Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The future of early cancer detection

Subjects

Abstract

A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of cancer.
Fig. 2: Roadmap to implementing risk-stratified early detection in the population.
Fig. 3: Novel technologies for one-off and continuous monitoring strategies.
Fig. 4: New paradigms for early cancer detection.

Similar content being viewed by others

References

  1. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Krimmel, J. D. et al. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues. Proc. Natl Acad Sci. USA 113, 6005–6010 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594.e512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Dobrow, M. J., Hagens, V., Chafe, R., Sullivan, T. & Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. Can. Med. Assoc. J. 190, E422–E429 (2018).

    Article  Google Scholar 

  9. Welch, H. G., Kramer, B. S. & Black, W. C. Epidemiologic signatures in cancer. N. Engl. J. Med. 381, 1378–1386 (2019).

    Article  PubMed  Google Scholar 

  10. Pashayan, N., Morris, S., Gilbert, F. J. & Pharoah, P. D. P. Cost-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-table model. JAMA Oncol. 4, 1504–1510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. UK National Screening Committee. Adult screening programme: bowel cancer. https://view-health-screening-recommendations.service.gov.uk/bowel-cancer

  12. US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 319, 1901–1913 (2018).

  13. Welch, H. G., Prorok, P. C., O’Malley, A. J. & Kramer, B. S. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 375, 1438–1447 (2016).

    Article  PubMed  Google Scholar 

  14. UK National Screening Committee. Adult screening programme: prostate cancer. https://view-health-screening-recommendations.service.gov.uk/prostate-cancer/

  15. Marmot, M. G. et al. The benefits and harms of breast cancer screening: an independent review. Br. J. Cancer 108, 2205–2240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J. Am. Med. Assoc. 317, 2402–2416 (2017).

  17. Pharoah, P. D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 31, 33–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Amos, C. I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomark. Prev. 26, 126–135 (2017).

    Article  Google Scholar 

  19. Bahcall, O. G. iCOGS collection provides a collaborative model. Foreword. Nat. Genet. 45, 343 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adeyemo, A. et al. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    Article  CAS  Google Scholar 

  22. Pashayan, N. et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat. Rev. Clin. Oncol. 17, 687–705 (2020).

  23. McGeoch, L. et al. Risk prediction models for colorectal cancer incorporating common genetic variants: a systematic review. Cancer Epidemiol. Biomark. Prev. 28, 1580–1593 (2019).

    Article  Google Scholar 

  24. Harrison, H. et al. Risk prediction models for kidney cancer: a systematic review. Eur. Urol. Focus 7, 1380–1390 (2020).

  25. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, A. et al. Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2021-107904 (2021).

  27. Maas, P. et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol. 2, 1295–1302 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tyrer, J., Duffy, S. W. & Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 23, 1111–1130 (2004).

    Article  PubMed  Google Scholar 

  29. Hurson, A. N. et al. Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries. Int. J. Epidemiol. dyab036 (2021).

  30. Clift, A. K. et al. The current status of risk-stratified breast screening. Br. J. Cancer 126, 533–550 (2021).

  31. Aleshin-Guendel, S., Lange, J., Goodman, P., Weiss, N. S. & Etzioni, R. A latent disease model to reduce detection bias in cancer risk prediction studies. Evaluation Health Prof. 44, 42–49 (2021).

    Article  Google Scholar 

  32. Shen, Y., Dong, W., Gulati, R., Ryser, M. D. & Etzioni, R. Estimating the frequency of indolent breast cancer in screening trials. Stat. Methods Med. Res. 28, 1261–1271 (2019).

    Article  PubMed  Google Scholar 

  33. Trentham-Dietz, A. et al. Reflecting on 20 years of breast cancer modeling in CISNET: recommendations for future cancer systems modeling efforts. PLoS Comput. Biol. 17, e1009020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shieh, Y. et al. Breast cancer screening in the precision medicine era: risk-based screening in a population-based trial. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djw290 (2017).

  35. Ghanouni, A. et al. Attitudes towards risk-stratified breast cancer screening among women in England: a cross-sectional survey. J. Med. Screen 27, 138–145 (2020).

    Article  PubMed  Google Scholar 

  36. Pashayan, N. et al. Should age-dependent absolute risk thresholds be used for risk stratification in risk-stratified breast cancer screening? J. Pers. Med 11, 916 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Falcaro, M. et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 398, 2084–2092 (2021).

    Article  PubMed  Google Scholar 

  38. Arbyn, M. et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 27, 1083–1095 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. WHO. A cervical cancer-free future: First-ever global commitment to eliminate a cancer. https://www.who.int/news/item/17-11-2020-a-cervical-cancer-free-future-first-ever-global-commitment-to-eliminate-a-cancer (2020).

  40. Mazzone, P. J. et al. Early candidate nasal swab classifiers developed using machine learning and whole transcriptome sequencing may improve early lung cancer detection. J. Clin. Oncol. 39, 8551–8551 (2021).

    Article  Google Scholar 

  41. Sarkeala, T. et al. Piloting gender-oriented colorectal cancer screening with a faecal immunochemical test: population-based registry study from Finland. BMJ Open 11, e046667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baldacchini, F. et al. Results of compliant participation in five rounds of fecal immunochemical test screening for colorectal cancer. Clin. Gastroenterol. Hepatol. 19, 2361–2369 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Nieuwenburg, S. A. V. et al. Accuracy of H. pylori fecal antigen test using fecal immunochemical test (FIT). Gastric Cancer https://doi.org/10.1007/s10120-021-01264-8 (2021).

  45. Fitzgerald, R. C. et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet 396, 333–344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gehrung, M. et al. Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat. Med. 27, 833–841 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Menon, U. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 397, 2182–2193 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eklund, M. et al. MRI-targeted or standard biopsy in prostate cancer screening. N. Engl. J. Med. 385, 908–920 (2021).

    Article  PubMed  Google Scholar 

  49. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    Article  PubMed  Google Scholar 

  50. Hugosson, J. et al. A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur. Urol. 76, 43–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. J. Am. Med. Assoc. 319, 883–895 (2018).

    Article  Google Scholar 

  52. Van Poppel, H. et al. A European model for an organised risk-stratified early detection programme for prostate cancer. Eur. Urol. Oncol. 4, 731–739 (2021).

    Article  PubMed  Google Scholar 

  53. Lenaerts, L. et al. Comprehensive genome-wide analysis of routine non-invasive test data allows cancer prediction: a single-center retrospective analysis of over 85,000 pregnancies. EClinicalMedicine 35, 100856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Abbosh, C., Swanton, C. & Birkbak, N. J. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann. Oncol. 30, 358–359 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan, K. C. A. et al. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377, 513–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, M. C., Oxnard, G. R., Klein, E. A., Swanton, C. & Seiden, M. V. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31, 745–759 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372, eaaw3616 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Mathios, D. et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 12, 5060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peneder, P. et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat. Commun. 12, 3230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lennon, A. M. et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369, eabb9601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oren, O., Blankstein, R. & Bhatt, D. L. Incidental imaging findings in clinical trials. JAMA 323, 603–604 (2020).

    Article  PubMed  Google Scholar 

  67. Augustine, R. et al. Imaging cancer cells with nanostructures: prospects of nanotechnology driven non-invasive cancer diagnosis. Adv. Colloid Interface Sci. 294, 102457 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Ehlerding, E. B., Grodzinski, P., Cai, W. & Liu, C. H. Big potential from small agents: nanoparticles for imaging-based companion diagnostics. ACS Nano 12, 2106–2121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, M., Anderson, R.-C., Lan, X., Conti, P. S. & Chen, K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Medicinal Res. Rev. 40, 909–930 (2020).

    Article  Google Scholar 

  70. Wang, W. et al. Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging. Adv. Funct. Mater. 28, 1800310 (2018).

    Article  CAS  Google Scholar 

  71. Hao, L. et al. Microenvironment-triggered multimodal precision diagnostics. Nat. Mater. 20, 1440–1448 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Koudrina, A. & DeRosa, M. C. Advances in medical imaging: aptamer- and peptide-targeted MRI and CT contrast agents. ACS Omega 5, 22691–22701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yuan, Y. et al. Furin-mediated self-assembly of olsalazine nanoparticles for targeted raman imaging of tumors. Angew. Chem. Int. Ed. 60, 3923–3927 (2021).

    Article  CAS  Google Scholar 

  74. Sood, R. et al. Ultrasound for breast cancer detection globally: a systematic review and meta-analysis. J. Glob. Oncol. 5, 1–17 (2019).

    PubMed  Google Scholar 

  75. Abou-Elkacem, L., Bachawal, S. V. & Willmann, J. K. Ultrasound molecular imaging: moving toward clinical translation. Eur. J. Radiol. 84, 1685–1693 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Willmann, J. K. et al. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J. Clin. Oncol. 35, 2133–2140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, Y. et al. Molecular imaging of orthotopic prostate cancer with nanobubble ultrasound contrast agents targeted to PSMA. Sci. Rep. 11, 4726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, T. et al. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale 11, 21759–21766 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Duran-Sierra, E. et al. Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions. Oral. Oncol. 105, 104635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pence, I. & Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 45, 1958–1979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nicolson, F., Kircher, M. F., Stone, N. & Matousek, P. Spatially offset Raman spectroscopy for biomedical applications. Chem. Soc. Rev. 50, 556–568 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Nicolson, F. et al. Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS). Theranostics 9, 5899–5913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, C. et al. Cathespin B-initiated cypate nanoparticle formation for tumor photoacoustic imaging. Angew. Chem. Int. Ed. Engl. 61, e202114766 (2022).

  84. Brown, E., Brunker, J. & Bohndiek, S. E. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis. Models Mech. 12, dmm039636 (2019).

  85. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Vukajlović, J. M. & Panić-Janković, T. in Mass Spectrometry in Life Sciences and Clinical Laboratory (ed. Mitulović, G.) Ch. 5 (IntechOpen, 2021).

  87. Banerjee, S. et al. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proc. Natl Acad. Sci. USA 114, 3334–3339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Böhm, D. et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol. Rep. 28, 429–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, C.-C., Chu, H.-W., Hsu, C.-W., Chang, K.-P. & Liu, H.-P. Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma. Proteomics 15, 3394–3404 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Komor, M. A. et al. Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression. J. Pathol. 250, 288–298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mahmoudi, T., de la Guardia, M. & Baradaran, B. Lateral flow assays towards point-of-care cancer detection: a review of current progress and future trends. Trends Anal. Chem. 125, 115842 (2020).

    Article  CAS  Google Scholar 

  94. Bayoumy, S. et al. Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Commun. Biol. 3, 460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sachdeva, S., Davis, R. W. & Saha, A. K. Microfluidic point-of-care testing: commercial landscape and future directions. Front. Bioeng. Biotechnol. 8, 602659 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. McRae, M. P., Simmons, G., Wong, J. & McDevitt, J. T. Programmable bio-nanochip platform: a point-of-care biosensor system with the capacity to learn. Acc. Chem. Res. 49, 1359–1368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Low, C. A. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digit. Med. 3, 140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Yu, X. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat. Biomed. Eng. 2, 165–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Williams, R. M. et al. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 4, eaaq1090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hindley, J. W. et al. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc. Natl Acad. Sci. USA 116, 16711–16716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He, J. et al. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25, 30–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, S., Yang, J., Fong, S. & Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 471, 61–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. FDA. Artificial intelligence and machine learning (AI/ML) software as a medical device action plan. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device (2021).

  107. Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Elemento, O., Leslie, C., Lundin, J. & Tourassi, G. Artificial intelligence in cancer research, diagnosis and therapy. Nat. Rev. Cancer 21, 747–752 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Conroy, S. M. et al. Racial/ethnic differences in the impact of neighborhood social and built environment on breast cancer risk: the Neighborhoods and Breast Cancer Study. Cancer Epidemiol. Biomark. Prev. 26, 541–552 (2017).

    Article  Google Scholar 

  110. Welch, H. G. & Fisher, E. S. Income and cancer overdiagnosis — when too much care is harmful. N. Engl. J. Med. 376, 2208–2209 (2017).

    Article  PubMed  Google Scholar 

  111. Wegwarth, O., Schwartz, L. M., Woloshin, S., Gaissmaier, W. & Gigerenzer, G. Do physicians understand cancer screening statistics? A national survey of primary care physicians in the United States. Ann. Intern. Med. 156, 340–349 (2012).

    Article  PubMed  Google Scholar 

  112. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  113. Park, Sm. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kruger, S. et al. Advances in cancer immunotherapy 2019 — latest trends. J. Exp. Clin. Cancer Res. 38, 268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pennycuick, A. et al. Immune surveillance in clinical regression of preinvasive squamous cell lung cancer. Cancer Discov. 10, 1489–1499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davies, S. & Pearson-Stuttard, J. Whose Health Is It, Anyway? (Oxford University Press, 2020).

  117. Zhang, C., Yan, Y., Zou, Q., Chen, J. & Li, C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac. J. Clin. Oncol. 12, 13–21 (2016).

    Article  PubMed  Google Scholar 

  118. Li, Y. et al. A bioinspired nanoprobe with multilevel responsive T1-weighted MR signal-amplification illuminates ultrasmall metastases. Adv. Mater. 32, 1906799 (2020).

    Article  CAS  Google Scholar 

  119. Yu, B., Choi, B., Li, W. & Kim, D.-H. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 11, 3637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kostevšek, N. et al. Magneto-liposomes as MRI contrast agents: a systematic study of different liposomal formulations. Nanomaterials 10, 889 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  121. Taylor, R. M. et al. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J. Nanopart. Res. 13, 4717–4729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Botta, M. & Tei, L. Relaxivity enhancement in macromolecular and nanosized gdIII-based MRI contrast agents. Eur. J. Inorg. Chem. 2012, 1945–1960 (2012).

    Article  CAS  Google Scholar 

  123. Jiang, Q. et al. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. J. Nanobiotechnology 19, 64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bouché, M. et al. Recent advances in molecular imaging with gold nanoparticles. Bioconjugate Chem. 31, 303–314 (2020).

    Article  CAS  Google Scholar 

  125. Kinsella, J. M. et al. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. 50, 12308–12311 (2011).

    Article  CAS  Google Scholar 

  126. Hallouard, F. et al. Radiopaque iodinated nano-emulsions for preclinical X-ray imaging. RSC Adv. 1, 792–801 (2011).

    Article  CAS  Google Scholar 

  127. Karunamuni, R. et al. Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography. Eur. Radiol. 26, 3301–3309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Al Zaki, A. et al. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8, 104–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Oh, M. H. et al. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. JACS 133, 5508–5515 (2011).

    Article  CAS  Google Scholar 

  130. Pan, D. et al. An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano. 6, 3364–3370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramos-Membrive, R. et al. In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. J. Drug Deliv. Sci. Technol. 64, 101809 (2021).

    Article  CAS  Google Scholar 

  132. Pérez-Medina, C. et al. PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J. Nucl. Med. 56, 1272–1277 (2015).

    Article  PubMed  Google Scholar 

  133. Bonvalot, S. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 20, 1148–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, Q., Fang, H., Gai, Y. & Lan, X. pH-triggered assembly of natural melanin nanoparticles for enhanced PET imaging. Front. Chem. 8, 755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nagachinta, S. et al. Radiolabelling of lipid-based nanocarriers with fluorine-18 for in vivo tracking by PET. Colloids Surf. B 188, 110793 (2020).

    Article  CAS  Google Scholar 

  136. Xing, Z. et al. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 21, 145607 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Ho, Y.-J. et al. Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 232, 119723 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, J. et al. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. J. Controlled Release 223, 197–206 (2016).

    Article  CAS  Google Scholar 

  139. Li, J., Ji, H., Jing, Y. & Wang, S. pH- and acoustic-responsive platforms based on perfluoropentane-loaded protein nanoparticles for ovarian tumor-targeted ultrasound imaging and therapy. Nanoscale Res. Lett. 15, 31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang, Y. et al. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31, 1808166 (2019).

    Article  CAS  Google Scholar 

  141. Park, E.-Y., Oh, D., Park, S., Kim, W. & Kim, C. New contrast agents for photoacoustic imaging and theranostics: recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng. 5, 031510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Doan, V. H. M. et al. Fluorescence/photoacoustic imaging-guided nanomaterials for highly efficient cancer theragnostic agent. Sci. Rep. 11, 15943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. García-Álvarez, R. et al. Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging. ACS Photonics 7, 646–652 (2020).

    Article  CAS  Google Scholar 

  144. Wang, C. et al. Cathespin B-initiated cypate nanoparticle formation for tumor photoacoustic imaging. Angew. Chem. Int. Ed. Engl. 61, e202114766 (2021).

  145. Zhai, T. et al. Hollow bimetallic complex nanoparticles for trimodality imaging and photodynamic therapy in vivo. ACS Appl. Mater. Interfaces 12, 37470–37476 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Sun, M. et al. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl. Mater. Interfaces 9, 10453–10460 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Rieffel, J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 27, 1785–1790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca C. Fitzgerald.

Ethics declarations

Competing interests

R.C.F. is named on patents relating to Cytosponge and associated assays that have been licensed by the Medical Research Council to Covidien (now Medtronic). R.C.F. is a founder and shareholder for Cyted. A.C.A. is a named inventor of BOADICEA v5, licensed by Cambridge Enterprise (University of Cambridge). N.R. is co-founder and Chief Scientific Officer of Inivata and is an inventor on patents related to cancer detection and molecular analysis.

Peer review

Peer review information

Nature Medicine thanks Marnix Jansen, Martin Eklund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Karen O’Leary was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzgerald, R.C., Antoniou, A.C., Fruk, L. et al. The future of early cancer detection. Nat Med 28, 666–677 (2022). https://doi.org/10.1038/s41591-022-01746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01746-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer