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IL-1 and IL-1ra are key regulators of the
inflammatory response to RNA vaccines
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The use of lipid-formulated RNA vaccines for cancer or COVID-19 is associated with dose-limiting systemic inflammatory
responses in humans that were not predicted from preclinical studies. Here, we show that the ‘interleukin 1 (IL-1)-interleu-
kin 1 receptor antagonist (IL-1ra)’ axis regulates vaccine-mediated systemic inflammation in a host-specific manner. In human
immune cells, RNA vaccines induce production of IL-1 cytokines, predominantly IL-13, which is dependent on both the RNA
and lipid formulation. IL-1in turn triggers the induction of the broad spectrum of pro-inflammatory cytokines (including IL-6).
Unlike humans, murine leukocytes respond to RNA vaccines by upregulating anti-inflammatory IL-1ra relative to IL-1 (predomi-
nantly IL-1at), protecting mice from cytokine-mediated toxicities at >1,000-fold higher vaccine doses. Thus, the IL-1 pathway
plays a key role in triggering RNA vaccine-associated innate signaling, an effect that was unexpectedly amplified by certain
lipids used in vaccine formulations incorporating N1-methyl-pseudouridine-modified RNA to reduce activation of Toll-like

receptor signaling.

response is essential to generate a protective, long-lasting
adaptive immune response. Capable of eliciting exceptionally
strong T cell responses'~’, RNA has emerged as an attractive vac-
cine platform not only for cancer therapy, but also for prophylaxis
against infectious diseases such as COVID-19 (refs. ). RNA-based
vaccines activate a range of pattern recognition receptors (PRRs)
due to their resemblance to infectious pathogens, thus mobilizing
both adaptive and innate anti-viral mechanisms’. As a result, RNA
vaccines induce systemic elevation of pro-inflammatory cytokines
and dose-dependent, transient systemic reactions such as fever and
chills'-**’. These adverse events have been observed irrespective
of administration route (intravenous (i.v.) or intramuscular deliv-
ery), formulation (liposomes or lipid nanoparticles (LNPs)) or RNA
modifications (unmodified uridine or N1-methyl-pseudouridine,
which reduces activation of Toll-like receptors 7 and 8 (refs. '*'")).
In contrast to humans, C57BL/6 and Balb/c mice are remark-
ably tolerant to RNA vaccines and only display limited systemic
cytokine release following i.v. administration of a liposomal vaccine
containing unmodified RNA (RNA-LPX)"". Even at doses of RNA
(50pg) that are well tolerated in mice, patients exhibit transient
mild-to-moderate flu-like symptoms that constrain dose explora-
tion to a narrow range and possibly limit optimal T cell responses>*°.
Given the obvious size differences, this means that RNA-LPX doses
that trigger potent systemic inflammatory responses in humans are
more than 1,000-fold lower than in inbred laboratory mice”. Similar
observations have been made with other pro-inflammatory stimuli,
creating a notable discrepancy in the dose needed to induce bio-

| or adjuvanted vaccines, induction of an innate immune

logical and toxicological responses in different species™'>'*. The
mechanisms underlying these dramatic differences have remained
largely unknown.

We investigated the ability of lipid-formulated RNA vaccines
to trigger innate immunity. We uncovered the key role of IL-1 in

triggering the release of other pro-inflammatory cytokines associ-
ated with cytokine release syndrome (CRS), with humans being
markedly more sensitive than mice. Unlike humans, mice preferen-
tially upregulated anti-inflammatory IL-1ra relative to IL-1, protect-
ing them from uncontrolled systemic inflammation. Surprisingly,
the reactogenicity of RNA vaccines was not necessarily due to the
TLR7/8 agonism, as IL-1 release was observed using vaccines con-
taining N1-methyl-pseudouridine-modified RNA (modRNA).
Instead, the lipid components used to formulate these vaccines sub-
stituted for unmodified RNA in eliciting the IL-1 response.

RNA-LPX activates NLRP3 in monocytes. To identify the factors
that contribute to sensitivity to innate immune stimuli, we first
studied the unmodified RNA-LPX cancer vaccine, which encodes
inherent TLR7/8 agonist activity"'*. Following RNA-LPX challenge
on human peripheral blood mononuclear cells (PBMCs), a broad
range of cytokines was detected in both total PBMCs and CD14*
monocytes; a notable reduction in cytokine secretion was seen in
CD14-depleted PBMCs, indicating that the RNA-LPX-induced
cytokine response was dependent on monocytes (Fig. la,b and
Extended Data Fig. 1a,b). The production of IL-1p prompted us to ask
if RNA-LPX activated the inflammasome pathway. Cotreatment of
primary human monocytes with the NLRP3 inhibitor MCC950, the
gasdermin D inhibitor necrosulfonamide or the pan-caspase inhibi-
tor zZVAD-FMK abolished the release of RNA-LPX-induced IL-1§
(Fig. 1c,d,e), indicating that RNA-LPX-induced, monocyte-derived
IL-1p release was dependent, as expected, on inflammasome and
caspase activity.

Optimal activation of the canonical NLRP3 inflammasome
requires two signals'>'®. We reasoned that synthesis of pro-IL-1f (sig-
nal 1) was primed by TLR7/8 recognition of unmodified RNA, while
NLRP3 inflammasome activation (signal 2) was triggered by the
liposomes themselves. Indeed, modifying the RNA by substituting
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Fig. 1| RNA-LPX induces inflammasome activation and IL-1p release in human monocytes. a,b, Schematic of the assay (a) and heatmap of
RNA-LPX-induced cytokine secretion in vitro (b). c,d,e, IL-1p release from purified CD14* monocytes in the presence of RNA-LPX and MCC950 (c),
necrosulfonamide (NSA) (d) or zVAD-FMK (e). f, IL-1B release following treatment with unmodified and/or pseudoU5mC-modified RNA-LPX, and/or
with R848. g,h, RNA-LPX-induced mitochondrial ROS production (g) or IL-1 secretion following pretreatment with DPI or BAPTA-AM (h). i, Proposed
mechanism-of-action for RNA-LPX-induced inflammasome activation. j, Plasma IL-1p levels before and after RNA-LPX in patients (n=9). The data are
representative of at least three independent experiments with biologically independent samples (b-h). Data are presented as mean+s.e.m.;n=4 (c and
e),n=3(b,g and h) or n=2 (d and f). Cytokines were measured with Luminex (b-h) or with Simoa assay (). Significance was determined using one-way
ANOVA and Dunnett's multiple comparisons test (¢,d and h), two-way repeated measures ANOVA and Dunnett's multiple comparisons test (e) or
one-way ANOVA and Sidak’s multiple comparisons test (f). gMFI, geometric mean fluorescence intensity; PB, peripheral blood.

uridine with pseudouridine and cytosine with 5-methyl-cytosine
(pseudoU5mC) which renders the RNA poorly recognizable by
TLR7/8 (ref. '°) or administration of RNA-free liposomes (loss of
signal 1) diminished the release of IL-1p (Fig. 1f). Similarly, the
TLR7/8 agonist R848 alone failed to elicit IL-1p, while adding
R848 with empty liposomes or pseudoU5mC-modified RNA-LPX
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resulted in readily detectable but lower IL-1p release compared with
unmodified RNA-LPX (Fig. 1f).

Both unmodified and modified RNA-LPX also induced a robust
generation of mitochondrial reactive oxygen species (ROS) in
human monocytes (Fig. 1g). Notably, inhibition of mitochondrial
ROS production using diphenyleneiodonium (DPI) or blockade of
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intracellular Ca®* elevation using cell-permeable calcium chelator
BAPTA-AM drastically reduced RNA-LPX-induced IL-1p release
(Fig. 1h). This suggests that cationic liposomes (composed of the
broadly used lipids DOTMA and DOPE) provide signal 2 by induc-
ing mitochondrial ROS-mediated calcium influx'’, possibly second-
ary to transient disruption of endosomal or plasma membranes'®.
The RNA-LPX complex can thus provide both signals 1 and 2
(Fig. 1i) which are required for efficient NLRP3 activation and
IL-1p release from human monocytes in culture.

RNA-LPX induces IL-1 release in vivo. To determine if the
in vitro findings were relevant to in vivo observations, we analyzed
pre- and post-treatment plasma levels of IL-1f in a cohort of nine
patients with cancer receiving RNA-LPX (autogene cevumeran) in
a phase 1b study (NCT03289962). Following i.v. bolus injection of
25ug of RNA-LPX, increase in circulating IL-1f was detected in 9
out of 9 patients to varying degrees, peaking at 4-6h (Fig. 1j). In
C57BL/6 mice, i.v. injection of RNA-LPX was also found to induce
an elevation in the circulation of both IL-1p and IL-1a (Extended
Data Fig. 2a,b). Although IL-1f expression was mainly observed
in splenic Ly6C" monocytes and neutrophils in the injected mice
(Extended Data Fig. 2¢,d,g), IL-1a was produced by Ly6C" mono-
cytes and red pulp macrophages (Extended Data Fig. 2e,f,g). Thus,
both humans and mice upregulate IL-1 expression in monocyte/
macrophage-lineage cells following RNA-LPX challenge.

IL-la and IL-1P are important mediators of inflammatory
responses well known to induce a MyD88-dependent signaling
cascade upon binding to IL-1 receptor type 1 (IL-1R1)"**. We next
investigated the functional hierarchy of IL-1 cytokines in the con-
text of innate immune stimulation (Fig. 2a). In the presence of IL-1f
neutralizing antibodies, the RNA-LPX-induced cytokine secretion
by human PBMCs was completely or almost completely blocked
(Fig. 2b,c). Thus, the expression and release of IL-1p appeared to
control the induction of most pro-inflammatory cytokines, includ-
ing TNF and IL-6 (Fig. 2c). TNF blockade did not significantly
reduce IL-6 release, nor did an anti-IL-6 antibody reduce TNF
release (Extended Data Fig. 3a), indicating that cytokine release
secondary to innate stimulation by RNA-LPX was mechanistically
distinct from the CRS cascade initiated by T cell-activating thera-
pies, where anti-TNF and anti-IL-6 are both effective inhibitors of
the cytokine response*-*. Of note, out of all of the cytokines and
chemokines screened, only CCL5 (also known as RANTES) was
upregulated following IL-1pB blockade, suggesting that IL-1 signal-
ing negatively regulates the induction of CCL5 (Fig. 2b,c).

Systemic cytokine levels following RNA-LPX treatment were
also significantly attenuated in IL-1R1-deficient (Il1r17'~) mice
as compared with wildtype mice both in vitro (Extended Data
Fig. 3b,c) and in vivo (Fig. 2d,e). Consistent with our human data,
in mice RNA-LPX-induced IL-1R1 signaling occurred upstream
of IL-6 and TNF release, although the effect on TNF was less pro-
nounced in the knockouts (Fig. 2e and Extended Data Fig. 3c). In
contrast to Il1r17"~ mice, RNA-LPX administration did not result in
a decreased serum cytokine response in NLRP3-deficient (Nirp3~")
mice (Extended Data Fig. 4a,b) or in gasdermin D-deficient
(Gsdmd~"-) mice (Extended Data Fig. 4c,d). This finding can be
understood from the fact that in mice, RNA-LPX also elicited the
release of ~40-fold more IL-1a as compared with IL-1p (Extended
Data Fig. 2b). IL-1a can activate IL-1R1 signaling independently of
inflammasomes®, but nevertheless still controls the systemic cyto-
kine response in mice (as opposed to IL-1p in human cells). Taken
together, IL-1 appears to have a critical determinative role in ampli-
fying cytokine responses initiated by innate immune stimuli both in
humans and in mice.

IL-1 induction hierarchy varies between species. Due to its highly
pro-inflammatory potential, the IL-1 signaling pathway is tightly
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regulated by soluble IL-1R1 as well as soluble and membrane
forms of IL-1 receptor 2 (IL-1R2), each of which act as ligand traps
or ‘decoys™. Additionally, IL-1ra, a secreted anti-inflammatory
cytokine, competes with active IL-1 and blocks binding to their
common activating receptor, IL-1R1 (refs. *-*°). We first asked if
IL-1ra production might play a role in modulating the activity of
IL-1 induced by RNA-LPX by determining the amounts of IL-1a,
IL-1p and IL-1ra released from human PBMCs. At lower dose lev-
els of RNA-LPX (<2pgml™), IL-1p and IL-1ra were released in
nearly equivalent amounts (Fig. 3a). However, at higher RNA-LPX
doses, the release of IL-1B markedly increased (~10-fold), greatly
exceeding the release of IL-1ra, which remained constant (Fig. 3a).
Thus, the ‘buffering capacity’ of IL-1ra is likely to be overcome as
the degree of innate stimulation is increased. Of note, IL-1a levels
remained low at all RNA-LPX dose levels in human cells (Fig. 3a).

Since mice are much less sensitive to RNA-LPX than humans
(Extended Data Fig. 5a,b), we next asked if a similar IL-1 induc-
tion hierarchy occurred in mice. In stark contrast to human cells,
IL-1ra was already highly released by murine leukocytes at base-
line and further increased upon RNA-LPX; induction of IL-1a
and IL-1f was only observed at high dose levels (Fig. 3b). We then
treated C57BL/6] mice with RNA-LPX in vivo (Fig. 3c). While treat-
ment with RNA-LPX induced a >10-fold upregulation of IL-1p and
IL-1a, serum levels of IL-1ra were similarly induced and remained
in ~100-fold molar excess over IL-1f and 10-fold excess over IL-1a
(Fig. 3c, left panel). Qualitatively similar results were obtained from
C57BL/6] mouse spleen (Fig. 3¢, right panel) and from the serum of
other sub-strains of C57BL/6 and Balb/c wildtype mice regardless of
vendor origin or strain (Extended Data Fig. 5¢).

To compare IL-1f versus IL-1ra release in vivo, we calculated
the fold induction of systemic cytokine levels in C57BL/6 mice
and in the nine patients with cancer from the phase 1b study, both
groups having been treated with comparable absolute amounts of
RNA-LPX. As expected based on the in vitro data, human patients
treated with a tolerated dose of 25pg showed a slight increase in
induction of IL-1f over IL-1ra, whereas in mice, IL-1ra was dra-
matically induced relative to IL-1f (Fig. 3d). Of note, rather than
normalizing RNA-LPX doses per animal weight, mice were admin-
istered identical absolute amounts of RNA-LPX as human patients
(25 pg per injection). These findings suggest that IL-1ra can attenu-
ate the effect of IL-1p in humans but only at low-to-moderate doses
of RNA-LPX, while the substantial induction of IL-lra would
be expected to provide a far higher degree of attenuation against
increases in IL-1a/p release in mice.

We also measured the respective cytokine levels in nonhuman
primate (NHP) cells, as cynomolgus macaques and rhesus macaques
are often used to assess safety and immunogenicity of RNA vac-
cines”. Interestingly, robust upregulation of IL-1ra was detected at
all RNA-LPX dose levels, while IL-1f concentration and monocyte
frequency were found to be lower in both cynomolgus macaque and
rhesus macaque PBMCs compared with human PBMCs (Extended
Data Fig. 5d-f). These results suggest that similar to mice, preclini-
cal studies in NHPs might not fully capture the inflammatory tox-
icities related to RNA vaccines.

IL-1ra is the primary regulator of responses to RNA-LPX. To
test directly whether the high systemic levels of IL-1ra explained
the marked difference in tolerability between humans and mice,
we administered RNA-LPX to IL-1ra-deficient (IlIrn~'-) mice and
wildtype littermates. As observed previously, high-dose RNA-LPX
(100 pg) was well tolerated in wildtype mice without any detectable
adverse events. In contrast, RNA-LPX-treated IlIrn~~ mice rap-
idly developed a CRS-like phenotype characterized by pronounced
hypothermia (Fig. 3e), body weight loss (Fig. 3f) and excessive
systemic cytokine release (Fig. 3g). Notably, these adverse events
were transient and resolved within days, similar to observations
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Fig. 2 | IL-1 mediates RNA-LPX-induced cytokine release. a-c, Schematic of the assay (a) and RNA-LPX-induced cytokines in PBMCs treated with either
increasing doses of neutralizing anti-IL-1p antibodies (n=3) (b) or with a constant dose of anti-IL-18 and increasing concentrations of RNA-LPX (n=2) (c).
d.e, Schematic of the experiment (d) and serum cytokine levels in wildtype and IL-1R1 deficient mice (n=7) after i.v. injection of RNA-LPX (e). The data
are representative of at least two independent experiments with biologically independent samples (b-e). Cytokines were measured with Luminex (b-e).
Significance was determined using one-way ANOVA and Sidak’s multiple comparisons test (¢) or one-way ANOVA and Dunnett's multiple comparisons
test (e). Data are presented as median (e), or otherwise mean +s.e.m. WT, wildtype.

in human patients>**. In the absence of IL-1ra, a marked increase
in a wide range of pro-inflammatory cytokines was observed in
systemic circulation (Fig. 3g). In addition, IlIrn~'~ mice upregu-
lated acute phase proteins such as serum amyloid A3 (SAA3), the
murine equivalent to the human C-reactive protein (Fig. 3g). These
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differences could only be detected following RNA-LPX administra-
tion, as no differences in systemic cytokines were observed at base-
line (Extended Data Fig. 6).

As neutrophilia was detected in untreated Il1rn~'~ animals
(Extended Data Fig. 6a—c), we decided to test whether the increased
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Fig. 3 | Robust upregulation of IL-1ra following RNA-LPX protects mice from IL-1-mediated adverse events in vivo. a-c, Hierarchy of IL-1 family members
following overnight treatment with RNA-LPX in human PBMCs (a) or murine blood cells in vitro (b), and in C57BL/6 mice in vivo 6 h after dosing (¢, n=8,
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neutrophil count could be driving the exacerbated systemic cyto-
kine responses. To this end, mice were pretreated with two doses
of depleting anti-Ly6G antibodies before RNA-LPX administration
(Extended Data Fig. 7a). Surprisingly, the depletion of Ly6G™* cells
led to a moderate increase in RNA-LPX-induced IL-6 in Il1rn~'~

536

mice but not in wildtype littermates (Extended Data Fig. 7b). This
may be explained by an induction of cell-surface IL-1R2 on neutro-
phils in Il1rn~'~ mice following RNA-LPX exposure (Extended Data
Fig. 7¢), suggesting a similar IL-1 inhibition mechanism as seen pre-
viously in humans®.
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To fully assess the importance of the myeloid compartment on
the magnitude of systemic inflammatory response, we also pre-
treated wildtype and Il1rn~'~ mice with nine daily doses of murine
FMS-like tyrosine kinase 3 ligand (FIt3L) (Extended Data Fig. 7d),
which induces expansion of splenic macrophages, monocytes, den-
dritic cells and neutrophils®. Following i.v. administration of 50 pug
of RNA-LPX, a markedly enhanced systemic cytokine response
was observed in Flt3L-pretreated IlIrn~'~ mice (Extended Data
Fig. 7e), leading to lethal inflammation in 66% of these ani-
mals by 24h post-vaccination. Interestingly, similar toxicities
were not observed in Flt3L-pretreated wildtype animals, likely
due to augmented induction of IL-1ra (Extended Data Fig. 7e).
Altogether, these results show that endogenous IL-1ra can suppress
IL-1-induced adverse events in mice and explain their tolerability to
high doses of RNA-LPX.

In addition to contributing to the reactogenicity of the vac-
cine, IL-1 has been reported to serve as an innate instructor of
adaptive immunity®. To study the role of IL-1 in vaccine-induced
T cell responses, we injected Il1rn~~ and wildtype littermate mice
with weekly doses of 2pg, 10pug or 50pug of RNA-LPX vaccines
encoding for seven previously characterized MC38 tumor neoan-
tigens®' (Fig. 4a). While a dose-dependent expansion in total and
neoantigen-specific T cells in blood was observed in both genotypes
over time, markedly higher T cell counts were recorded in vaccinated
IL-1ra-deficient mice compared with wildtype mice (Fig. 4b,c).
Alternatively, lower doses or fewer vaccinations of RNA-LPX were
required to induce comparable T cell responses in the absence of
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IL-1ra (Fig. 4c). To further assess the quality of the vaccine-induced
T cells, we collected spleens 7 d after the final immunization for flow
cytometric characterization. Analysis of T cell differentiation mark-
ers suggested that neoantigen-specific T cells exhibited a memory
precursor effector cell (that is, CD127* KLRG1~) phenotype in the
absence of IL-1ra, while a higher proportion of vaccine-induced
T cells in wildtype mice were short-lived effector cells (that is
CD127- KLRG1") following three vaccinations with 10 pg or 50 pg
of RNA-LPX (Fig. 4d,e). We also observed a significant down regu-
lation of TCF1 in splenic tetramer® memory precursor effector
cells in IIIrn~"~ mice on day 19 (Fig. 4e), consistent with the robust
T cell expansion in blood on day 18 (Fig. 4b,c) and enhanced poly-
functionality in spleen following peptide re-stimulation on day 19
(Fig. 4f). Thus, our findings indicate that even if limited by the anti-
gen dose, unmodified RNA vaccines represent an effective approach
to induce antigen-specific T cell responses when sufficient innate
stimulus is provided, as suggested by clinical data’>".

IL-1ra controls systemic responses to inflammatory stimuli.
Given that excessive systemic inflammatory responses are com-
monly observed in human pathologies ranging from sepsis to viral
infections, we asked if the regulatory role of IL-1ra could be general-
ized to other types of innate immune stimulation. TLR and STING
agonists induced bone-marrow-derived myeloid cell cultures to
secrete variable but notable levels of IL-1ra (Fig. 5a,b). In each case,
IL-1ra induction was far greater than that seen for either IL-1a or
IL-1p. Next, we injected a single systemic dose of lipopolysaccharide
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(LPS,TLR4 agonist), ODN1826 (TLR9 agonist), heat-killed Listeria
monocytogenes (HKLM, a TLR2 agonist) or DMXAA (STING ago-
nist) into wildtype or IlIrn~'~ mice (Fig. 5c-f and Extended Data
Fig. 8). As observed with RNA-LPX, increased sensitivity and
self-limited hypothermia were observed in IL-1ra-deficient mice
treated with these innate pro-inflammatory ligands (Fig. 5c,e and
Extended Data Fig. 8a,c). Moreover, significant elevations in a range
of serum cytokines were observed in IlIrn~'~ mice (Fig. 5d,f and
Extended Data Fig. 8b,d). These results indicate that high endog-
enous levels of IL-1ra can protect wildtype mice from immune dys-
regulation and uncontrolled systemic inflammation triggered by
IL-1 for a range of innate stimulatory agents.

Lastly, T cell-based immunotherapies such as chimeric antigen
receptor (CAR)T cells and tumor-directed/CD3-bispecific anti-
bodies (TDBs) can also cause clinical CRS in human patients®' -,
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Instead of inducing a direct, primary release of IL-1p by innate stim-
uli (such as RNA-LPX), these immunotherapies have been shown
to trigger a secondary induction of IL-1p, driven by activation of
T cells’~*. We asked if IL-1p released secondary to initial stimuli
would contribute to the development of CRS in [l1rn~'~ mice bear-
ing ID8 tumors expressing the surface antigen LyPD1. Following
administration of an anti-LyPD1/CD3 TDB, upregulation of IL-1f
expression in monocytes and macrophages was observed in vivo
(Extended Data Fig. 9). The systemic release of IL-1p instigated a
rapid decrease in core body temperature in TDB-treated Il1rn~'~
mice (Fig. 5g), accompanied by elevated serum concentrations of
IL-6 and IL-17A (Fig. 5h). Of note, the serum concentrations of TNF
were comparable between genotypes (Fig. 5h). This further suggests
that while T cells provide the initial trigger for CRS, T cell-derived
TNF probably serves to activate monocytes and macrophages to
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release IL-1pB, which was then directly responsible for the transient
systemic response to TDBs in vivo. Importantly, these data suggest
that induction of IL-6, which has been shown to be an important
mediator of CRS toxicities related to T cell-targeting therapies*-*,
can occur downstream of IL-1p.

Illrn~- mice adapt to excessive IL-1 via shedding of IL-1R1.
Despite lacking the master negative regulator of IL-1, IL-1ra deficient
mice should still possess the other presumed negative regulators of
IL-1 activity. Indeed, increase in soluble IL-1R1 was observed in the
serum of IlIrn~~ mice following stimulation with innate ligands
(Fig. 6a), concomitant with reduction in cell-surface expression of
IL-1R1 in vivo (Fig. 6b). This loss of membrane-bound IL-1R1 can
decrease signaling and provide a soluble systemic IL-1a/f sink in
the absence of IL-1ra. Interestingly, blockade of IL-1 signaling with
a recombinant IL-1R1-Fc prevented the loss of cell-surface IL-1R1
in IlIrn~'~ blood cells ex vivo (Fig. 6¢), suggesting that the shed-
ding of IL-1R1 only occurs following excessive IL-1 signaling (that
is, in the absence of IL-1ra). In contrast to IL-1R1, the serum con-
centrations of decoy receptor IL-1R2 were only modestly increased
over high baseline levels following stimulation (Fig. 6d), suggest-
ing that shedding of IL-1R1 was the primary resistance mechanism
by which IlIrn~'~ mice adapt to excessive IL-1 signaling (Fig. 6e).
However, these changes were secondary and only upregulated in the
absence of IL-1ra, confirming that IL-1ra is the key suppressor of
PRR-induced reactogenicity in wildtype mice.

Ionizable lipids in modRNA-LNP induce the release of IL-1. Our
data with RNA-LPX indicated that both TLR7/8 agonistic function
of the RNA and liposomes were required for production of IL-1,
which mediated reactogenicity and immunogenicity of the vac-
cine. However, RNA vaccines against COVID-19 (mRNA-1273
by Moderna and BNT162b2 by BioNTech/Pfizer)—which use
modRNA with a greatly reduced innate immunostimulatory activ-
ity—still elicit systemic adverse events in patients following initial
intramuscular administration®***’. Instead of cationic liposomes,
these vaccines are formulated in LNPs which contain ionizable lip-
ids to provide structural stability and presumably enable endosomal
escape’”’. While LNPs have been observed to have intrinsic adju-
vant activity, demonstrated by the impressive antibody and T cell
responses following vaccination®**’, the exact mechanism of by
which such vaccines elicit innate immunity has not been previously
characterized.

To test whether these particles could induce release of different
IL-1 family members, we generated modRNA-LNPs formulated
with two different ionizable lipids: MC3 (commonly used for short
interfering RNA (siRNA)-LNP delivery”) or SM-102 (used in the
Moderna COVID-19 vaccine®*’) (Fig. 7a). Consistent with our find-
ings with RNA-LPX, we observed a marked increase in IL-1p from
human PBMCs with either modRNA-LNP formulation, while the
levels of IL-1ax and IL-1ra remained low (Fig. 7b). LNPs formulated
with SM-102 lipids were potent activators of the inflammasome path-
way, indicated by the fact that robust IL-1p release was detected with
either modRNA-LNP(SM-102) or empty LNP(SM-102) (Fig. 7c).
Cotreatment with R848 and empty LNP(SM-102) further increased
the IL-1P levels (Fig. 7c). In contrast, modRNA-LNP(MC3) was
far less potent at stimulating IL-1p release, and even addition of a
strong TLR7/8 agonist, R848, to LNP(MC3) could not fully rescue
IL-1P release (Fig. 7c). These results suggest that ionizable lipids in
different LNP formulations can play different, yet important, roles
in inflammasome activation by providing either signal 2 (MC3) or
signals 1 and 2 (SM-102).

To further study the relative contributions of RNA and lipids,
we used modRNA to make RNA-LPX particles (modRNA-LPX)
and compared their cytokine induction profile with RNA-LPX and
modRNA-LNP(SM-102) (Fig. 7d). As shown previously (Fig. 1),
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unmodified RNA-LPX induced a robust cytokine release, whereas
modRNA-LPX failed to induce IL-1f or any of its downstream
cytokines (Fig. 7e). In contrast, potent cytokine release was detected
with modRNA-LNP(SM-102), resulting in a similar cytokine
induction profile as with RNA-LPX (Fig. 7¢). These findings sug-
gest that the reactogenicity of modified RNA is context-dependent:
modRNA can be nonimmunostimulatory when formulated in lipo-
somes (LPX), induce weak immunostimulation when formulated in
LNP(MC3) or initiate a potent innate response when formulated in
LNP(SM-102).

Discussion
The evolution of the innate immune system for any species has in
large part been shaped by microbe-exerted selection pressure for
that species. While this has led to differences in distribution, sensi-
tivity and ligand specificity of PRRs, it has also resulted in diverging
evolutionary strategies for resistance and tolerance between humans
and mice*. Relative to human immune responses, mice have been
found to be extremely tolerant to different inflammatory stim-
uli'*'**, such as bacterial lipopolysaccharides, but also RNA-LPX
vaccines"'>. In this study, we demonstrated that vaccine-induced
systemic inflammatory responses are driven by IL-1 and antago-
nized by endogenous IL-1ra, and that these findings can be gener-
alized to other forms of innate immune stimulation. Interestingly,
clinical use of recombinant IL-1ra (anakinra) may be effective for
the treatment of auto-immune-related macrophage activation syn-
drome and severe forms of COVID-19, suggesting that IL-1R1
signaling can contribute to the early cytokine amplification fol-
lowing infection®~"". In line with these reports, we observed that
administration of a virus-like nanoparticulate vaccine, RNA-LPX,
leads to a robust upregulation of IL-1ra in wildtype B6 mice and
confers resistance to adverse events, while Il1rn”~ mice exhibited
a phenotype reminiscent of human CRS following innate immune
challenge. These results suggest that endogenous IL-1ra has a cru-
cial role in controlling innate immune responses to pathogens, as
shown for Mycobacterium tuberculosis®. In addition, reduced sensi-
tivity of mouse blood cells to RNA-LPX could be partially explained
by the lower frequency of monocytes in mice when compared with
humans, as we and others have identified monocytes as the crucial
cell population secreting IL-1p and IL-6 following stimulation*"*.
Accordingly, the absence of granulocytes in these cellular assays did
not produce any changes in IL-1p release. Our studies with NHP
PBMC:s also suggest that NHPs resemble mice more than humans
with respect to their monocyte frequencies and IL-1ra induction
profile. Of note, NHPs and humans exhibit notable evolutionary
differences in response to innate stimuli, and TLR7/8 agonists have
been reported to be poor inducers of pro-IL-1p in NHP cells™.
Furthermore, our studies revealed that not only the direct
TLR7/8-mediated sensing of the nucleic acid component, but also
the physiochemical and possibly lytic properties of the vaccine
lipid particles themselves, determine the cytokine induction pro-
file of lipid-formulated RNA vaccines. Our data indicate that the
immunostimulatory activity of the modRNA is highly dependent
on the lipid formulation; modRNA formulated in LPX is nonim-
munostimulatory and has been shown to induce tolerance*’, while
formulation in LNP(SM-102) leads to potent innate response, con-
sistent with the reactogenicity and immunogenicity observed in
mRNA-1273-vaccinated individuals®. Although modRNA poorly
activates TLR7/8, it can have residual innate agonist properties,
possibly resulting from double-stranded RNA contamination pro-
duced during in vitro transcription, remaining uncapped messen-
ger RNA or mRNA tertiary structures, any of which can be a source
of signal 1 by activating various endosomal (TLR3) and cytosolic
receptors (for example, RIG-I, MDA-5). However, we also observed
that empty LNP(SM-102) particles without RNA were sufficient for
IL-1P release in vitro, suggesting that the lipids alone can provide
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both signals 1 and 2 for inflammasome activation. While we did not ~ damage caused by LNPs* or from the direct activation of caspase-11
investigate the source of signal 1 in this context, it could be derived  (ref. **). Future work will determine how these factors will influ-
from direct activation of PRRs by the lipids themselves*-*, from  ence the overall immunogenicity profile of LNP-based particles and
the release of damage-associated molecular patterns following cell ~whether such responses could be altered by the use of alternative
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lipid structures. Importantly, such optimizations will be crucial for
the entire field of oligonucleotide therapeutics, where—unlike for
adjuvanted vaccines—the induction of the innate immune cascade
mediated by IL-1p would be undesirable (for example, LNP-based
therapeutics delivering siRNA, antisense oligonucleotides or
immune-tolerance-inducing mRNA).

In summary, our findings indicate that that IL-1ra-deficient mice
can better predict patient responses to innate immune challenges
(such as RNA vaccines) and provide a useful tool to evaluate both
the sensitivity to pathogens and tolerability to treatment-related
inflammatory toxicities in vivo. Moreover, the observed interspe-
cies differences suggest that evolution has shaped and re-wired how
positive and negative regulators of IL-1R1 signaling are released in
the context of innate immune stimulation, and that these factors
determine the magnitude of systemic responses to RNA vaccines in
mice, NHPs and humans.
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Methods

Mice. C57BL/6] mice (stock 000664) and Il1rn~'~ mice (B6.129S-111rntm1Dih/],
stock 004754) were purchased from The Jackson Laboratory. Il1r1~'~ mice

were obtained from The Jackson Laboratory (B6.129S7-Il1r1tm1Imx/J, stock
003245) and backcrossed for eight generations to C57BL/6N mice (The Jackson
Laboratory). Nlrp3~'~ mice (also known as CiasI~'~ mice) and Gsdmd~'- mice
have been described'**. Age-matched (5-15 weeks) female animals were used
throughout all experiments. Mice were maintained in a specific-pathogen-free
facility, in individually ventilated cages within animal rooms maintained

on a 14-h/10-h, light/dark cycle. Animal rooms were temperature- and
humidity-controlled, at 68-79 °F and 30-70%, respectively, with 10 to 15 room air
exchanges per hour. All animal studies were reviewed and approved by Genentech’s
Institutional Animal Care and Use Committee.

Depletion, inhibition and blocking experiments. Buffy coats or whole blood were
obtained from voluntary, healthy human donors participating in the Genentech
blood donor program, after written, informed consent from the Western
Institutional Review board. As anonymous donors were used, covariate-relevant
participant characteristics such as age and sex were not available. PBMCs were
isolated by density centrifugation using SepMate-50 tubes and Lymphoprep
Medium (both from StemCell Technologies). Red blood cells were lysed with
ACK lysis buffer (Gibco) and remaining blood cells were passed twice through
a 70-um filter. Monocytes or neutrophils were depleted from either PBMCs or
whole blood with anti-human CD14 MicroBeads (130-050-201, Miltenyi Biotec),
EasySep Human CD14 Positive Selection Kit II (17858, StemCell Technologies)
or EasySep HLA Chimerism Whole Blood CD66b Positive Selection Kit (17882,
StemCell Technologies), respectively. NHP PBMCs were ordered frozen (from iQ
Biosciences), thawed and rested overnight before RNA-LPX treatment.

First, 1.5-3.5% 10° cells were plated on 96-U-well plates and stimulated with
1 pgml~! LPS-EK (InvivoGen), 10 pg ml~! Nigericin (InvivoGen) or RNA-LPX
with or without 0.1-5uM MCC950 (Sigma), 1-50 pM Necrosulfonamide
(Sigma-Aldrich), 1-30 uM zVAD-FMK (Promega), 0.5 pg ml~' R848 (InvivoGen),
1-50 uM DPI (Calbiochem), 1-50 pM BAPTA-AM (Sigma-Aldrich), 1-100 pg ml~!
anti-IL-1f neutralizing antibodies (InvivoGen) or 1-100 pg ml™' control IgG1
antibodies (InvivoGen). Of note, as R848, LPS or RNA-LPX were not washed
away between priming (signal 1) and triggering (signal 2) to account for possible
activation of alternative NLRP3 inflammasome®. After 17h, the cells were pelleted
down, and the supernatants were collected and stored at —80°C until analysis.

RNA-LPX, modRNA-LNP, TLR agonists and immune challenge. RNAs were
synthesized by Genentech. RNAs encoding for either MC38-derived neoantigens
or eGFP have been described"'?. RNA was formulated with liposomes consisting of
DOTMA and DOPE at a charge ratio (+):(—) of 1.3:2, yielding negatively charged
RNA-LPX'. For some in vitro experiments using RNA-LPX, RNA was synthesized
using pseudouridine instead of uridine and 5-methyl-cytosine instead of cytosine
to reduce TLR activation'’.

For in vitro experiments using modRNA-LNP, RNA was synthesized
using 1-methyl-pseudouridine instead of uridine’, capping was performed
cotranscriptionally using a trinucleotide cap 1 analog (CleanCap AG (3’ OMe)
m7(3’'OMeG)(5)ppp(5")(2'OMeA)pG, Trilink)’ and RNA was purified with
cellulose treatment*. Finally, modRNA-LNP was formulated with a lipid
mixture consisting of an ionizable lipid (either Dlin-MC3-DMA or SM-102),
distearoylphosphatidylcholine (DSPC), cholesterol and PEG-lipid (at molar
ratios of 50:20:28:2 for the MC3 formulation or 50:10:38.5:1.5 for the SM-102
formulation) using a microfluidic mixer, as previously described®.

For in vivo experiments, RNA-LPX (dose indicated in respective figure
legends), 10 pg of ODN1826 VacciGrade (InvivoGen), 1 pg of LPS-EB VacciGrade
(InvivoGen) or 1x 10° HKLM (InvivoGen) was injected intravenously or 300 pg
of DMXAA (InvivoGen), 30 pug of mFIt3L (Genentech), 500 pg of rat IgG2a
isotype (BioXCell) or 500 pg of anti-Ly6G antibodies (BioXCell) was injected
intraperitoneally into C57BL/6 mice as described in the respective figures. At
4-6h after immune challenge, mice were bled for cytokine analysis. Rectal body
temperature and body weight were measured for a total of 6 d following exposure
or until the values reached pretreatment levels.

TDB experiments in tumor-bearing mice. Generation and verification of
ID8/LyPD1 cells has been described™. Briefly, ID8/LyPD1 is a murine ID8
ovarian cancer cell line expressing the tumor-associated antigen LY6/PLAUR
Domain-containing 1 gene (LyPD1), which was generated by lentiviral
transduction. Cells were passaged twice in vivo for faster growth kinetics before
generating master and working cell banks, of which third and fourth passages
were used for tumor experiments. Then, 4 X 10° ID8/LyPD1 tumor cells in Hank’s
Balanced Salt Solution and Matrigel were inoculated subcutaneously in the 2/3
mammary fat pad of wildtype and Il1rn~'~ mice. Tumor sizes were measured
unblinded with a caliper twice a week and tumor volumes were calculated by
using the equation (a*x b)/2 (a, width; b, length). T cell retargeting to LyPD1
was achieved by administration of mouse CD3-bispecific TDB antibodies*".
Once tumors reached the target volume of 100-300 mm® (median 150 mm?’,
approximately 3-4 weeks after implantation), animals were randomly divided
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into treatment groups and injected intravenously with 10 mgkg~" anti-LyPD1/
anti-CD3 TDB antibodies (diluted in 20 mM histidine acetate pH 5.5, 240 mM
sucrose, 0.02% Tween-20) or vehicle only. Animals were euthanized 24 h after
TDB administration for flow cytometric analysis or when exhibiting signs of
impaired health.

Blood and tissue preparation. Cardiac puncture under deep terminal anesthesia
was used to collect a large volume of whole blood for downstream in vitro assays.
Whole blood was stored in EDTA polypropylene tubes (Sarstedt) and red blood
cells were lysed with ACK lysis buffer (Gibco). Retro-orbital bleeding under
isoflurane anesthesia was used to collect peripheral blood samples. Blood was
stored in gel-separator polypropylene tubes (Sarstedt) and incubated for 15min at
room temperature, after which the coagulated blood samples were centrifugated at
2,300g for 5 min. Clear serum was transferred to new tubes and stored at —80°C for
downstream assays.

Spleens were collected in cold PBS and single-cell suspensions were generated
by mashing the spleen tissue through a 70-pm cell strainer (BD Falcon) in
HanKk’s-based Cell Dissociation Buffer (Gibco) supplemented with Liberase
(Roche) and DNase I (ThermoFisher). Red blood cells were lysed with ACK lysis
buffer (Gibco).

Flow cytometry. Single-cell suspensions were incubated in FACS buffer (PBS
supplemented with 0.5% BSA and 0.05% sodium azide) containing anti-mouse
CD16/CD32 (Mouse Fc Block, BD) or Human TruStain FcX (Human Fc Block,
Biolegend) for 10 min before and during staining with the indicated antibodies.
Staining reagents for murine cells included FITC anti-CD169 (3D6.112,
Biolegend), PE anti-IL-1a (ALF-161, eBioscience), PerCP-Cy5.5 anti-CD3

(17A2, Biolegend), BUV395 anti-B220 (RA3-6B2, BD), PE anti-NK1.1 (PK136,
Biolegend), BV510 anti-CD11c (N418, Biolegend), BUV737 anti-CD4 (GK1.5,
BD), VioBlue anti-CD11b (M1/70.15.11.5, Miltenyi Biotec), APC anti-CD115
(AFS98, Biolegend), FITC anti-CD11b (M1/70, Biolegend), PeCy7 anti-pro-IL-1f
(NJTENS3, eBioscience), BV711 anti-F4/80 (BMS8, Biolegend), AF700 anti-Ly-6C
(HK1.4, Biolegend), AF647 anti-Siglec-F (E50-2440, BD), BV785 anti-Ly-6G
(1A8, Biolegend), APC anti-CD209b (22D1, eBioscience), FITC PD-1 (29E1A12,
Biolegend), AF700 CD8 (KT15, BioRad), V500 CD90.1 (53-2.1 Biolegend),
APC-Cy CD4 (GK1.5, BD Biosciences), APC-H7 CD19 (1D3, BD Biosciences),
BUV395 KLRG1 (2F1, BD Biosciences), PerCP-eFluor710 CD127 (SB/199,
Invitrogen), PE TCF1/TCF7 (C63D9, Cell Signaling Technology), AF488 IFNg
(XMG1.2, Biolegend), BUV395 TCRb (H57-597, BD Biosciences), PeCy7 CD8
(53-6.7, BD Biosciences), BV510 B220 (RA3-6B2, Biolegend), BV421 TNF
(MP6-XT22, Biolegend), BV785 CD4 (RM4-5, Biolegend), APC CD107a (1D4B,
Biolegend), PE IL-1R1 (JAMA-147, Biolegend) and BV421 IL-1R2 (4E2, BD
Biosciences). Intracellular Fixation & Permeabilization Buffer Set (88-8824-00,
eBioscience) was used for intracellular staining of cytokines. Foxp3/Transcription
Factor Staining Buffer Set (00-5523-00, eBioscience) was used for intranuclear
staining of TCF1. Mitochondrial ROS levels in human monocytes were measured
using MitoSOX Red Mitochondrial Superoxide Indicator (Invitrogen). To assess
purity of CD14- or CD66b-depleted human cell populations, PerCP-Vio700
anti-CD14 (TUK4, Miltenyi Biotec), PE anti-CD66b (G10F5, Biolegend), PeCy7
anti-CD3 (SK7, BD), APC-H7 anti-CD19 (SJ25C1 BD) and V500 anti-HLA-DR
(G46-6, BD) were used. To study human and NHP monocyte frequencies,
cross-species reactive APC anti-CD14 (M5E2, Biolegend) was used. Cells were
stained on ice for extracellular markers for 20-30 min followed by staining for
intracellular markers for 60 min, and filtered using 30-40-pm filter plates (PALL).
Samples were acquired with BD FACSDiva software v.8.0 on a BD FACSymphony
(BD) and analyzed with Flow Jo v.10.7.1 (TreeStar). Dead cells and cell aggregates
were excluded from analyses by Fixable Viability Dye eFluor 780 (eBioscience),
LIVE/DEAD Fixable Near-IR (Dead Cell Stain Kit for 633- or 635-nm excitation,
Invitrogen) or LIVE/DEAD Fixable Blue (Dead Cell Stain Kit for UV excitation,
Invitrogen) staining and forward scatter area (FSC-A)/forward scatter height
(FSC-H) characteristics.

Murine bone-marrow-derived cultures. Bone marrow cells collected from
wildtype or IlIr17/~ mice were differentiated in RPMI with 10% heat-inactivated
fetal bovine serum (Gibco), 1% Glutamax (Gibco), 2-mercaptoethanol (55 pM,
Gibco), 100 ngml™' recombinant mFIt3L (Peprotech) and 10 ngml~' mGMCSF
(Peprotech) for 13 d. Differentiated, immature cells were then plated at 300,000
cells per well on a 96-U-well plate and stimulated for 16 h with 5 pgml~' RNA-LPX
(Genentech) or 0.1 pgml~' Pam3CSK4, 0.1 pgml~' FSL1, 10° bacteria per ml
HKLM, 10 pgml™! poly I:C, 0.05 pgml~! LPS-EK, 0.1 pgml~' FLA-ST, 0.1 pgml™
ssRNA40/Lyovec, 0.1 pgml~" CL097, 0.1 pgml~' R848, 0.1 pgml~' R837, 5pM
ODN1585, 5pM ODN1826, 5pM ODN2395, 10 uygml~ ¢-di-AMP, 10 pgml™!
DMXAA or 10 pgml~" 23"-c-di-AM(PS)2 (Rp,Rp) (all from InvivoGen). After
stimulation, the cells were pelleted down, and the supernatants were collected and
stored at —80 °C until analysis.

Luminex/ELISA assays. Serum concentrations of murine cytokines were
determined using a bead-based, Cytokine & Chemokine Convenience 26-Plex
Mouse ProcartaPlex multiplex immunoassay supplemented with murine
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IFNa ProcartaPlex (ThermoFisher Scientific) according to the manufacturer’s
instructions. Serum concentrations of soluble receptors were determined using
MILLIPLEX MAP Mouse Soluble Cytokine Receptor Magnetic Bead Panel
(Millipore). Acute phase proteins were determined using MILLIPLEX MAP Mouse
Acute Phase Magnetic Bead Panel 2 (Millipore). ELISA was used for the detection
of mIL-1a (R&D Systems), mIL-1ra (Abcam) and mSAA3 (Sigma-Aldrich).

For the detection of human cytokines in vitro, MILLIPLEX MAP Human
Cytokine/Chemokine Magnetic Bead Panel Premixed 30-plex assay (Millipore)
was used according to the manufacturer’s instructions. For the detection of human
cytokines in vivo, Simoa assay (Quanterix) and DiscoveryMAP Multiplexes
(Myriad RBM) were used according to the manufacturer’s instructions. For the
detection of NHP cytokines in vitro, MILLIPLEX MAP Non-Human Primate
Cytokine Magnetic Bead Panel Premixed 23-plex assay (Millipore) was used
according to the manufacturer’s instructions. Values below the lower limit of
quantification were set to zero. Luminex data were collected on Flex-Map 3D v.3.2
(Luminex Corporation) and analyzed with Bio-Plex Manager 6.1.1 and Microsoft
Excel v.16.16.27.

Clinical trial design and samples. A first-in-human phase 1b study of RO7198457
(Autogene cevumeran), a systemically administered RNA-LPX, in combination
with the anti-PD-L1 antibody atezolizumab was conducted in patients with

locally advanced or metastatic solid tumors"* (ClinicalTrials.gov identifier
NCT03289962). Briefly, RO7198457 was GMP-manufactured on a per-patient
basis and contained up to 20 tumor-specific neoepitopes. The study protocols

were approved by the relevant authorities and ethics committee. The study was
conducted in accordance with all applicable laws and regulations, and in agreement
with the International Council on Harmonisation of Good Clinical Practice
(ICH-GCP) guidelines and the Declaration of Helsinki. Written, informed consent
was obtained from all patients before enrollment. RO7198457 was administered
intravenously at a dose of 25 pg and atezolizumab at a dose of 1,200 mg. Blood
samples were obtained before vaccination (predose), and at 4-6h and 24 h after
RO7198457 administration. Plasma cytokines were measured from nine patients
as shown in Figs. 1i and 3d (sample selection was based on plasma availability and
existing ELISPOT data, while excluding patients that had received steroids at the
time of vaccination).

Statistical analyses and data presentation. Statistical analyses and graphing were
performed using GraphPad Prism v.9.1.0 for Mac OS. Illustrations were created
with BioRender.com. All results are expressed as mean +s.e.m. or median without
interquartile range as indicated. Unpaired two-tailed Student’s ¢-test was used for
comparison of two groups. One-way analysis of variance (ANOVA) was performed
when more than two groups were compared, and multiple comparisons were
corrected using Dunnetts post hoc test or Sidak’s post hoc test. Two-way ANOVA
was performed when both time and genotype or treatment were compared, and
multiple comparisons were corrected using Dunnett’s post hoc test or Sidak’s

post hoc test. *P<0.05, **P<0.01, **P <0.001 and ****P <0.0001. No statistical
methods were used to predetermine sample size for animal experiments.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability

No custom code or specific mathematical algorithms were used in this study.
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Extended Data Fig. 7 | Impact of myeloid cells on RNA-LPX induced systemic cytokine responses in vivo. a, b, Systemic cytokine response in
Ly6G-depleted wildtype (n=8) and I[Trn”- mice (n="7) following RNA-LPX administration in vivo. e, Expression of decoy receptor IL-1R2 on splenic
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Sample size No sample size calculations were performed. For in vitro studies, cells or tissues from at least 3 animals per genotype or from at least 3 human
donors were analyzed to ensure differences were reproducible. Larger numbers (n=7-10 per treatment group) were used in the in vivo studies
using RNA-LPX, PRR agonists or TDBs to measure serum cytokines, serum APPs, and immune cell populations. These larger numbers were
used to account for the greater variability between mice in these experiments. We follow standards in the field when choosing sample sizes
for in vitro and in vivo experiments (Yadav et al Nature 2014, Kreiter et al Nature 2016, Gitlin et al Nature 2020, Kayagaki et al Nature 2021).
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Data exclusions  No data were excluded from analyses.

Replication Whenever possible, readouts were performed with at least 3 animals of a given genotype and all attempts at replication were successful. As
indicated in figure legends, independent experiments and biological replicates were used to ensure reproducibility of results. In vitro human
data is represented as the mean or median value of 2 or 3 technical replicates for a given donor. Each experiment was replicated 2-4 times
with biologically independent samples.

Randomization  Samples or mice were grouped according to genotype or treatment, and thus not randomized. Where possible, animals were age- and sex
matched. When inhibitors or blocking antibodies were used in human PBMC experiments, samples from the same donor were directly

compared.

Blinding Mice were selected and treated by the same individual, so blinding to allocation and data collection/analysis was not possible.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies XI|[] chip-seq

{| Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
Animals and other organisms

Human research participants

Clinical data

XOOOXKOO S
OIX XX [OX

Dual use research of concern

Antibodies

Antibodies used Fluorochrome and target (clone/manufacturer/catalogue number/lot number/dilution/extra- or intracellular):

Purified Rat Anti-Mouse CD16/CD32 (2.4G2/BD/553141/7248907/1:200/extracellular)
FITC anti-CD169 (3D6.112/Biolegend/142406/B185155/1:100/extracellular)

PE anti-IL-1a (ALF-161/ eBioscience/12-7011-82/2021232/1:50/intracellular)
PerCP-Cy5.5 anti-CD3 (17A2/ Biolegend/100218/B233420/1:100/extracellular)
BUV395 anti-B220 (RA3-6B2/BD/563793/8120543/1:200/extracellular)

PE anti-NK1.1 (PK136/Biolegend/108707/B248845/1:100)

BV510 anti-CD11c (N418/ Biolegend/117338/B290360/1:100/extracellular)

BUV737 anti-CD4 (GK1.5/BD/ 612761/9290412/1:100/extracellular)

VioBlue anti-CD11b (M1/70.15.11.5/Miltenyi Biotec/130-113-238/5191212813/1:100/extracellular)
APC anti-CD115 (AFS98/Biolegend/ 135510/B241282/1:100/extracellular)

AF488 anti-CD11b (M1/70/Biolegend/ 101219/B248739/1:200/extracellular)

PeCy7 anti-pro-IL-1b (NJTEN3/eBioscience/ 25-7114-82/2016884/1:100/intracellular)
BV711 anti-F4/80 (BM8/Biolegend/123147/B301622/1:100/extracellular)

AF647 anti-Siglec-F (E50-2440/BD/ 562680/9185572/1:100/extracellular)
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AF700 anti-Ly-6C (HK1.4/Biolegend/128024/B297755/1:100/extracellular)

PeCy7 anti-CD8a (53-6.7/BD/552877/9186813/1:200/extracellular)

BV785 anti-Ly-6G (1A8/Biolegend/127645/B295080/1:100/extracellular)

APC anti-CD203b (22D1/eBioscience/17-2093-82/4326927/1:100/extracellular)

FITC PD-1 (29F.1A12/Biolegend/135214/B277058/1:100/extracellular)

AF700 CD8 (KT15/BioRad/MCA609A700/151453/1:100/extracellular)

V500 CD90.1 (53-2.1/Biolegend/561616/9289835/1:100/extracellular)

APC-Cy CD4 (GK1.5/BD Biosciences/552051/9165919/1:100/extracellular)

APC-H7 CD19 (1D3/BD Biosciences/560143/9016562/1:200/extracellular)

BUV395 KLRG1 (2F1/BD Biosciences/740279/0155219/1:100/extracellular)
PerCP-eFluor710 CD127 (SB/199/Invitrogen/46-1273-82/2222040/1:100/extracellular)
PE TCF1/TCF7 (C63D9/Cell Signaling Technology/144565/12/1:50/intracellular)
AF488 IFNg (XMG1.2/Biolegend/505813/B282839/1:200/intracellular)

BUV395 TCRb (H57-597/BD Biosciences/742485/9249141/1:200/extracellular)

PeCy7 CD8 (53-6.7/BD Biosciences/552877/9039618/1:200/extracellular)

BV510 B220 (RA3-6B2/Biolegend/103248/B291212/1:200/extracellular)

BV421 TNF-a (MP6-XT22/ Biolegend/506328/B274627/1:200/intracellular)

BV785 CD4 (RM4-5/Biolegend/100552/B301975/1:200/extracellular)

APC CD107a (1D4B/Biolegend/121614/B247105/1:400/intracellular)

PE IL-1R1 (JAMA-147/Biolegend/113505/B314158/1:100/extracellular)

BV421 IL-1R2 (4E2/BD Biosciences/562926/1027815/1:100/extracellular)

Purified Anti-CD3/anti-LyPD1 TDB (2C11/Genentech/NA/pur#47392/NA/extracellular)
InVivoMADb rat 1gG2a isotype control (2A3/BioXCell/BE0089/796721M2/NA/extracellular)
InVivoPlus anti-mouse anti-Ly6G (1A8/BioXCell/BP0075-1/737720J1/NA/extracellular)
Purified anti-hIL-1B-1gG (4H5/InvivoGen/mabg-hil1b-3/4H5-39-01)

Purified mouse Control 1gG1 (T8E5/InvivoGen/mabgl-ctrim/CT1-39-02)

Human TruStain FcX™ (NA/Biolegend/422302/B290761/1:20/extracellular)
PerCP-Vio700 anti-CD14 (TUK4/Miltenyi Biotec/130-097-539/5171009330/1:5/extracellular)
PE anti-CD66b (G10F5/Biolegend//305106/B258031/1:20/extracellular)

APC-H7 anti-CD19 (SJ25C1/BD/560177/7341759/1:20/extracellular)

V500 anti-HLA-DR (G46-6/BD/ 561224/8260613/1:20/extracellular)

APC anti-CD14 (M5E2/Biolegend/301808/B259538/1:20/extracellular)
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Validation Primary antibodies used for flow cytometry and blocking assays are commercially available and validated by vendors for human
proteins (used in our in vitro assays and flow cytometry) or murine proteins (used in our in vivo experiments and in flow cytometry).

APC anti-CD14 (M5E2/Biolegend/301808/B259538/1:20/extracellular) has been validated by Biolegend to recognize human,
cynomolgus and rhesus macaque CD14: https://www.biolegend.com/en-us/products/apc-anti-human-cd14-antibody-793?

Clone=M5E2

Purified Anti-CD3/anti-LyPD1 TDB (2C11/Genentech/NA/pur#47392/NA/extracellular) has been characterized and validated by Lo et
al Mol Cancer Ther 2021 https://mct.aacrjournals.org/content/20/4/716.long

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) ID8/LyPD1 cells have been generated at Genentech (Lo, A. A. et al, 2021. Mol Cancer Ther 20: 1-10).
Authentication Cell line was verified using short tandem repeat (STR) profiling (Promega PowerPlex 16 System).
Mycoplasma contamination Cells were negative for mycoplasma.

Commonly misidentified lines  Not used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6J mice (stock 000664) and I11rn-/- mice (B6.129S-I11rntm1Dih/J, stock 004754) were purchased from the Jackson Laboratory.
I11r1-/- mice were obtained from Jackson Laboratories (B6.12957-111r1tm1Imx/J, stock 003245) and back-crossed for 8 generations to
C57BL/6J mice (Jackson Laboratories). NIrp3-/- mice (also known as Cias1-/- mice) have been described (Mariathasan et al, 2006.
Nature 440: 228-232). Gsdmd-/- mice have been described (Kayagaki, N. et al, 2015. Nature 526, 666—671). Age-matched (5-15
weeks) female animals were used throughout all experiments. Mice were maintained in a specific pathogen-free facility, in
individually ventilated cages within animal rooms maintained on a 14:10-hour, light:dark cycle. Animal rooms were temperature and
humidity-controlled, between 68-79°F and 30-70% respectively, with 10 to 15 room air exchanges per hour.

020¢ f1dy

Wild animals The study did not involve wild animals.
Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All animal studies were reviewed and approved by Genentech’s Institutional Animal Care and Use Committee (IACUC).




Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Peripheral blood was used from healthy human donors participating in Genentech blood donor program. Buffy coats from
anonymous donors were used. As such, covariate-relevant participant characteristics such as age and gender are not
available.

Recruitment Participation in Genentech blood donor program is voluntary and on a as basis. Donors receive a compensation based on the

type and volume of sample donated. Although self-selection bias may be present and is difficult to exclude, it is unlikely to
affect our conclusions because we compared PBMCs treated with RNA-LPX and inhibitors or blocking antibodies to RNA-LPX
only treated cells from the same donor (each experiment was performed with at least 2 independent donors and each
experiment was replicated 2-4 times). No significant biases have been identified, and we have consistently observed the
expected donor-to-donor variability in our assays (which only affects the total but not the relative magnitudes of cytokine
release between different donor cells following stimuli).
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Ethics oversight Written, informed consent was obtained from participants. This protocol was approved by the Western Institutional Review
board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ClinicalTrials.gov Identifier: NCT03289962.

Study protocol The full clinical study protocol is not published online, but a comprehensive description of the clinical trial design, eligibility
criteria and endpoints is available at https://www.clinicaltrials.gov/ct2/show/NCT03289962.

Data collection We analyzed pre- and post-treatment plasma levels of IL-1b, IL-1a and IL-1ra in a cohort of 9 patients with advanced malignancies
receiving individualized tumor neoantigen-encoding RNA-LPX (RO7198457 or Autogene Cevumeran) in a phase 1b dose-escalation
trial (NCT03289962). RO7198457 was administered intravenously at a dose of 25 ug and atezolizumab at a dose of 1200 mg. Blood
samples were obtained before vaccination (pre-dose), and at 4-6 hours and 24 hours after RO7198457 administration. Plasma
cytokines were measured from 9 patients shown in Figures 1i and 3d (sample selection was based on plasma availability and existing
ELISPOT data, while excluding patients that had received steroids at the time of vaccination). Plasma was prepared at clinical sites
and shipped on dry ice to the central laboratory on the day of blood draw. When sites were not able to ship samples on the day of
draw, plasma samples were kept in a deep freezer (-80C) and shipped next business day to the Central Lab . Central Lab batch
shipped samples monthly to Myriad-RBM (Austin, TX, USA), where testing and data collection was performed. Plasma samples were
stored in -80C, thawed on the day of testing, and run using IL-1b Simoa assay (Quanterix, dilution factor 2) and DiscoveryMAP
Multiplexes (Myriad RBM, dilution factor 5).

Outcomes Primary and secondary outcomes of this phase 1b trial are available at https://www.clinicaltrials.gov/ct2/show/NCT03289962.
Primary Outcome Measures:

Percentage of Participants with Dose-Limiting Toxicities (DLTs) [ Time Frame: Phase 1a: Days 1 to 14 / Phase 1b: Days 1to 21 ]
MTD/Recommended Phase 2 Dose (RP2D) of Autogene Cevumeran [ Time Frame: Phase 1a: Days 1 to 14 / Phase 1b: Days 1to 21 ]
Percentage of Participants with Adverse Events (AEs) [ Time Frame: Baseline up to end of the study (up to approximately 3 years) |
Percentage of Participants with Immune-Mediated Adverse Events (imAEs) [ Time Frame: Baseline up to end of the study (up to
approximately 3 years) ]

Percentage of Participants by Number of Treatment Cycles Received [ Time Frame: Baseline up to end of the study (up to
approximately 3 years) ]

Dose Intensity of Autogene Cevumeran [ Time Frame: Baseline up to end of the study (up to approximately 3 years) ]

Change from Baseline in Targeted Vital Signs [ Time Frame: Baseline up to end of study (up to approximately 3 years) ]

Change from Baseline in Targeted Clinical Laboratory Test Results [ Time Frame: Baseline up to end of study (up to approximately 3
years) ]

Change from Baseline in ECGs [ Time Frame: Baseline up to end of study (up to approximately 3 years) ]

Secondary Outcome Measures:

Percentage of Participants with Objective Response of Complete Response (CR) or Partial Response (PR) According to Response
Evaluation Criteria for Solid Tumors Version 1.1 (RECIST v1.1) [ Time Frame: Baseline until 90 days after last dose or initiation of
another systemic anti-cancer therapy, whichever occurs first (up to approximately 3 years) ]

Duration of Response (DoR) According to RECIST v1.1 [ Time Frame: From first occurrence of a documented objective response (CR or
PR) until disease progression or death due to any cause, whichever occurs first (up to approximately 3 years) ]

Percentage of Participants with Objective Response of CR or PR According to Immune-Modified RECIST [ Time Frame: Baseline until
90 days after last dose or initiation of another systemic anti-cancer therapy, whichever occurs first (up to approximately 3 years) |
DoR According to Immune-Modified RECIST [ Time Frame: From first occurrence of a documented objective response (CR or PR) until
disease progression or death due to any cause, whichever occurs first (up to approximately 3 years) |

Progression-Free Survival (PFS) According to RECIST v1.1 [ Time Frame: Baseline until 90 days after last dose or initiation of another




systemic anti-cancer therapy, whichever occurs first (up to approximately 3 years) |

Overall Survival (OS) [ Time Frame: Baseline until 90 days after last dose or initiation of another systemic anti-cancer therapy,
whichever occurs first (up to approximately 3 years) |

Percentage of Participants with Anti-Drug Antibodies (ADAs) to Atezolizumab [ Time Frame: Pre-infusion (O hr) until 2 months post
treatment discontinuation (up to approximately 3 years) ]

The results of this phase 1b study have been presented in the AACR Annual Meeting 2020, abstract is available at https://
cancerres.aacrjournals.org/content/80/16_Supplement/CT301

The desired outcome of measuring cytokine levels in 9 patient samples from this phase 1b trial (sample selection criteria described
above) was to study whether we can detect IL-1 family members in vivo following clinical RNA-LPX treatment.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

=
Q
—t
-
=
()
=
D
wv
D
Q
=
(@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A

X, The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
IZ All plots are contour plots with outliers or pseudocolor plots.

IZ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Spleens were harvested in cold PBS and single-cell suspensions were generated by mashing the spleen tissue through a 70
um cell strainer (BD Falcon) in Hank’s based Cell Dissociation Buffer (Gibco) supplemented with Liberase (Roche) and DNase |
(ThermoFisher). Red blood cells were lysed with ACK lysis buffer (Gibco). Single-cell suspensions were incubated in FACS
buffer (PBS supplemented with 0.5 % BSA and 0.05% Sodium Azide) containing anti-mouse CD16/CD32 (Mouse Fc Block, BD)
or Human TruStain FcX (Human Fc Block, Biolegend) for 10 min prior to and during staining with the indicated antibodies.
Intracellular Fixation & Permeabilization Buffer Set (88-8824-00, eBioscience) was used for intracellular staining of IL-1a and
IL-1b. Foxp3 / Transcription Factor Staining Buffer Set (00-5523-00, eBioscience) was used for intranuclear staining of TCF-1.
Cells were stained on ice for extracellular markers for 20-30 min followed by staining for intracellular markers for 60 min, and
filtered using 30-40 um filter plates (PALL).

Instrument BD FACSymphony (BD Biosciences)

Software Data was acquired using BD FACSDiva software v8.0, and analyzed using FlowJo 10.7.1.

Cell population abundance No sorting was performed.

Gating strategy Leukocytes were identified based on their forward scatter (FSC-A) and side scatter (SSC-A) profiles. Dead cells and cell

aggregates were excluded from analyses by Fixable Viability Dye eFluor 780 (eBioscience) or LIVE/DEAD™ Fixable Blue (Dead
Cell Stain Kit for UV excitation, Invitrogen) staining and FSC-A/FSC-H characteristics.

Gating strategies to identify different myeloid and lymphocyte cell subsets among live blood leukocytes are shown in
Extended Data Fig. 6a. Gating strategy to identify different myeloid cell subsets among live splenocytes is shown in Extended
Data Fig. 8a. Gating strategy to identify neoantigen-specific T cells is shown in Figure 4d. Gating strategy to identify IL-1b+ or
IL-1a+ cells within myeloid cell subsets among live splenocytes is shown in Extended Data Fig. 2c, e and 8b.

X, Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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