Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The evolution of synthetic receptor systems

Abstract

Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell’s interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved—a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a ‘metric-enabled approach for synthetic receptor engineering’ (MEASRE).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generalized operational components of synthetic receptors.
Fig. 2: The mammalian synthetic receptor toolkit.
Fig. 3: The mammalian transcriptional programming toolkit.
Fig. 4: Synthetic receptor input–output configurations.
Fig. 5: The evolutionary history of synthetic receptor systems.
Fig. 6: Strategies for integration of synthetic receptor systems.
Fig. 7: Metric-enabled approach for synthetic receptor engineering.

Similar content being viewed by others

References

  1. Nakanishi, H. & Saito, H. Mammalian gene circuits with biomolecule-responsive RNA devices. Curr. Opin. Chem. Biol. 52, 16–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Kojima, R., Scheller, L. & Fussenegger, M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat. Chem. Biol. 14, 42–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Pesch, T. et al. Molecular design, optimization, and genomic integration of chimeric B cell receptors in murine B cells. Front. Immunol. 10, 2630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kojima, R. & Fussenegger, M. Engineering whole mammalian cells for target-cell-specific invasion/fusion. Adv. Sci. (Weinh.) 5, 1700971 (2018).

    Google Scholar 

  8. Engelowski, E. et al. Synthetic cytokine receptors transmit biological signals using artificial ligands. Nat. Commun. 9, 2034 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mossner, S. et al. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10R2 and functional cross-talk with the IL-6 receptor gp130. J. Biol. Chem. 295, 12378–12397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishizuka, S. et al. Designing motif-engineered receptors to elucidate signaling molecules important for proliferation of hematopoietic stem cells. ACS Synth. Biol. 7, 1709–1714 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Qudrat, A. & Truong, K. Engineering synthetic proteins to generate Ca2+ signals in mammalian cells. ACS Synth. Biol. 6, 582–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Stapornwongkul, K. S., de Gennes, M., Cocconi, L., Salbreux, G. & Vincent, J. P. Patterning and growth control in vivo by an engineered GFP gradient. Science 370, 321–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scheller, L., Strittmatter, T., Fuchs, D., Bojar, D. & Fussenegger, M. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat. Chem. Biol. 14, 723–729 (2018). This study presents a modular receptor design strategy for linking engineered sensing via many types of ligand-binding domains to various native actuation pathways.

    Article  CAS  PubMed  Google Scholar 

  14. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kipniss, N. H. et al. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 8, 2212 (2017). This study is a pioneering investigation into systematically improving a synthetic receptor design (ref. 14) to meet defined performance objectives.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat. Methods 14, 495–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H. B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167, 419–432 e416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, I. et al. Design and modular assembly of synthetic intramembrane proteolysis receptors for custom gene regulation in therapeutic cells. Preprint at bioRxiv https://doi.org/10.1101/2021.05.21.445218 (2021).

  23. Daringer, N. M., Dudek, R. M., Schwarz, K. A. & Leonard, J. N. Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol. 3, 892–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Dolberg, T. B. et al. Computation-guided optimization of split protein systems. Nat. Chem. Biol. 17, 531–539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep. 20, 2639–2653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siciliano, V. et al. Engineering modular intracellular protein sensor–actuator devices. Nat. Commun. 9, 1881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donahue, P. S. et al. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat. Commun. 11, 779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheller, L. et al. Phosphoregulated orthogonal signal transduction in mammalian cells. Nat. Commun. 11, 3085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, W., Pferdehirt, L. & Segatori, L. Quantitatively predictable control of cellular protein levels through proteasomal degradation. ACS Synth. Biol. 7, 540–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kojima, R., Aubel, D. & Fussenegger, M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as ‘doctors’ in the body. Cell. Mol. Life Sci. 77, 3567–3581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krawczyk, K., Scheller, L., Kim, H. & Fussenegger, M. Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. Nat. Commun. 11, 608 (2020). This study develops a signal processing strategy to rewire native actuation into synthetic actuation pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, H., Bojar, D. & Fussenegger, M. A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. Proc. Natl Acad. Sci. USA 116, 7214–7219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, W. C. W. et al. A synthetic transcription platform for programmable gene expression in mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2020.12.11.420000 (2020).

  41. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Hartfield, R. M., Schwarz, K. A., Muldoon, J. J., Bagheri, N. & Leonard, J. N. Multiplexing engineered receptors for multiparametric evaluation of environmental ligands. ACS Synth. Biol. 6, 2042–2055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalil, A. S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muldoon, J. J. et al. Model-guided design of mammalian genetic programs. Sci. Adv. 7, eabe9375 (2021). This study describes model-guided predictive design of genetic programs to process and/or integrate signals from multiple synthetic receptors using sophisticated logic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Israni, D. V. et al. Clinically-driven design of synthetic gene regulatory programs in human cells. Preprint at bioRxiv https://doi.org/10.1101/2021.02.22.432371 (2021).

  48. Zah, E., Lin, M. Y., Silva-Benedict, A., Jensen, M. C. & Chen, Y. Y. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4, 498–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zah, E. et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 11, 2283 (2020). This study employs and optimizes the use of tandem antibody domains on synthetic receptors, a technique that has been employed in other synthetic receptor systems (ref. 50).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020). This study explores multiple ways to integrate synthetic receptors and introduces new sensing and actuation technologies to the synNotch receptor toolkit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alabanza, L. et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 25, 2452–2465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, X. et al. Rational tuning of CAR tonic signaling yields superior T-cell therapy for cancer. Preprint at bioRxiv https://doi.org/10.1101/2020.10.01.322990 (2020).

  53. Elazar, A. et al. De novo designed receptor transmembrane domains enhance CAR-T cell cytotoxicity and attenuate cytokine release. Preprint at bioRxiv https://doi.org/10.1101/2020.07.26.221598 (2020).

  54. Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leung, W. H. et al. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight 5, e124430 (2019).

    Article  Google Scholar 

  59. Cho, J. H. et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat. Commun. 12, 792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H.-S. et al. Engineering clinically-approved drug gated CAR circuits. Preprint at bioRxiv https://doi.org/10.1101/2020.12.14.419812 (2020).

  61. Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, D., Zhao, J. & Song, Y. Engineering switchable and programmable universal CARs for CAR T therapy. J. Hematol. Oncol. 12, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438 e1411 (2018). This study demonstrates the use of adapter molecules on CARs for switching targets, implementing sophisticated logic, and tuning induced signaling output.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Urbanska, K. et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 72, 1844–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lohmueller, J. J., Ham, J. D., Kvorjak, M. & Finn, O. J. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology 7, e1368604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ma, J. S. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl Acad. Sci. USA 113, E450–E458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cartellieri, M. et al. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 6, e458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kudo, K. et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 74, 93–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Lohmueller, J. et al. Post-translational covalent assembly of CAR and synNotch receptors for programmable antigen targeting. Preprint at bioRxiv https://doi.org/10.1101/2020.01.17.909895 (2020).

  74. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lui, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  Google Scholar 

  77. Djannatian, M. S., Galinski, S., Fischer, T. M. & Rossner, M. J. Studying G protein-coupled receptor activation using split-tobacco etch virus assays. Anal. Biochem. 412, 141–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Edelstein, H. I. et al. Elucidation and refinement of synthetic receptor mechanisms. Synth. Biol. (Oxf.) 5, ysaa017 (2020).

    Article  CAS  Google Scholar 

  79. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Z. et al. Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors. Nat. Commun. 11, 2163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weinberg, Z. Y. et al. Sentinel cells enable genetic detection of SARS-CoV-2 spike protein. Preprint at bioRxiv https://doi.org/10.1101/2021.04.20.440678 (2021).

  82. Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361, 156–162 (2018). This study demonstrates the ability of synNotch to sense soluble ligands that are tethered via surface-bound anchors and employs this new sensing ability to program patterning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, H. et al. Cell-cell contact-induced gene editing/activation in mammalian cells using a synNotch-CRISPR/Cas9 system. Protein Cell 11, 299–303 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yang, Z. J., Yu, Z. Y., Cai, Y. M., Du, R. R. & Cai, L. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun. Biol. 3, 116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Toda, S. et al. Engineering synthetic morphogen systems that can program multicellular patterning. Science 370, 327–331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lanitis, E. et al. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol. Res. 1, 43–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luo, H. et al. Target-dependent expression of IL12 by synNotch receptor-engineered NK92 cells increases the antitumor activities of CAR-T cells. Front. Oncol. 9, 1448 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503 e488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13, eabe7378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hyrenius-Wittsten, A. et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci. Transl. Med. 13, eabd8836 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Hernandez-Lopez, R. A. et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371, 1166–1171 (2021). This study tunes an integrated synNotch-CAR receptor system to achieve an ultrasensitive input-output relationship.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

    Article  PubMed  Google Scholar 

  93. Lohmueller, J. J., Armel, T. Z. & Silver, P. A. A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res. 40, 5180–5187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bashor, C. J. et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science 364, 593–597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Williams, D. J. et al. Precision manufacturing for clinical-quality regenerative medicines. Philos. Trans. A Math. Phys. Eng. Sci. 370, 3924–3949 (2012).

    CAS  PubMed  Google Scholar 

  97. Frei, T. et al. Characterization and mitigation of gene expression burden in mammalian cells. Nat. Commun. 11, 4641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jones, R. D. et al. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun. 11, 5690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Johnson for her critical review of this manuscript and valuable feedback. This work was supported in part by the Indo-US Science & Technology Forum (IUSSTF) and the Department of Science & Technology (DST), Government of India (J.M.); the National Science Foundation Graduate Research Fellowship Program (DGE-1842165) (H.I.E.); the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (NIH) under Award Number 1R01EB026510 (J.N.L.); the National Institute of Biomedical Imaging and Bioengineering of the NIH under Award Number EB021030-03, the National Institute of General Medicine of the NIH award number R35 GM138256 and the National Science Foundation award number CBET-2034495 RECODE (L.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua N. Leonard or Leonardo Morsut.

Ethics declarations

Competing interests

L.M. is an inventor of synNotch patent US9670281B2 and receives royalty payments from licensing to Gilead Inc. through UCSF; the other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manhas, J., Edelstein, H.I., Leonard, J.N. et al. The evolution of synthetic receptor systems. Nat Chem Biol 18, 244–255 (2022). https://doi.org/10.1038/s41589-021-00926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00926-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing