (40.0) 8,259 (38.4)

 CVA/TIA/TE 38,283 (17.0) 33,475 (17.2) 1,378 (17.0) 3,430 (16.0)

 MI 14,983 (6.7) 13,120 (6.7) 514 (6.3) 1,349 (6.3)

 CAD 55,659 (24.8) 48,840 (25.0) 2,040 (25.1) 4,779 (22.2)

 PAD 23,369 (10.4) 20,475 (10.5) 838 (10.3) 2,056 (9.6)

 DM 37,900 (16.9) 33,226 (17.0) 1,351 (16.6) 3,323 (15.5)

 CKD 40,947 (18.2) 35,960 (18.4) 1,482 (18.3) 3,505 (16.3)

 Previous smoker 7,632 (3.4) 6,593 (3.4) 256 (3.2) 783 (3.6)

AF, atrial fibrillation; HF, heart failure; HTN, hypertension; CVA, cerebrovascular accident; TIA, transient ischemic attack; TE, thromboembolism; MI, myocardial infarction; CAD, coronary artery 
disease; PAD, pulmonary artery disease; DM, diabetes mellitus; CKD, chronic kidney disease.

Table 2 | Main performance metrics

Image encoder Tokenizer MCMRR LVEF, MAE PAP, MAE TAVR, AUC MitraClip, AUC Pacemaker, AUC

CLIP ViT-B-32 CLIP BPE 10,743.0 20.8 
(20.7–20.8)

16.8 
(16.8–16.9)

0.46 
(0.46–0.47)

0.53 
(0.52–0.54)

0.51  
(0.51–0.52)

EchoCLIP ConvNeXt CLIP BPE 571.3 8.4 
(8.3–8.4)

10.8 
(10.8–10.9)

0.92 
(0.91–0.92)

0.97 
(0.97–0.97)

0.84  
(0.84–0.84)

EchoCLIP-R (full-report 
prompts)

ConvNeXt Template tokenizer 206.1 10.9 
(10.9–11.0)

13.2 
(13.1–13.2)

0.85 
(0.85–0.86)

0.95 
(0.94–0.95)

0.77  
(0.77–0.78)

EchoCLIP-R (base) ConvNeXt Template tokenizer 206.1 16.9 
(16.8–17.0)

17.5 
(17.4–17.5)

0.52 
(0.51–0.52)

0.81 
(0.81–0.82)

0.66  
(0.65–0.66)

Retrieval ranks are out of 21,484 candidates. Performance of the best-performing model for each metric is bolded. Ranges in parentheses indicate 95% CI bootstrapped with 1,000 random 
samples. MCMRR, mean cross-modal retrieval rank; BPE, Byte-Pair Encoding.
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Results
EchoCLIP is an echocardiography vision–language model trained with 
1,032,975 video–text pairs derived from 224,685 echocardiography 
studies across 99,870 patients across a decade of clinical care (Table 1). 
In a self-supervised approach, EchoCLIP is trained on pairs of echocar-
diogram images (randomly sampled from video frames) and associated 
clinical report text without direct labeling of clinical interpretations 
or measurements. The EchoCLIP model uses a ConvNeXt-Base26 image 
encoder and a Byte-Pair Encoding text tokenizer27. The text encoder 
architecture is a decoder-only transformer identical to the architecture 
used by the original CLIP paper23 and has an input context length of 77 
tokens. Despite not being directly trained on specific interpretation 
tasks, EchoCLIP can accurately identify implanted devices as well as 
assess cardiac form and function (Table 2). To assess the importance 
of pretraining and architecture28, different architectures and dataset 
configurations were compared (Supplementary Table 1).

To fit an entire echocardiography report into the text encoder, a 
domain-specific echocardiography text tokenization format succinctly 
summarizing common cardiovascular concepts was developed. The 
model variant trained with this tokenization format, EchoCLIP-R, is 
capable of retrieving relevant clinical text from images and character-
izes clinical changes over time. We also introduce a saliency mapping 
approach based on cosine similarity, PromptCAM, to show that Echo-
CLIP prioritizes important image features relevant to the associated 

text. This approach identifies clinically relevant regions of interest in 
echocardiography images based on prompted clinical text.

Echocardiogram interpretation without supervised learning
Without fine-tuning or task-specific training, we evaluated EchoCLIP’s 
performance on a wide range of benchmark classification tasks in our 
internal held-out test set. EchoCLIP can accurately identify intracardiac 
devices, including percutaneous mitral valve repair with an AUC of 
0.97 (95% CI 0.97–0.98), transvenous aortic valve replacement (TAVR) 
with an AUC of 0.92 (95% CI 0.91–0.92) and pacemaker/defibrillator 
leads with an AUC of 0.84 (95% CI 0.84–0.85). EchoCLIP can also detect 
changes from a healthy cardiac chamber size, including severe dilation 
of the right ventricle with an AUC of 0.92 (95% CI 0.91–0.92), right atrium 
with an AUC of 0.97 (95% CI 0.97–0.98), left ventricle with an AUC of 
0.92 (95% CI 0.92–0.93) and left atrium with an AUC of 0.91 (95% CI 
0.90–0.92). Last, EchoCLIP can assess for tamponade (AUC 0.96, 95% 
CI 0.94–0.98) and severe left ventricular hypertrophy (AUC 0.82, 95% 
CI 0.81–0.83). The sensitivity and specificity for each task are described 
in Extended Data Table 1. Performance was similar across key subsets 
stratified by age, sex and image quality (Supplementary Table 2).

External validation of cardiac function and pressure assessment
We further evaluated EchoCLIP’s performance on quantitative tasks, 
including evaluation of left ventricular ejection fraction (LVEF) and 
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Fig. 1 | EchoCLIP workflow. a, EchoCLIP is a foundation model trained on more 
than 1 million echocardiogram videos across 11 years. It is composed of an image 
encoder for processing echocardiogram video frames and a text encoder for 
processing the corresponding physician interpretations. These two encoders 
project the images and interpretations onto a joint embedding space. b, Scatter-
plot of zero-shot prediction versus label of left ventricular ejection fraction 

(LVEF) in held-out test dataset from Cedars-Sinai Medical Center (CSMC; blue, 
n = 100,994) and Stanford Healthcare (SHC; red, n = 5,000). c, AUC performance 
for various implanted intracardiac devices, including MitraClip, TAVR valves and 
implanted pacemaker/defibrillator on held-out test dataset from Cedars-Sinai 
Medical Center. FPR, false positive rate; TPR, true positive rate.
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PAP. EchoCLIP predicts LVEF on the held-out internal test dataset with 
a mean absolute error (MAE) of 8.4% and an MAE of 7.1% on an external 
test set of videos from the EchoNet-Dynamic dataset from Stanford 
Healthcare (Fig. 1). At key clinical LVEF thresholds, EchoCLIP achieves 
an AUC of 0.89–0.90 for an LVEF threshold of 50%, 0.93–0.94 for an 
LVEF threshold of 40% and 0.95–0.97 for an LVEF threshold of 30% (Sup-
plementary Table 3 and Supplementary Fig. 1). Furthermore, EchoCLIP 
predicts estimated PAP with an MAE of 10.8 mm Hg on the internal test 
dataset and an MAE of 10.8 on the external test dataset (Fig. 2).

Mapping clinical text to echocardiogram images
Given the long length of an echocardiography report, we developed 
EchoCLIP-R, a domain-specific text encoder that succinctly summa-
rized common cardiovascular concepts into fewer tokens and was 
able to summarize a whole report during training. A long-context 
EchoCLIP-R model was optimized for retrieval during training. Given 
a representative image from the held-out test cohort, EchoCLIP-R ranks 
the matching clinical report on average 209th out of 21,484 candidates 
(top 1% retrieval). The correct report is present in the top ten reports 
33.3% of the time. Going from text to image, the average rank of the 
matching video is 203 out of 21,484 and the correct video is present in 
the top ten ranked videos 34.3% of the time. For all language models,  
the choice of text prompts impacts model performance and we found 
EchoCLIP to be easier to generate focused prompts compared to 
EchoCLIP-R given the larger context for in-domain prompts (Table 2). 

A workflow for automated preliminary assessment of echocardiogram  
studies by ensembling assessments across videos is shown in the  
Supplementary Video.

Detection of clinical differences between videos
The ability to measure the similarity between pairs of echocardiograms 
can also be used to identify a unique patient across multiple studies (a 
difficult task for human clinicians) as well as identify clinical changes 
over time. Comparing the cosine similarity between EchoCLIP-R embed-
dings of different echocardiography studies can help in challenging 
clinical scenarios. Pairs of EchoCLIP-R embeddings of echocardio-
grams are, on average, least similar if they come from two different 
patients (mean cosine similarity 0.40, 95% CI 0.39–0.41), more similar if 
they come from the same patient but were acquired on different dates 
(mean cosine similarity 0.64, 95% CI 0.64–0.65) and most similar if they 
come from the same patient and were acquired on the same day (mean 
cosine similarity 0.87, 95% CI 0.86–0.87). This comparison results in 
an AUC of 0.86 (95% CI 0.85–0.87) in identifying the same patients 
across different videos. Furthermore, the cosine similarity between 
videos can also be used to distinguish when there was a substantive 
clinical change. Echocardiograms acquired before cardiac surgeries 
and orthotopic heart transplants tend to be similar to one another, 
while being substantially less similar to echocardiograms acquired 
after such procedures (Fig. 3). This dropoff in embedding similarity is 
sufficient to predict whether an echocardiogram occurs before or after 
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Fig. 2 | Zero-shot model performance on held-out test apical-four-chamber 
videos. a, Estimation of pulmonary artery pressure (PAP). b, Heart failure (HF) 
with reduced ejection fraction. c, Assessment of left ventricular hypertrophy at 
various degrees of severity (mild, moderate and severe). d, Left atrial dilation 
at various degrees of severity (mild, moderate and severe). e, Left ventricular 

dilation at various degrees of severity (mild, moderate and severe). f, Assessment 
of pericardial effusion size (small, moderate and large) as well as presence of 
tamponade physiology. Data are from the Cedars-Sinai Medical Center (CSMC; 
blue, n = 100,994) and Stanford Healthcare (SHC; red, n = 5,000). FPR, false 
positive rate; TPR, true positive rate.
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cardiac surgery with an AUC of 0.77 (95% CI 0.75–0.79) and before or 
after heart transplant with an AUC of 0.79 (95% CI 0.76–0.82). Addition-
ally, we show that the difference in reported LVEF between different 
studies from the same patient is correlated with the cosine similarity 
between videos, suggesting that EchoCLIP-R embeddings can be used 
to identify clinically relevant serial changes (Supplementary Fig. 2).

Interpretation studies
To further interrogate EchoCLIP’s understanding of cardiovascular 
disease, we utilized two interpretability frameworks. First, we devel-
oped a modified class activation mapping method (PromptCAM) for 
multimodal models that pairs textual prompts with imaging features. 
PromptCAM identifies regions of interest in the image that maximize 
the cosine similarity with the text prompts. Despite not seeking to 
minimize the loss of direct text labels in training, PromptCAM high-
lights the learned associations of EchoCLIP for subconcepts such as 
‘TAVR’, ‘Impella’, ‘Pacemaker’ or ‘Mitraclip’ (Fig. 4). Secondarily, we 
applied Uniform Manifold Approximation and Projection (UMAP) 
on the embeddings from the EchoCLIP image encoder and observed 
numerous clusters associated with different cardiovascular diseases, 
disease states and measurements (Supplementary Fig. 3).

Discussion
Our results suggest that large datasets of echocardiography studies and 
expert adjudicated interpretations can serve as the basis for training 

medical foundation models. Our echocardiography foundation model 
was able to successfully complete multiple benchmarks of zero-shot 
prediction tasks without task-specific training or fine-tuning. By train-
ing EchoCLIP with data from one healthcare system and testing its 
performance on data from an entirely separate external healthcare 
system, we were able to evaluate EchoCLIP’s generalizability and robust-
ness to domain shift. Additionally, EchoCLIP-R displays an ability to 
perform tasks that human clinicians struggle with or find laborious, 
such as identifying the same patient across different imaging studies 
and characterizing clinically important changes over time. Finally, 
we introduce a multimodal interpretability approach using cosine 
similarity-based saliency to demonstrate that EchoCLIP has learned 
semantically meaningful imaging features of both common and rare 
cardiovascular concepts based on text prompting.

A key bottleneck in training medical foundation models is the lim-
ited availability of medical training data. Previous echocardiography 
AI models were trained with a maximum of 150,000 echocardiogram 
videos29 and most frequently trained with only hundreds or thousands 
of examples7,10,30–32. By leveraging large clinical reporting databases, 
our approach minimizes the tedious manual labeling and organiza-
tion required for supervised learning tasks and allows EchoCLIP to be 
trained on over 1 million echocardiography videos. In its most basic 
form, the task of mapping images to corresponding text interpreta-
tions is the clinical task of medical image interpretation that cardiolo-
gists do daily. EchoCLIP represents an opportunity to automate many 
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range (n = 100,994). b, AUC for predicting whether the images come from the 
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of individual patients by cosine similarity (n = 2,959). Each line represents an 
individual patient with time from major clinical event on the x axis and cosine 
similarity versus first study on the y axis. Patients either had major cardiac 
surgery (c) or heart transplant (d), with cosine similarity calculated at the study 
level and pairwise compared for all videos in each study. Data are from the 
Cedars-Sinai Medical Center. FPR, false positive rate; TPR, true positive rate.
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interpretation tasks simultaneously without the need for individually 
tuned specialist models, which can ultimately lead to automated pre-
liminary echocardiography interpretation in underserved populations 
or during emergent situations. A self-supervised vision–language 
foundation model trained on the diverse range of physiologies seen 
in a high-volume echocardiography laboratory can learn from greater 
amounts of data than purely supervised models and may be able to gain 
a much more generally applicable understanding of the human heart, 
its function and its structure.

While EchoCLIP is not the first instance of a foundation model 
trained on biomedical datasets17,33,34, EchoCLIP is a model specific for 
echocardiography, the most common modality for cardiovascular 

imaging and not represented in prior foundation model training. While 
echocardiography still needs to be interpreted by expert cardiologists, 
given the rapid expansion of availability of ultrasound technology and 
the development of complementary technologies to allow novices to 
perform cardiac ultrasound35, models such as EchoCLIP have the poten-
tial to improve access to cardiac imaging and image interpretation. One 
of the most time-consuming and challenging assessments is distin-
guishing between natural variation versus change in the disease state 
that might warrant changes in the treatment plan. Such evaluations 
often require meticulously comparing current and historical imaging 
side by side and can be highly variable across different cardiologists. 
By using EchoCLIP to directly compare studies, clinicians can derive a 
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quantitative visual assessment of differences. Such an automated AI 
assessment can alert clinicians’ attention toward specific studies to 
more carefully evaluate clinical changes.

While specialist models still perform better on specific, narrowly 
defined tasks29, the performance of EchoCLIP on external validation 
data confirms its ability to assess cardiac function with accuracy similar 
to blinded human performance as well as many previously developed 
supervised learning models6,7,36–38. EchoCLIP achieves an MAE of 7.1% 
on external validation of LVEF prediction, while previous video-based 
LVEF AI models achieve an MAE of 6.0% and image-based AI models 
achieve an MAE of just 9.9%28. Differences in EchoCLIP’s performance 
on internal and external test datasets are likely due to differences in 
the LVEF evaluation technique across institutions (Supplementary 
Fig. 4). While statistically significant in large datasets, the error in 
model predictions across LVEF values or measurement approaches is 
less than clinical variability29, suggesting that different training data 
with a different LVEF measurement approach would have a modest dif-
ferential effect. The distribution of LVEF values from model inference is 
continuous without preference for certain measurements, suggesting 
that human biases are smoothed out in the model embedding space 
(Supplementary Fig. 5).

Important limitations of this work include the use of an image 
encoder instead of a video encoder when echocardiography videos 
contain important motion-based information and the use of only 
the apical-four-chamber view, which, although is the most common 
and informative standard view, does not capture information with 
regard to Doppler velocities and structures only present in other 
views. In this work, as well as previous work8,9, it is clear that there are 
image-based features that can be a partial surrogate for information 
not directly interrogatable without video or from different views. 
For example, sphericity and dilation of the left ventricle can be iden-
tifiable from images alone and suggest decreased cardiac function 
although true assessment of LVEF requires video information. Valve 
calcification can hint at stenosis or coronary artery disease8,9,39 that 
is not directly present in the image. Future work will incorporate 
video encoders and different measurement techniques and will lev-
erage multiple views from the same echocardiographic study to 
provide more holistic AI models for heart health. Enhancements 
such as upgrading EchoCLIP’s visual encoder from an image-based 
model to a video-based model, adapting EchoCLIP for visual question 
answering, and implementation of automatic report generation are 
potential directions for future research. Finally, important open ques-
tions remain in the testing of foundation models before regulatory 
approval and eventual clinical use.

Our results encourage further exploration of vision–language 
foundation models for cardiology and medicine generally. Clinical 
databases provide large bodies of information about health, while 
different imaging modalities provide adjunctive ancillary informa-
tion that might improve our understanding of cardiovascular health. 
Further efforts remain to leverage larger datasets and more versatile 
model architectures to better capture and distill medical information.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-024-02959-y.
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Methods
Data curation
The Cedars-Sinai Medical Center echocardiography laboratory per-
forms clinical echocardiography for a wide range of indications, rang-
ing from asymptomatic preoperative screening to evaluation for open 
heart surgery or heart transplant. Over the course of a standard, full, 
resting echocardiogram study, 50–150 videos and images are acquired 
that visualize the heart from different angles, locations and with differ-
ent imaging modes (two-dimensional images, tissue Doppler images 
and color Doppler images). Each echocardiogram study corresponds 
to a unique patient and a unique visit, but multiple similar videos may 
be obtained from each view acquired during the study. For EchoCLIP, 
we focused on the apical-four-chamber view (one of the most com-
mon and well-acquired ultrasound views) and organized a dataset of 
1,032,975 unique video–caption pairs from 224,685 echocardiogram 
studies across 99,870 patients, collected between 2011 and 2022. Our 
laboratory developed high-throughput tools to query echocardiogram 
videos and their metadata from Cedars-Sinai’s internal databases at 
scale, view and classify videos and link them to associated structured 
reporting from cardiologists. DICOM images were queried from a 
Hyland vendor-neutral archive, linked to interpretations created by 
trained cardiologists using Syngo Dynamics and converted to AVI video 
files using PyDICOM before model training and inference.

Data were split by patient into training, validation and internal 
test datasets. The training data contained 921,981 videos from 84,990 
patients, the validation set contained 10,000 videos from 5,358 patients 
and the internal test set contained 100,994 videos from 10,001 patients. 
A random subset (n = 5,000) of the publicly released EchoNet-Dynamic 
dataset from Stanford Healthcare was used as an external test set. 
An automated preprocessing workflow was undertaken to remove 
extraneous text, ECG and respirometer information and other informa-
tion outside of the scanning sector. The input data were represented 
as standardized 224 × 224-pixel RGB videos for model training. This 
research was approved by the Cedars-Sinai Medical Center (study 
no. 00001409) and Stanford Healthcare Institutional Review Boards  
(study no. 43721). A waiver of consent was obtained for the use of  
retrospective de-identified data.

Model design and training
Model design and training was conducted in Python using the PyTorch 
deep-learning library. Our training code is a fork of the OpenCLIP 
repository28. To find the best training configuration, we evaluated a 
variety of model architectures and training procedures. We tested train-
ing with random initialization, initializing the model with CLIP weights, 
using a convolutional architecture for the image encoder, using a vision 
transformer for the image encoder, applying random patch dropout to 
image inputs and using three different text tokenization methods (Sup-
plementary Table 5), with the final EchoCLIP model use the ConvNeXt 
architecture26 for the image encoder and a decoder-only transformer 
for the text encoder. We initialize our model with weights pretrained on 
LAION-400M. We trained for 50 epochs, minimizing the original CLIP 
loss. The CLIP loss incentivizes the video and text encoders to make the 
embeddings of paired videos and reports as similar as possible, while 
making the embeddings of unpaired videos and reports as different as 
possible (Fig. 1a). This training objective is, notably, all that is required 
to make the two models learn to encode their inputs into semantically 
meaningful vector embeddings.

We warmed up to an initial learning rate of 5 × 10−5 over the course 
of the first 2,000 training steps and then cosine decayed to zero over 
the course of the training run. We used a batch size of 1,024 and trained 
on two Nvidia RTX A6000 48 GB GPUs for approximately 2 weeks. Dur-
ing training, a random frame was extracted from each video and passed 
to the image encoder. A random frame from each video was used for 
each epoch as a form of data augmentation. Model checkpoints were 
saved after every epoch. At the end of training, the model checkpoint 

with the lowest mean cross-modal retrieval rank on the validation 
set was selected for testing. Before computing the cosine similarity 
between vector embeddings, we always divide them by their norms to 
ensure that they have the same magnitude. This means that the cosine 
similarity metric always returns a value between −1 and 1.

Text tokenization
A number of text tokenization schemes were tested (Supplementary 
Table 1). EchoCLIP was trained using text tokenized by a BPE tokenizer27 
pretrained on the GPT2 data corpus, which encoded echocardiography 
reports with a mean of 530.3 (±154.7) tokens per report. Due to the 
context length limit of 77 tokens imposed by fine-tuning from CLIP 
weights, EchoCLIP was trained on snippets of reports rather than their 
full text. For EchoCLIP-R, we noted that the echocardiography report 
text is often highly structured and repetitive, as they are typically 
generated in a ‘fill-in-the-blank’ fashion according to a predetermined 
template given to the cardiologist at the time of interpretation. The 
templated nature of the reports means that a small number of unique 
phrases and sentences appear very frequently in the final report text 
with only slight variations. A custom-built tokenizer was designed 
to take advantage of this observation and allowed us to aggressively 
compress the report text. This meant that whole reports could be 
inputted when training EchoCLIP-R, improving its retrieval capabilities 
compared to EchoCLIP at the cost of slight degradation in classification 
and estimation capabilities.

Instead of searching for exact vocabulary matches in the report 
text, our custom-built template tokenizer uses regular expressions to 
allow nearly similar lines of text to be efficiently encoded. For example, 
the text ‘Moderate left ventricular hypertrophy. Left ventricular ejec-
tion fraction is 60%’ is converted into tokens indicating either cardiac 
structure or function (such as ‘<_ left ventricular hypertrophy>’, ‘<left 
ventricular ejection fraction is _%>’) as well as indicating severity (‘mild’, 
‘moderate’ or ‘severe’) or quantity (60%, 2.5 cm, 40 cm s−1). By doing 
this, we were able to capture most of the variance present in our text 
reports with a vocabulary containing only 770 words and phrases, in 
addition to extra tokens for handling numbers and severity terms. 
After applying this custom tokenizer, the mean length of a tokenized 
report was brought down to just 63.8 (±26.7) tokens, an approximate 
ninefold reduction compared to using CLIP’s original BPE tokenizer. 
We additionally tested a model that used a BPE tokenizer pretrained 
on echocardiography reports but found that it failed to outperform 
the model trained using our custom solution.

Using EchoCLIP-R embeddings, we can perform a search within 
our test set to find images or reports that are semantically similar to 
a given query image or report. To do this, we simply sort the embed-
dings of all candidate images or reports by their cosine similarity to 
the embedding of a query image or report. The embedding space 
was normalized to unit vectors before calculation of cosine similarity 
to be insensitive to projection magnitude. If the model and dataset 
were theoretically perfect, we would expect the image or report that 
is officially paired with the query image or report to be ranked first 
in the list. We report the mean rank number as a metric of accuracy. 
This allows us to characterize EchoCLIP-R’s retrieval abilities in two 
settings: image-to-report and report-to-image. We choose a single 
random video from each study to represent the whole study in these 
ranking tests to simplify the implementation. To obtain a single value 
that represents a model’s overall retrieval ability, we define the MCMRR 
as the average of both the mean image-to-report retrieval rank and the 
mean report-to-image retrieval rank. MCMRR values for both EchoCLIP 
and EchoCLIP-R are shown in Table 2.

To evaluate the model’s ability to identify unique patients, we 
computed the similarity between many random pairs of EchoCLIP-R’s 
image embeddings and then treated those similarity values as if they 
were continuous probability predictions meant to classify whether 
both images in the pair came from the same patient. To visualize patient 
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trajectories before or after heart transplantation or cardiac surgery, we 
first collected all the echocardiogram images within 200 days before or 
after the procedure date. These images were grouped by study and then 
embeddings were produced for each video using EchoCLIP-R. The earli-
est study within the 200-day window was taken as a baseline and then 
each following study within the window was assigned a similarity score 
computed by taking the average similarity between all possible pairs 
of videos from the baseline study and the study in question. This was 
repeated for all patients who had undergone heart transplantation or 
cardiac surgery in our test set who also had at least one echocardiogra-
phy study performed before and after the date of the procedure. These 
study-level ‘similarity timelines’ were then plotted together, resampled 
and averaged to create Fig. 3c,d. These study-level similarity scores can 
also treated as continuous probability predictions for whether a given 
study was acquired before or after the procedure date, allowing us to 
calculate an AUC score that quantifies EchoCLIP-R’s ability to detect 
the effects of such procedures. Multiple surgical characteristics and 
approaches were analyzed by subset analysis with similar results (Sup-
plementary Figs. 6 and 7).

Adapting EchoCLIP to classification and regression tasks
Despite only training to encode images and report text as semanti-
cally meaningful vector embeddings, EchoCLIP was adapted to per-
form both classification and regression tasks. For each classification 
task, we followed the approach of the original CLIP paper and con-
structed text prompts describing a positive case. Then, we obtained 
an embedding of those prompts using EchoCLIP’s text encoder and 
computed the cosine similarity between them and the embeddings 
of the videos in our test set. In the case of multiple semantically 
equivalent prompts being used for a binary classification task, we 
average the similarity across all prompts and then averaged again 
over the first 20 frames of the video (at temporal stride 2). We treat 
this final average similarity score as a continuous probability pre-
diction. Hyperparameters of number of frames sampled per video, 
stride (frame count between sampled frames) and number of aver-
aged embeddings were evaluated to optimize model performance 
(Supplementary Tables 4 and 5).

For regression tasks, we generated a collection of variations on 
a base text prompt by only changing the relevant value in the text 
(Supplementary Fig. 8). For instance, variants of the prompt ‘The 
left ventricular ejection fraction is estimated to be X%’ or ‘LV ejection 
fraction is X%’ were generated for all integer values between 0 and 
100. These variations on the base prompt are then embedded using 
EchoCLIP’s text encoder. The cosine similarity between these prompt 
embeddings and the embeddings of each of the first 20 frames of all 
test-set videos (extracted with temporal stride of 2) is computed. The 
candidate values are then ranked for each frame according to their 
corresponding prompt embeddings’ similarity to the frame embed-
dings and the bottom 80% of the values are discarded. The remaining 
20% of the values are averaged along the frames dimension, leaving 
20 potential prediction values ordered from most likely (on average 
across all frames) to least likely. We found, empirically, that taking  
the median of these 20 values results in the most accurate predictions. 
This process is illustrated in Extended Data Fig. 1.

For EchoCLIP, a systematic search through relevant phrases pre-
sent in the echocardiography report template file was conducted to 
manually construct the base prompts for each task. For EchoCLIP-R, 
we noted that using this approach resulted in severely degraded 
performance. We believe this to be the result of short, single-phrase 
prompts being out-of-distribution for EchoCLIP-R as it was trained 
exclusively using full-length reports. To address this, we tested an 
alternate prompting strategy for EchoCLIP-R, where the base prompts 
are entire reports sampled from videos in the validation set that 
have the desired labels. As an example of how this works for a regres-
sion task, the base LVEF estimation prompts for EchoCLIP-R were 

chosen by randomly sampling up to ten reports from the validation 
set for each ground-truth LVEF value between 1 and 100. This way, 
EchoCLIP-R has in-distribution ‘example reports’ from the validation 
set to compare the query images against, instead of being forced 
to encode much shorter prompts that are nothing like what it saw 
during training. For binary tasks, 200 reports containing a positive 
label for the task are sampled from the validation set and used as base 
prompts. We found that this ‘sampled prompts’ strategy substantially 
improved EchoCLIP-R’s performance on classification and regression 
tasks (Table 2).

All text prompts used for the evaluation of EchoCLIP are published 
in the project’s code repository, a link to which is included in Supple-
mentary Fig. 8. Ground-truth labels are extracted from the clinical 
reports and used to calculate AUC and other performance metrics.

Interpretation techniques
Code for saliency mapping with PromptCAM was written in Python 
with dependencies on PyTorch and NumPy packages. Modifying 
the optimization function of the integrated gradients method, 
PromptCAM maximizes the cosine similarity as the objective func-
tion between image-based regions of interest with the text prompt. 
Prompts describing common cardiac structures were used to test 
whether EchoCLIP ‘pays attention’ to relevant cardiac structures in 
echocardiogram images. UMAP was applied using the umap-learn 
Python package. EchoCLIP image embeddings for each video in the 
test set were processed to demonstrate how clusters associated with 
different cardiovascular diseases, disease states and measurements 
are present. The n_neighbors parameter was set to the maximum 
allowed value of 200 and the min_distance parameter was set to the 
maximum allowed value of 1.0.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The dataset of videos and reports used to train EchoCLIP is not pub-
licly available due to its potentially identifiable nature; however, 
EchoNet-Dynamic, the dataset that we used for external validation, is 
publicly available at https://echonet.github.io/dynamic/.

Code availability
Our model weights, evaluation prompts, and demonstration code are 
available on GitHub at https://github.com/echonet/echo_CLIP.
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Extended Data Fig. 1 | Frame level ensembling. (a) Distribution of EchoCLIP left 
ventricular ejection fraction (LVEF) from individual frames of an echocardiogram 
video, which are averaged to (b) a video-level distribution of LVEF prediction.  
(c) Scatter-plot of subset of test dataset (n = 1,000 predictions from 100 videos 

and 10 frames per video) representing predicted vs. ground-truth LVEF. Each 
point represents the final predicted values and whiskers represent the range of 
frame level predictions for that video.
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Extended Data Table 1 | AUC, sensitivity, and specificity for EchoCLIP zero-shot prediction tasks

Area under the receiver operator curve, sensitivity, and specificity for zero-shot classification tasks. Sensitivity and specificity calculated at the Youden’s index.
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