Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular vesicles in immunomodulation and tumor progression

Abstract

Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneous cargo of EVs.
Fig. 2: Mechanisms of EV immune regulation.
Fig. 3: Cancer EVs directly regulate tumor progression.
Fig. 4: Potential clinical translations for EVs.

Similar content being viewed by others

References

  1. Yáñez-mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  2. Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Kalra, H., Drummen, G. P. C. & Mathivanan, S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 17, 170 (2016).

  4. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

  6. Niel, G. Van, Angelo, G. D. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Xu, R. et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Théry, C. et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3, 1156–1162 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Mallegol, J. et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132, 1866–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Admyre, C. et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. 22, 578–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Utsugi-Kobukai, S., Fujimaki, H., Hotta, C., Nakazawa, M. & Minami, M. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol. Lett. 89, 125–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Clayton, A. et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lynch, S. et al. Novel MHC class I structures on exosomes. J. Immunol. 183, 1884–1891 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Bobrie, A., Colombo, M., Raposo, G. & Théry, C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hwang, I., Shen, X. & Sprent, J. Direct stimulation of naïve T cells by membrane vesicles from antigen-presenting cells: Distinct roles for CD54 and B7 molecules. Proc. Natl Acad. Sci. USA 100, 6670–6675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexander, M. et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Cell Biol. 6, 7321 (2015).

  20. Admyre, C., Johansson, S. M., Paulie, S. & Gabrielsson, S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur. J. Immunol. 36, 1772–1781 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Fitzgerald, W. et al. A system of cytokines encapsulated in extracellular vesicles. Sci. Rep. 8, 8973 (2018).

  22. Qazi, K. R., Gehrmann, U., Jordo, E. D., Karlsson, M. C. I. & Gabrielsson, S. Antigen-loaded exosomes alone induce TH1-type memory through a B cell–dependent mechanism. Immunobiology 113, 2673–2683 (2009).

    CAS  Google Scholar 

  23. Tkach, M. et al. Qualitative differences in T‐cell activation by dendritic cell‐derived extracellular vesicle subtypes. EMBO J. 36, 3012–3028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vincent-Schneider, H. Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int. Immunol. 14, 713–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ruhland, M. K. et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37, 786–799.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alvarez-Jiménez, V. D. et al. Extracellular vesicles released from mycobacterium tuberculosis-infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival. Front. Immunol. 9, 272 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Danesh, A. et al. Granulocyte-derived extracellular vesicles activate monocytes and are associated with mortality in intensive care unit patients. Front. Immunol. 9, 956 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xu, Y. et al. Macrophages transfer antigens to dendritic cells by releasing exosomes containing dead-cell-associated antigens partially through a ceramide-dependent pathway to enhance CD4+ T-cell responses. Immunology 149, 157–171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Becker, P. D. et al. B lymphocytes contribute to indirect pathway T cell sensitisation via acquisition of extracellular vesicles. Am. J. Transplant. https://doi.org/10.1111/ajt.16088 (2020).

  30. Zeng, F. & Morelli, A. E. Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin. Immunopathol. 40, 477–490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, L. et al. Exosomes from thymic stromal lymphopoietin-activated dendritic cells promote Th2 differentiation through the OX40 ligand. Pathobiology 86, 111–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kremer, A. N. et al. Natural T-cell ligands that are created by genetic variants can be transferred between cells by extracellular vesicles. Eur. J. Immunol. 48, 1621–1631 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei, G. et al. Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci. Rep. 7, 42996 (2017).

  34. Schierer, S. et al. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance 1, e201800093 (2018).

  35. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui, X. et al. Thyrocyte-derived exosome-targeted dendritic cells stimulate strong CD4+ T lymphocyte responses. Mol. Cell. Endocrinol. 506, 110756 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Cai, Z. et al. Immunosuppressive exosomes from TGF-$β$1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 22, 607–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, M. et al. Inhibition of MicroRNA let-7 depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. J. Immunol. 187, 1674–1683 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Lindenbergh, M. F. S. et al. Bystander T-cells support clonal T-cell activation by controlling the release of dendritic cell-derived immune-stimulatory extracellular vesicles. Front. Immunol. 10, 448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torralba, D. et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9, 2658 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chiou, N. et al. Selective export into extracellular vesicles and function of tRNA fragments during T cell activation. Cell Rep. 25, 3356–3370.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Segura, E., Amigorena, S. & The, C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Mol. Dis. 35, 89–93 (2005).

    Article  CAS  Google Scholar 

  43. Kaur, S. et al. CD63, MHC class 1, and CD47 identify subsets of extracellular vesicles containing distinct populations of noncoding RNAs. Sci. Rep. 8, 2577 (2018).

  44. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). J. Immunol. 155, 1151–1165 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Tung, S. L. et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci. Rep. 8, 6065 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tung, S. L. et al. Regulatory T cell extracellular vesicles modify T-effector cell cytokine production and protect against human skin allograft damage. Front. Cell Dev. Biol. 8, 317 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aiello, S. et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci. Rep. 7, 11518 (2017).

  48. Okoye, I. S. et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41, 89–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Torri, A. et al. Extracellular MicroRNA signature of human helper T cell subsets in health and autoimmunity. J. Biol. Chem. 292, 2903–2915 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, L. et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival. Med. Sci. Monit. 25, 4877–4884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Naqvi, A. R., Fordham, J. B., Ganesh, B. & Nares, S. MiR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells. Sci. Rep. 6, 1–12 (2016).

    Article  CAS  Google Scholar 

  52. Sullivan, J. A. et al. Treg-cell-derived IL-35-coated extracellular vesicles promote infectious tolerance. Cell Rep. 30, 1039–1051.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and fas ligand/fas-dependent manner. J. Immunol. 179, 2235–2241 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, S. H. et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol. Ther. 13, 289–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. O Reilly, L. A. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    Article  CAS  Google Scholar 

  57. Monleón, I. et al. Differential secretion of fas ligand- or APO2 Ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J. Immunol. 167, 6736–6744 (2001).

    Article  PubMed  Google Scholar 

  58. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kano, A. Tumor cell secretion of soluble factor(s) for specific immunosuppression. Sci. Rep. 5, 8913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Muller, L., Mitsuhashi, M., Simms, P., Gooding, W. E. & Whiteside, T. L. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci. Rep. 6, 20254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clayton, A. & Tabi, Z. Exosomes and the MICA-NKG2D system in cancer. Blood Cells, Mol. Dis. 34, 206–213 (2005).

    Article  CAS  Google Scholar 

  65. Capello, M. et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 10, 254 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mahaweni, N. M., Kaijen-Lambers, M. E. H., Dekkers, J., Aerts, J. G. J. V. & Hegmans, J. P. J. J. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J. Extracell. Vesicles 2, 22492 (2013).

    Article  CAS  Google Scholar 

  67. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Czystowska-Kuzmicz, M. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 10, 3000 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ricklefs, F. L. et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 4, eaar2766 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Haderk, F. et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci. Immunol. 2, 28 (2017).

    Article  Google Scholar 

  73. Karwacz, K. et al. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol. Med. 3, 581–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20, 209–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Vignard, V. et al. MicroRNAs in tumor exosomes drive immune escape in melanoma. Cancer Immunol. Res. 8, 255–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression byl-Arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Van De Velde, L. A. et al. T cells encountering myeloid cells rogrammed for amino acid-dependent immunosuppression use Rictor/mTORC2 protein for proliferative checkpoint decisions. J. Biol. Chem. 292, 15–30 (2017).

    Article  PubMed  CAS  Google Scholar 

  78. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Salimu, J. et al. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J. Extracell. Vesicles 6, 1368823 (2017).

  80. Hsu, Y. L. et al. Hypoxic lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol. Ther. 26, 568–581 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. de Jong, O. G. et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles 1, https://doi.org/10.3402/jev.v1i0.18396 (2012).

  82. Park, J. E. et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 38, 5158–5173 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Lenzini, S., Bargi, R., Chung, G. & Shin, J.-W. Matrix mechanics and water permeation regulate extracellular vesicle transport. Nat. Nanotechnol. 15, 217–223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Diaz, B. & Yuen, A. The impact of hypoxia in pancreatic cancer invasion and metastasis. Hypoxia 2, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Berchem, G. et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology 5, e1062968 (2016).

  87. Kim, D.-H. & Wirtz, D. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fraley, S. I., Feng, Y., Giri, A., Longmore, G. D. & Wirtz, D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nat. Commun. 3, 719 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. 106, 19017–19022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Dionisi, M. et al. Tumor-derived microvesicles enhance cross-processing ability of clinical grade dendritic cells. Front. Immunol. 9, 2481 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Huang, F., Wan, J., Hu, W. & Hao, S. Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-β1 expression. Cell. Physiol. Biochem. 44, 240–254 (2017).

    Article  PubMed  Google Scholar 

  94. Rughetti, A. et al. Microvesicle cargo of tumor-associated MUC1 to dendritic cells allows cross-presentation and specific carbohydrate processing. Cancer Immunol. Res. 2, 177–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Kitai, Y. et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Lin, W. et al. Radiation-induced small extracellular vesicles as ‘carriages’ promote tumor antigen release and trigger antitumor immunity. Theranostics 10, 4871–4884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Squadrito, M. L., Cianciaruso, C., Hansen, S. K. & De Palma, M. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nat. Methods 15, 183–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, H. et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunol. Res. 3, 196–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Caruso Bavisotto, C. et al. Immunomorphological pattern of molecular chaperones in normal and pathological thyroid tissues and circulating exosomes: Potential use in clinics. Int. J. Mol. Sci. 20, 4496 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  100. Diamond, J. M. et al. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ma, J. et al. Mechanisms by which dendritic cells present tumor microparticle antigens to CD8+ T cells. Cancer Immunol. Res. 6, 1057–1069 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Menay, F. et al. Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front. Immunol. 8, 286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Daßler-Plenker, J. et al. RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology 5, e1219827 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Gastpar, R. et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65, 5238–5247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, Q. et al. Bifacial effects of engineering tumour cell-derived exosomes on human natural killer cells. Exp. Cell. Res. 363, 141–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Greening, D. W., Gopal, S. K., Xu, R., Simpson, R. J. & Chen, W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Developmental Biol. 40, 72–81 (2015).

    Article  CAS  Google Scholar 

  108. Scholl, J. N. et al. Characterization and antiproliferative activity of glioma-derived extracellular vesicles. Nanomedicine 15, 1001–1018 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Salamon, P., Mekori, Y. A. & Shefler, I. Lung cancer-derived extracellular vesicles: a possible mediator of mast cell activation in the tumor microenvironment. Cancer Immunol. Immunother. 69, 373–381 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions. Science 352, 242–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seo, N. et al. Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat. Commun. 9, 435 (2018).

  112. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Lu, Z. et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J. Hepatol. 67, 739–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Ostheimer, C., Gunther, S., Bache, M., Vordermark, D. & Multhoff, G. Dynamics of heat shock protein 70 serum levels as a predictor of clinical response in non-small-cell lung cancer and correlation with the hypoxia-related marker osteopontin. Front. Immunol. 8, 1305 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Gao, Y. et al. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines. Oncol. Rep. 36, 1243–1250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Blachere, B. N. E. et al. Heat shock protein—peptide complexes, reconstituted in. J. Exp. Med. 186, 1315–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ochyl, L. J. et al. PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials 182, 157–166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koh, E. et al. Exosome–SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 121, 121–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Kamerkar, S. et al. Therapeutic targeting of oncogenic KRAS in pancreatic cancer by engineered exosomes. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rana, S., Yue, S., Stadel, D. & Zöller, M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574–1584 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Sun, H. et al. A multifunctional liposomal nanoplatform co-delivering hydrophobic and hydrophilic doxorubicin for complete eradication of xenografted tumors. Nanoscale 11, 17759–17772 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Watson, D. C. et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105, 195–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Whitford, W. & Guterstam, P. Exosome manufacturing status. Future Med. Chem. 11, 1225–1236 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Zhao, Z., McGill, J., Gamero-Kubota, P. & He, M. Microfluidic on-demand engineering of exosomes towards cancer immunotherapy. Lab Chip 19, 1877–1886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou, H. et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 69, 1471–1476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jeyaram, A. & Jay, S. M. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 20, 1–7 (2018).

    Article  CAS  Google Scholar 

  128. Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Asadirad, A. et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 219, 152–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Dusoswa, S. A. et al. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated targeting of dendritic cells. J. Extracell. Vesicles 8, 1648995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gu, X., Erb, U., Büchler, M. W. & Zöller, M. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int. J. Cancer 136, E74–E84 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Rossowska, J. et al. Antitumor potential of extracellular vesicles released by genetically modified murine colon carcinoma cells with overexpression of interleukin-12 and shRNA for TGF-β1. Front. Immunol. 10, 211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Matsumoto, A., Takahashi, Y., Ariizumi, R., Nishikawa, M. & Takakura, Y. Development of DNA-anchored assembly of small extracellular vesicle for efficient antigen delivery to antigen presenting cells. Biomaterials 225, 119518 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Morishita, M., Takahashi, Y., Nishikawa, M., Ariizumi, R. & Takakura, Y. Enhanced class I tumor antigen presentation via cytosolic delivery of exosomal cargos by tumor-cell-derived exosomes displaying a pH-sensitive fusogenic peptide. Mol. Pharm. 14, 4079–4086 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Zuo, B. et al. Alarmin-painted exosomes elicit persistent antitumor immunity in large established tumors in mice. Nat. Commun. 11, 1–16 (2020).

    Article  Google Scholar 

  136. Al-Samadi, A. et al. Crosstalk between tongue carcinoma cells, extracellular vesicles, and immune cells in in vitro and in vivo models. Oncotarget 8, 60123–60134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Morishita, M., Takahashi, Y., Matsumoto, A., Nishikawa, M. & Takakura, Y. Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 111, 55–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Huang, F. et al. TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model. Cancer Immunol. Immunother. 66, 1321–1331 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Guo, D. et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to TH17 cells via IL-6. Immunology 154, 132–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gobbo, J. et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J. Natl Cancer Inst. 108, 1–11 (2016).

    Article  CAS  Google Scholar 

  141. Bell, B. M., Kirk, I. D., Hiltbrunner, S., Gabrielsson, S. & Bultema, J. J. Designer exosomes as next-generation cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 12, 163–169 (2016).

    Article  CAS  Google Scholar 

  142. Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J. Clin. Invest. 126, 1224–1232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Tran, T. H., Mattheolabakis, G., Aldawsari, H. & Amiji, M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin. Immunol. 160, 46–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Chen, S. et al. Poly(I:C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes. Int. J. Biol. Macromol. 113, 1182–1187 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Matsumoto, A., Asuka, M., Takahashi, Y. & Takakura, Y. Antitumor immunity by small extracellular vesicles collected from activated dendritic cells through effective induction of cellular and humoral immune responses. Biomaterials 252, 120112 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Zhu, L. et al. Novel alternatives to extracellular vesicle-based immunotherapy–exosome mimetics derived from natural killer cells. Artif. Cells, Nanomed. Biotechnol. 46, S166–S179 (2018).

    Article  CAS  Google Scholar 

  148. Zhu, L. et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 7, 2732–2745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu, L. et al. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 190–191, 38–50 (2019).

    Article  PubMed  CAS  Google Scholar 

  150. Lee, H., Park, H., Noh, G. J. & Lee, E. S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym. 202, 323–333 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Meng, X. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Adv. Exp. Med. Biol. 924, 3–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Maji, S. et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Mol. Cancer Res. 15, 93–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Muller, L. et al. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4, e1008347 (2015).

  154. Ciravolo, V. et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J. Cell. Physiol. 227, 658–667 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Battke, C. et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol. Immunother. 60, 639–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Cordonnier, M. et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J. Extracell. Vesicles 9, 1710899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported through grants from the National Institutes of Health (T32GM008764) to C.M. and the National Cancer Institute (U54CA143868) and the National Institute on Aging (U01AG060903) to D.W. Figures designed with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor(s) on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marar, C., Starich, B. & Wirtz, D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 22, 560–570 (2021). https://doi.org/10.1038/s41590-021-00899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-021-00899-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer