Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy

A Publisher Correction to this article was published on 23 August 2023

A Publisher Correction to this article was published on 12 July 2023

This article has been updated

Abstract

Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IgG structure, interaction partners and impact of posttranslational modifications.
Fig. 2: IgG subclass binding to cellular FcγRs in monomeric or immune complex form.
Fig. 3: Effect of fucose residues on IgG-dependent effector functions.
Fig. 4: Effect of IgG subclass and glycosylation on therapeutic IgG activity.

Similar content being viewed by others

Change history

References

  1. Ding, L., Chen, X., Cheng, H., Zhang, T. & Li, Z. Advances in IgA glycosylation and its correlation with diseases. Front. Chem. 10, 974854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shade, K. T., Conroy, M. E. & Anthony, R. M. IgE glycosylation in health and disease. Curr. Top. Microbiol Immunol. 423, 77–93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, Y., Li, X., Wang, T. & Li, W. Core fucosylation regulates the function of pre-BCR, BCR and IgG in humoral immunity. Front. Immunol. 13, 844427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Challa, D. K., Velmurugan, R., Ober, R. J. & Sally Ward, E. FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr. Top. Microbiol Immunol. 382, 249–272 (2014).

    CAS  PubMed  Google Scholar 

  7. Nimmerjahn, F. & Ravetch, J. V. Four keys to unlock IgG. J. Exp. Med. 218, e20201753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Black, C. A. A brief history of the discovery of the immunoglobulins and the origin of the modern immunoglobulin nomenclature. Immunol. Cell Biol. 75, 65–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Lefranc, G. et al. Simultaneous absence of the human IgG1, IgG2, IgG4 and IgA1 subclasses: immunological and immunogenetical considerations. Eur. J. Immunol. 13, 240–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Pan, Q. & Hammarstrom, L. Molecular basis of IgG subclass deficiency. Immunol. Rev. 178, 99–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Jefferis, R. & Lefranc, M. P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1, 332–338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Taeye, S. W. et al. FcγR binding and ADCC activity of human IgG allotypes. Front. Immunol. 11, 740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Labrijn, A. F. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 27, 767–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Orr, C. M. et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci. Immunol. 7, eabm3723 (2022). This study demonstrates how hinge disulfide orientation regulates agonistic IgG2 activity.

    Article  CAS  PubMed  Google Scholar 

  15. Gordan, S., Biburger, M. & Nimmerjahn, F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol. Rev. 268, 52–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Kerntke, C., Nimmerjahn, F. & Biburger, M. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 11, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vorsatz, C., Friedrich, N., Nimmerjahn, F. & Biburger, M. There is strength in numbers: quantitation of Fc gamma receptors on murine tissue-resident macrophages. Int. J. Mol. Sci. 22, 12172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplon, H., Chenoweth, A., Crescioli, S. & Reichert, J. M. Antibodies to watch in 2022. MAbs 14, 2014296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl Acad. Sci. USA 116, 4025–4030 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Bremer, E. T. et al. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation. MAbs 7, 672–680 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burmeister, W. P., Huber, A. H. & Bjorkman, P. J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Grinnell, S., Yoshida, K. & Jasin, H. E. Responses of lymphocytes of patients with rheumatoid arthritis to IgG modified by oxygen radicals or peroxynitrite. Arthritis Rheum. 52, 80–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. More, A. S. et al. Impact of glycosylation on the local backbone flexibility of well-defined IgG1-Fc glycoforms using hydrogen exchange-mass spectrometry. J. Pharm. Sci. 107, 2315–2324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, X. et al. Characterization of IgG1 Fc deamidation at asparagine 325 and its impact on antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. Sci. Rep. 10, 383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klaric, L. et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 6, eaax0301 (2020). This study identifies several genetic pathways associated with differential IgG glycosylation in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, J. et al. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc. Natl Acad. Sci. USA 112, 833–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Subedi, G. P. & Barb, A. W. The structural role of antibody N-glycosylation in receptor interactions. Structure 23, 1573–1583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Einarsdottir, H. K. et al. Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. Glycoconj. J. 30, 147–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Falck, D. et al. Glycoform-resolved pharmacokinetic studies in a rat model employing glyco-engineered variants of a therapeutic monoclonal antibody. MAbs 13, 1865596 (2021).

    Article  PubMed  Google Scholar 

  32. Kao, D. et al. A monosaccharide residue is sufficient to maintain mouse and human IgG subclass activity and directs IgG effector functions to cellular Fc receptors. Cell Rep. 13, 2376–2385 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, 2–9 (2021). Together with ref. 64, this study provides evidence that afucosylated SARS-CoV-2-specific antibody responses contribute to immune pathology.

    Article  Google Scholar 

  34. de Haan, N. et al. The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front Immunol. 8, 608 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kao, D. et al. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur. J. Immunol. 47, 2070–2079 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zaytseva, O. O. et al. Fc-linked IgG N-glycosylation in FcγR knock-out mice. Front Cell Dev. Biol. 8, 67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dekkers, G. et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc receptor- and complement-mediated-effector activities. Front. Immunol. 8, 877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barb, A. W. & Prestegard, J. H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol. 7, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oswald, D. M. et al. ST6Gal1 in plasma is dispensable for IgG sialylation. Glycobiology 32, 803–813 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schaffert, A. et al. Minimal B cell extrinsic IgG glycan modifications of pro- and anti-inflammatory IgG preparations in vivo. Front. Immunol. 10, 3024 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Kapur, R. et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 123, 471–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bakovic, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mijakovac, A. et al. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front. Immunol. 12, 680227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. MAbs 8, 1512–1524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Falconer, D. J., Subedi, G. P., Marcella, A. M. & Barb, A. W. Antibody fucosylation lowers the FcγRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chem. Biol. 13, 2179–2189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lippold, S. et al. Glycoform-resolved FcɣRIIIa affinity chromatography-mass spectrometry. MAbs 11, 1191–1196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruggeman, C. W. et al. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J. Immunol. 199, 204–211 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Temming, A. R. et al. Functional attributes of antibodies, effector cells, and target cells affecting NK cell-mediated antibody-dependent cellular cytotoxicity. J. Immunol. 203, 3126–3135 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Patel, K. R., Roberts, J. T. & Barb, A. W. Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 30, 427–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel, K. R., Roberts, J. T., Subedi, G. P. & Barb, A. W. Restricted processing of CD16a/Fc gamma receptor IIIa N-glycans from primary human NK cells impacts structure and function. J. Biol. Chem. 293, 3477–3489 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Coillie, J. et al. Role of N-glycosylation in FcRIIIa interaction with IgG. Front Immunol. 13, 987151 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kapur, R. et al. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166, 936–945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kapur, R. et al. Prophylactic anti-D preparations display variable decreases in Fc-fucosylation of anti-D. Transfusion 55, 553–562 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Wuhrer, M. et al. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J. Proteome Res 8, 450–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Sonneveld, M. E. et al. Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br. J. Haematol. 174, 310–320 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Bharadwaj, P. et al. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep. Med. 3, 100818 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Osch, T. L. J. et al. Altered Fc glycosylation of anti-HLA alloantibodies in hemato-oncological patients receiving platelet transfusions. J. Thromb. Haemost. 20, 3011–3025 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hoepel, W. et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 13, eabf8654 (2021). In combination with refs. 33,69, this study identifies a role for afucosylated SARS-CoV-2 antibodies in enhancing immune pathology.

    Article  CAS  PubMed  Google Scholar 

  65. Larsen, M. D. et al. Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat. Commun. 12, 5838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oosterhoff, J. J., Larsen, M. D., van der Schoot, C. E. & Vidarsson, G. Afucosylated IgG responses in humans—structural clues to the regulation of humoral immunity. Trends Immunol. 43, 800–814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thulin, N. K. et al. Maternal anti-dengue IgG fucosylation predicts susceptibility to dengue disease in infants. Cell Rep. 31, 107642 (2020). Together with ref. 68, this study demonstrates that afucosylated dengue-specific immune responses are responsible for antibody-dependent enhancement of infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, T. T. et al. IgG antibodies to dengue enhanced for FcRIIIA binding determine disease severity. Science 355, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sefik, E. et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606, 585–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonneveld, M. E. et al. Fc-Glycosylation in human IgG1 and IgG3 is similar for both total and anti-red-blood cell anti-K antibodies. Front. Immunol. 9, 129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Plomp, R. et al. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci. Rep. 7, 12325 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peschke, B., Keller, C. W., Weber, P., Quast, I. & Lunemann, J. D. Fc galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front. Immunol. 8, 646 (2017). This study together with refs. 7476 demonstrates that galactosylation enhances IgG-dependent complement activation.

    Article  PubMed  PubMed Central  Google Scholar 

  74. van Osch, T. L. J. et al. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. J. Immunol. 207, 1545–1554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wei, B. et al. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs 13, 1893427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van Osch, T. L. J. et al. Fc galactosylation of anti-platelet human IgG1 alloantibodies enhances complement activation on platelets. Haematologica 107, 2432–2444 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gstottner, C. et al. Affinity capillary electrophoresis–mass spectrometry permits direct binding assessment of IgG and FcγRIIa in a glycoform-resolved manner. Front. Immunol. 13, 980291 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lippold, S. et al. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography–mass spectrometry. MAbs 13, 1982847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bye, A. P. et al. Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets. Blood 138, 1481–1489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gudelj, I., Lauc, G. & Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333, 65–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Kissel, T., Toes, R. E. M., Huizinga, T. W. J. & Wuhrer, M. Glycobiology of rheumatic diseases. Nat. Rev. Rheumatol. 19, 28–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bartsch, Y. C. et al. Sialylated autoantigen-reactive IgG antibodies attenuate disease development in autoimmune mouse models of lupus nephritis and rheumatoid arthritis. Front. Immunol. 9, 1183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Epp, A. et al. Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J. Allergy Clin. Immunol. 141, 399–402 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest. 123, 3788–3796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, J. et al. Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol. Cell Proteom. 10, M110.004655 (2011).

    Article  Google Scholar 

  92. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017). This study demonstrates how pro-inflammatory cytokines and IgG sialylation regulate the onset of autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  93. Jefferis, R., Lund, J. & Goodall, M. Modulation of FcγR and human complement activation by IgG3-core oligosaccharide interactions. Immunol. Lett. 54, 101–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Lund, J., Takahashi, N., Pound, J. D., Goodall, M. & Jefferis, R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol. 157, 4963–4969 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Ahmed, A. A. et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J. Mol. Biol. 426, 3166–3179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–E3546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Tanigaki, K. et al. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance. J. Clin. Invest. 128, 309–322 (2018). This study highlights how IgG sialylation status modulates obesity-induced insulin resistance via FcγRIIb.

    Article  PubMed  Google Scholar 

  99. Choi, H. et al. Sialylated IVIg binding to DC-SIGN+ Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion. Clin. Immunol. 246, 109215 (2022).

    Article  PubMed  Google Scholar 

  100. Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162, 160–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Temming, A. R. et al. Human DC-SIGN and CD23 do not interact with human IgG. Sci. Rep. 9, 9995 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yu, X., Vasiljevic, S., Mitchell, D. A., Crispin, M. & Scanlan, C. N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J. Mol. Biol. 425, 1253–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kempers, A. C., Hafkenscheid, L., Scherer, H. U. & Toes, R. E. M. Variable domain glycosylation of ACPA-IgG: a missing link in the maturation of the ACPA response? Clin. Immunol. 186, 34–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    Article  PubMed  Google Scholar 

  107. Kissel, T. et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 8, eabm1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1,500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coloma, M. J., Trinh, R. K., Martinez, A. R. & Morrison, S. L. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1–>6) dextran antibody. J. Immunol. 162, 2162–2170 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Volkov, M. et al. IgG Fab glycans hinder FcRn-mediated placental transport. J. Immunol. 210, 158–167 (2022).

    Article  Google Scholar 

  111. Erickson, J. J. et al. Pregnancy enables antibody protection against intracellular infection. Nature 606, 769–775 (2022). This study identifies a new pathway of Fab glycosylation-dependent immunomodulation via modulation of IL-10 secretion by B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell Proteom. 13, 3029–3039 (2014).

    Article  CAS  Google Scholar 

  113. Dyer, M. J., Hale, G., Hayhoe, F. G. & Waldmann, H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73, 1431–1439 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Lux, A. et al. A humanized mouse identifies the bone marrow as a niche with low therapeutic IgG activity. Cell Rep. 7, 236–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, R., Oldham, R. J., Teal, E., Beers, S. A. & Cragg, M. S. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies 9, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Dahan, R. et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28, 285–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Moreno-Vicente, J. et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J. Immunother. Cancer 10, e003735 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Lux, A., Yu, X., Scanlan, C. N. & Nimmerjahn, F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J. Immunol. 190, 4315–4323 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Reitinger, C. et al. Modulation of urelumab glycosylation separates immune stimulatory activity from organ toxicity. Front. Immunol. 13, 970290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arce Vargas, F. et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33, 649–663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yofe, I. et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nat. Cancer 3, 1336–1350 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Waight, J. D. et al. Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33, 1033–1047 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hussain, K. et al. Upregulation of FcγRIIb on monocytes is necessary to promote the superagonist activity of TGN1412. Blood 125, 102–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Li, F. & Ravetch, J. V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, F. & Ravetch, J. V. Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement. Proc. Natl Acad. Sci. USA 109, 10966–10971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. White, A. L. et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol. 187, 1754–1763 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. White, A. L. et al. Fcγ receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization. J. Immunol. 193, 1828–1835 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. White, A. L. et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer cell 27, 138–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, X. et al. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell 37, 850–866 (2020). This study highlights the effectof IgG subclass on the immunomodulatory activity of IgG.

  137. Yu, X. et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 33, 664–675 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu, X. et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun. Biol. 4, 772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Richman, L. P. & Vonderheide, R. H. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol. Res. 2, 19–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Dillon, T. M. et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J. Biol. Chem. 283, 16206–16215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wypych, J. et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J. Biol. Chem. 283, 16194–16205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, X. et al. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat. Commun. 10, 4206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Brinkhaus, M. et al. The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement. Nat. Commun. 13, 6073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. James, L. C., Keeble, A. H., Khan, Z., Rhodes, D. A. & Trowsdale, J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc. Natl Acad. Sci. USA 104, 6200–6205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been funded by grants from the German Research Foundation (TRR305-B02, CRC1181-A07, CRC1526-A07, FOR2886-B2 and FOR2953-P3) and the National Institutes of Health (NIH; U01-AI-148119 and 5U19A/142790-04) to F.N. and by grants from Cancer Research UK (A20537, DRCDDRPGM-Apr2020\100005 and A24721) and NIH (grant UO1AI148153) to M.S.C.

Author information

Authors and Affiliations

Authors

Contributions

F.N., G.V. and M.S.C. performed the literature research and wrote the manuscript.

Corresponding author

Correspondence to Falk Nimmerjahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Laurie A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmerjahn, F., Vidarsson, G. & Cragg, M.S. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 24, 1244–1255 (2023). https://doi.org/10.1038/s41590-023-01544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01544-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research