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High-throughput biomedical data are generated by a range 
of technologies1–3 that measure dozens to tens of thousands 
of features in millions of cells derived from large patient 

cohorts. We posit here that the key to understanding such complex 
data is to create meaningful representations that uncover structure 
at all resolutions or scales. This approach involves learning represen-
tations of the biological system at many levels, allowing for coarse, 
high-level summarization as well as fine-grained, detailed represen-
tations of data subsets. Current tools for dimensionality reduction 
and data exploration, including t-distributed stochastic neighbor-
hood embedding (t-SNE)4, uniform manifold approximation and 
projection (UMAP)5 and principal-component analysis (PCA)6, 
only show a single level of granularity of the data. Recent papers 
on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
(refs. 7,8) have used one of these approaches to understand patient 

cellular responses at a single resolution. Differences between an 
effective immunological response and an ineffective one, however, 
may not be found at the granularity of immune compartment abun-
dance alone.

Based on this insight, we developed Multiscale PHATE, a 
method that can learn and visualize abstract cellular features and 
groupings of the data at all levels of granularity. Our algorithm is 
based on a dynamic topological process called diffusion condensa-
tion9, which slowly condenses data points toward local centers of 
gravity to form natural, data-driven groupings across granulari-
ties. This coarse-graining process continuously learns the topol-
ogy of the underlying dataset by allowing cells to naturally come 
together over the course of successive condensation steps, allow-
ing for the exploration of a more continuous range of granulari-
ties not revealed through other methods. Visualizing a series of 
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iterations in this dynamic condensation process using potential of 
heat-diffusion for affinity-based trajectory embedding (PHATE), 
a manifold affinity-preserving dimensionality reduction method, 
creates Multiscale PHATE embeddings, whereas evaluating con-
nected cells across granularities creates Multiscale PHATE clusters. 
Furthermore through efficient scalable implementation, we show 
that we are able to perform visualization and clustering of large-scale 
data substantially faster than single-scale visualization techniques 
like t-SNE, UMAP or PHATE10. Implementing these multigranu-
lar and visualization approaches in such a scalable manner, we have 
created a tool capable of visualizing, clustering and ultimately deriv-
ing meaning from rich single-cell datasets.

We showcase our method using 251 blood samples from 168 
patients infected with SARS-CoV-2 (ref. 11) and clinical data from 
2,135 patients admitted to Yale New Haven Hospital (YNHH). With 
our unique multigranular approach, we can produce high-level 
summarizations and detailed cell type-specific analyses of 54 mil-
lion of cells, tasks that would take weeks to perform using previ-
ous methods. When combined with manifold density estimation 
(MELD)12, our approach can identify cellular populations associ-
ated with patient outcome across resolutions. At coarse resolutions, 
we identify T cells to be broadly protective, whereas monocytes 
and granulocytes are pathogenic. At finer resolution, we identify 
CD16hiCD66b− neutrophil, CD14−CD16hiHLA-DRlo monocytes, 
and interferon-γ (IFN-γ)+ granzyme B+ T helper type 17 (Th17) 
cells to be associated with patient mortality. While coarse grain 
analysis reveals that a cell type (e.g., T cells) may be broadly protec-
tive, fine-grain analysis reveals that cellular subsets can be patho-
genic, highlighting the need for a multiresolution approach. Next, 
we show that these Multiscale PHATE-derived cellular groupings 
can be used to predict outcome better than immunologist-curated 
populations and groupings produced by other graph-based clus-
tering approaches. Finally, to display the generalizability of our 
approach across data types, we created a multiscale distillation of 
patients admitted to YNHH. Built from 18 laboratory, clinical and 
demographic variables, Multiscale PHATE was used to perform 
multiresolution analysis of patient clinical states and effectively 
identified lab variables and cellular populations associated with 
outcomes.

Results
Multiscale PHATE algorithm. Multiscale PHATE combines a 
data coarse-graining method called diffusion condensation9 with 
a manifold-preserving dimensionality reduction method called 
PHATE10 to produce multigranular visualizations and clusters of 
high-dimensional biological data. The Multiscale PHATE algorithm 
(Methods Alg. 1) can be broken down into four conceptual steps 
(Fig. 1a):
	1.	 compute a manifold-intrinsic, diffusion potential representa-

tion that learns the nonlinear biological manifold as done in 
PHATE (Methods and Fig. 1a-i);

	2.	 coarse grain this diffusion potential using a fast diffusion con-
densation process (Methods and Fig. 1a-ii);

	3.	 select meaningful resolutions for downstream analysis with a 
gradient-based approach (Fig. 1a-iii);

	4.	 visualize condensed diffusion potential coordinates at selected 
scales via metric multidimensional scaling (MMDS) and ana-
lyze coarser-grain resolutions to obtain multiscale clusters (Fig. 
1a-iv).

Multiscale PHATE starts by creating a diffusion potential rep-
resentation U of the original data as done by Moon et al10 and 
summarized in Methods. Precisely, first, a distance matrix D is 
calculated between all cells based on their ambient measurements. 
Distance matrix D is converted into affinity matrix K using an 
adaptive-bandwidth Gaussian kernel function so that similarity 

between two cells decreases exponentially with their distance. Next, 
K is row normalized to obtain the diffusion operator P, representing 
the probability distribution of transitioning from one cell to another 
in a single step. This diffusion operator P is raised to tD, the PHATE 
optimal diffusion timescale as computed by von Neumann entropy, 
to simulate a tD-step random walk over the data graph. Finally, by 
taking logarithm of PtD

I
, we calculate the diffusion potential U of 

the data. Previous work has shown that this internal representation 
computed in PHATE effectively learns the nonlinear geometry of 
complex biological datasets and can be rapidly visualized in two or 
three dimensions using MMDS. Multiscale PHATE uses this diffu-
sion potential representation as the substrate for our diffusion con-
densation process. As done for our diffusion potential calculation, 
diffusion condensation computes a diffusion operator Pt at each 
iteration using a fixed-bandwidth Gaussian kernel function from 
the location of cells in diffusion potential space. The use of a fixed 
bandwidth gives a measure of locality in computing cell–cell affini-
ties. This diffusion operator Pt is applied to the diffusion potential 
Ut, acting as a diffusion filter, effectively replacing the coordinates of 
a point with the weighted average of its diffusion neighbors. When 
the distance between two cells falls below a distance threshold, cells 
are merged together, denoting them as belonging to the same cluster 
going forward. This process is then repeated iteratively until all cells 
have collapsed to a single cluster.

By conducting this denoising over the diffusion potential, 
Multiscale PHATE tackles two shortcomings of the original diffu-
sion condensation. Diffusion condensation in its original form is 
not effective at learning or visualizing the nonlinear geometry of 
biological datasets and is prone to condensing points off the data 
manifold (Extended Data Fig. 1a). By first learning the nonlinear 
data manifold through a diffusion potential calculation and feed-
ing this into diffusion condensation, we not only effectively learn 
the nonlinear geometry of complex datasets (Extended Data Fig. 1a) 
but also rapidly visualize and learn clusters at resolutions of interest 
(Fig. 1a-iv).

To identify meaningful scales, we applied a gradient-based 
approach (Methods), which identifies stable resolutions of the 
condensation process for downstream analysis. Visualization of 
any of these resolutions is achieved by computing a potential dis-
tance matrixDUt

I
 using distance between pairs of rows in Ut. Finally, 

Multiscale PHATE visualization is obtained by performing MMDS 
to preserve the distances within DUt

I
 in two or three dimensions and 

ready for visualization. Thus, in Multiscale PHATE, we are able to 
not only compute a coherent data topology along the data manifold 
but also quickly visualize an intermediate layer of the condensation 
process (Extended Data Fig. 1a). Using a stochastic block model, 
where clusters are known, we show that diffusion condensation ini-
tialized with diffusion potential outperforms diffusion condensa-
tion on the ambient measurement space as increasing amounts of 
noise are added to the model (Extended Data Fig. 1b).

Further detail on Multiscale PHATE’s generalizability (Extended 
Data Fig. 2), scalability (Extended Data Fig. 1d) and reproducibility 
(Extended Data Fig. 1e) can be found in Methods. Finally, additional 
details on the Multiscale PHATE, how it integrates with other analy-
sis techniques (Fig. 1d and Extended Data Fig. 1c), how the method 
can be leveraged to create a patient manifold and the algorithm’s 
improved ability to identify pathogenic populations (Extended Data 
Fig. 3) can be found in Methods.

Comparison of Multiscale PHATE with other methods. Because 
Multiscale PHATE is a multigranular clustering and visualization 
tool, we evaluated it against a combination of other visualization 
and coarse-graining tools using a variety of metrics. To determine 
the necessity of diffusion condensation to learn data organization, 
we compared Multiscale PHATE with other clustering methods, 
including Louvain, Leiden and 0-dimension persistent homology 
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(single-linkage clustering), using an adjusted Rand index (ARI) 
and F1 scores as measures of clustering accuracy. Then, with the 
same data abstraction by each clustering method, we compared our 
choice of visualization method, PHATE, with UMAP and t-SNE. To 
quantify the visualization by Multiscale PHATE and other compari-
son combinations, we computed denoised manifold affinity preser-
vation (DeMAP) scores10 on the embeddings.

Multiscale PHATE embeddings preserved local and global dis-
tances. In our comparisons, we performed two different ablation 
studies to determine the necessity of both the diffusion condensa-
tion approach to learn data topology (Fig. 2b) as well as PHATE 
to learn and visualize manifold geometry (Fig. 2c). In each study, 
we repeated comparisons on a variety of datasets that have differ-
ent geometries, such as paths (or trajectories) or cluster structure, 
with increasing amounts of two types of biological noise: variation  
and dropout.

After visualizing synthetic single-cell datasets produced by 
splatter (Fig. 2a) and running all comparisons, Multiscale PHATE 
performed better than other methods across nearly all ranges of 

biological noise (Fig. 2b,c). In particular, Multiscale PHATE had 
distinct advantages in visualizing data with a high degree of noise 
(Fig. 2a–c and Extended Data Fig. 4). Although some other meth-
ods, such as Homology-UMAP, appear to produce good visualiza-
tions, they receive lower DeMAP scores than Multiscale PHATE, 
suggesting poorer quality. Finally, in our second ablation study 
(Fig. 2c), it appears that PHATE is the most effective visualization 
methodology when embedding multiscale clusters generated by the 
same coarse-graining method. We repeated our comparisons on 1.7 
million cells from FlowCap I normal donor (ND) dataset13, add-
ing increasing amounts of Gaussian noise to simulate variation and 
increasing degree of undersampling to simulate dropout. Across our 
comparisons, Multiscale PHATE similarly performed as well or bet-
ter than other visualization modalities, especially as noise increased 
within the dataset (Extended Data Fig. 4c,d).

Multiscale clusters accurately captured established groupings 
of data. To quantify the clustering accuracy of Multiscale PHATE, 
we benchmarked our approach’s ability to predict ground truth 
clusters on two different types of synthetic data and two different 
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Fig. 1 | Overview of the Multiscale PHATE algorithm. a, Multiscale PHATE process involves four successive steps. The first step (i) learns the manifold 
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types of biological data. First, we simulated noisy synthetic data 
where ground truth clusters are known, as done previously for 
visualization comparisons14. Then, we computed cluster labels with 
Multiscale PHATE, Louvain15, Leiden16 and single-linkage hierar-
chical clustering17 on datasets with varying degrees and types of 
noise. Across noise levels, Multiscale PHATE outperformed hier-
archical, Louvain and Leiden clusterings at the most relevant lev-
els of noise across 10 randomly initialized datasets (Extended Data  
Fig. 5a). Next, we simulated two- and three-layer hierarchical sto-
chastic block models (Extended Data Fig. 5b). In these models, a 
graph is constructed in which there are coarse-grain clusters, each 
of which could be further broken down into increasingly granu-
lar clusters. To compare all clustering techniques across a range of 
noise levels, increasing amounts of random Gaussian noise is added 

to the edge weights of the graph, representing a complex form of 
noise that creates nonlinear changes that would be difficult for 
many algorithms to deconvolve. Across 10 replicates in three-layer 
and two-layer models, Multiscale PHATE performed better than 
Louvain, Leiden and single-linkage hierarchical clustering in 35 of 
the 42 comparison conditions (Extended Data Fig. 5c,d).

Finally, we benchmarked Multiscale PHATE’s performance 
across granularities on flow cytometry data where cell-type labels 
have already been established through conventional gating analy-
sis. Across both fine- and coarse-grain cellular clusters, Multiscale 
PHATE computed clusters that more faithfully represented the 
underlying known biological cell types (Extended Data Fig. 6a). 
We next tried to determine whether Multiscale PHATE better cap-
tured known populations across a range of computed resolutions. 
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We computed ARI between known cluster labels and all computed 
resolutions (less than 100 clusters) of Multiscale PHATE, FlowSOM, 
Leiden and Louvain. Across all resolutions and both sets of cluster 
labels, Multiscale PHATE outperformed other models (Extended 
Data Fig. 6c). Finally, we tried to determine how increasing amounts 
of noise in real biological data could affect clustering ability. To per-
form this analysis, we analyzed FlowCAP I ND dataset and added 
increasing amounts of variation or dropout, computing clusters 
with all our methods at each noise level. As an increasing amount of 
noise was added to the data, Multiscale PHATE outperformed other 
clustering modalities (Extended Data Fig. 6d).

Multiscale PHATE analysis of 251 blood samples from patients 
with SARS-CoV-2. A total of 168 patients with moderate to severe 
COVID-19 (ref. 18) were admitted to YNHH and recruited to the 
Yale IMPACT (Implementing Medical and Public Health Action 
Against Coronavirus CT) study. From each patient, blood samples 
were collected across multiple time points to characterize patient 
cellular responses across the spectrum of disease. In total, the com-
position of peripheral blood mononuclear cells (PBMCs) was mea-
sured by flow cytometry on 251 samples. Finally, clinical data were 
extracted from the electronic health record corresponding to each 
biosample time point to allow for clinical correlation of findings 
(Methods). In this analysis, we define a poor or adverse outcome 
as a patient who died of infection and a good outcomes as a patient 
who survived. Rigorous and robust analysis of over 54 million cells 
characterized across four different sets of flow marker panels is 
not possible through current single-cell computational techniques. 
Thus, we applied Multiscale PHATE to identify subsets of PBMCs 
associated with mortality and survival.

Key cellular subsets were enriched in patients who died of infec-
tion. To explore the role of individual PBMC types in disease patho-
genesis, we examined 22 million cells measured on a myeloid-centric 
flow cytometry panel containing samples from 210 patients with 
COVID-19 across scales with Multiscale PHATE. Using cell 
type-specific marker staining, we characterized Multiscale PHATE 
clusters (Fig. 3a). We computed the mortality likelihood score for 
each patient using MELD with the mortality outcome and identified 
cellular states enriched in patients who died from infection (darker 
red) or patients who survived (darker blue) (Fig. 3b). When map-
ping these scores onto cluster labels, we found that the three popula-
tions most enriched in mortality were granulocytes (CD16+SSChi), 
B cells (CD19+) and monocytes (CD14+), whereas the population 
most enriched in survival was T cells (CD3+) (Fig. 3c). Although 
these broad cell types may be associated with disease outcome, cel-
lular subsets likely may be driving some or all of these cell-type 
effects. We zoomed in on these broad cell types across a number 
of flow cytometry panels to identify cellular subtypes potentially 
responsible for pathogenic or protective effects.

CD14−CD16hiHLA-DRlo monocytes associated with mortality. 
To identify monocyte subsets implicated in disease, we zoomed into 
the monocyte population and identified major subtypes based on 
the expression of markers CD16 and CD14 (Extended Data Fig. 
7a). The combination of these markers allowed us to distinguish 
between CD14+CD16− monocytes, CD14+CD16int monocytes and 
CD14−CD16hi monocytes. We identified that CD14−CD16hi mono-
cytes were the most strongly enriched in severe infection, followed 
by CD14+CD16int monocytes (Extended Data Fig. 7b). These find-
ings agreed with published observations, as others have also noted 
an influx of CD14+CD16int and CD14−CD16hi monocytes in the 
lungs of patients with severe disease8,19,20. Furthermore, across all 
monocytes, CD16 was positively correlated with mortality, whereas 
CD14 and HLA-DR were correlated with survival, identifying a dis-
tinct CD14−CD16hiHLA-DRlo population of monocytes enriched in 

mortality. The loss of HLA-DR on monocytes has been previously 
observed in patients with COVID-19 and sepsis, potentially via an 
increase in circulating interleukin-10 (IL-10) (ref. 21).

Circulating, resting neutrophils associated with mortality. Using 
Multiscale PHATE, we zoomed in on the granulocyte population 
and identified CD16hi neutrophils, CD16lo neutrophils and eosino-
phils based on the expression of CD16, CD66b, granularity by side 
scatter (SSC) and size by forward scatter (FSC) (Fig. 3d). After 
mapping our mortality scores onto this granulocyte population, 
we found that CD16hi neutrophils were enriched in patients who 
died of infection. To identify which cellular markers beyond CD16 
were most correlated with mortality in neutrophils, we computed 
DREMI between protein expression and mortality likelihood scores 
in both neutrophil subsets. We identified that although CD14 and 
CD66b were negatively correlated with mortality, increased FSC 
and SSC were both strongly positively correlated with mortality 
in neutrophils, indicating that CD16hiCD66blo neutrophils were 
enriched in patients who died of COVID-19 (Fig. 3e). Based on the 
PBMC isolation protocol used (Methods), the neutrophils obtained 
were by definition low-density neutrophils, containing both the 
mature and immature subsets. Considering the sensitivity of CD16 
expression, the CD16hi neutrophils in our cohort were most likely 
indicative of a mature population that has not responded to an acti-
vating stimulus22. Neutrophils from patients with worse disease also 
expressed less CD66b; in contrast, an increase in surface expres-
sion of CD66b occurs following degranulation23. Although granu-
locytes are broadly associated with negative outcomes, Multiscale 
PHATE reveals that there is actually a subpopulation of circulating 
resting neutrophils, defined by a combination of high complexity, 
high CD16 expression and low CD66b expression, that may drive a 
majority of this pathogenic effect in patients.

Plasmablast populations associated with mortality. In our broad 
PBMC analysis, B cells were among the most enriched populations 
in severe outcomes (Fig. 3c). To explore B cells in greater detail, we 
processed 154 patient samples on a B cell-specific flow cytometry 
marker panel. Analyzing these cells by Multiscale PHATE granted 
us an unbiased, granular look at B cell subsets that would other-
wise be difficult to detect using traditional two-dimensional gat-
ing, a popular method used for flow cytometry analysis (Extended 
Data Fig. 7c). After identifying these major cell types, we computed 
mortality likelihood scores to identify B cell subtypes implicated in 
mortality. The most enriched cell type in patients with adverse out-
comes was a subset of the antibody-secreting population defined by 
CD86loHLADR−/CXCR3+, also known as plasmablasts. Meanwhile, 
the cell types most enriched in patients with good outcomes was a 
subset of late-activated mature B cells defined by CD86+ (Extended 
Data Fig. 7d). Despite the protective roles of circulating antibod-
ies, these results are consistent with earlier findings, which discuss 
potentially pathogenic B cells during COVID-19 infection24.

Fine-grained analysis identified pathogenic Th17 cells. Although 
T cells collectively were enriched in patients who recovered from 
infection (Fig. 3c), there are diverse subsets of T cells that have 
been implicated in severe disease pathogenesis. To identify func-
tional T cell subsets enriched in patients who died of COVID-19, 
we applied Multiscale PHATE to 22 million T cells measured on 
a cytokine-specific flow cytometry panel. After identifying salient 
levels of granularity for downstream analysis, we identified both 
CD4+ and CD8+ T cell subsets at coarse granularity (Fig. 4a).

Using Multiscale PHATE’s zoom and cluster capabilities, we 
were able to visualize CD4+ T cells and subdivide these cells into 
functional subsets using the functional markers IFN-γ, IL-17 and 
IL-4 (Fig. 4b). In our dataset, we identified two different subsets 
of CD4+ IL-17-producing T cells classically known as Th17 cells, 
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one coproducing granzyme B and IFN-γ and one staining nega-
tive for both markers. To identify cell types enriched in mortal-
ity, we computed a mortality likelihood score. By organizing our 
scores by Th cell subset, it became clear that the Th17 cell subset 
coproducing IFN-γ+ granzyme B+ cells was enriched in patients 
who died of infection. Furthermore, granzyme B and IFN-γ were 
positively associated with mortality likelihood on DREMI analysis 
across all CD4+ T cell subsets (Fig. 4c). Although Th17 cells can 
play protective roles25, IFN-γ+ granzyme B+ Th17 cells are associ-
ated with tissue damage, as observed in models of murine auto-

immune encephalomyelitis26 and neutrophil expansion via IL-17. 
With COVID-19, this latter mechanism may be relevant given the 
harmful contribution of and neutrophil extracellular traps dur-
ing disease27. Patients with adverse outcomes in this cohort dem-
onstrated an enrichment in IFN-γ+ granzyme B+ Th17 cells, as 
well as CD16+ neutrophils. We posit that IFN-γ+ granzyme B+ 
Th17 cells in our cohort may precipitate these pathogenic effects 
via IL-17 secretion and subsequent induction of IL-8 from air-
way epithelial cells or granulocyte colony-stimulating factor from 
microvascular pericytes28,29.
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Hyperactivated CD8+ TEMRA cells associated with mortality. 
Although Multiscale PHATE determined that T cells were broadly 
protective, we identified a subset of CD4+ T cells that were shown to 
be pathogenic at finer resolution. Though CD8+ T lymphocytes play 
a critical role in the clearance of virus during acute illness through 
the secretion of granzyme B (refs. 30,31), we tried to determine the 
differing states present in CD8+ T cells and their role in disease 
pathogenesis.

To characterize the role of CD8+ T cell subsets in disease, we 
zoomed in on CD8+ T cells in our cytokine-focused T cell panel. 
Using the expression of cell surface markers and cytokines, we iden-
tified three major subsets, one producing granzyme B, one produc-
ing IFN-γ and one producing tumor necrosis factor α (Extended 
Data Fig. 8a). After mapping mortality likelihood scores onto the 
CD8+ subpopulation, it became clear that the granzyme B+ popu-
lation was most enriched in mortality, as granzyme B expression 
in CD8+ T cells was highly associated with mortality (Extended 
Data Fig. 8b). These findings are consistent with a previous study 
of patients with SARS-CoV-2 that observed an association between 
CD8+ T cell-derived granzyme B and increased disease severity32. 
To gain additional insight into which discrete subset of CD8+ T cells 
is the source of granzyme B, we performed detailed surface staining 
of all T cells.

We analyzed 208 patient samples using a flow cytometry panel 
containing markers indicative of T cell subset identity and acti-
vation status. After identifying the ideal granularity to analyze 
the data, we identified CD4+, CD8+ and double-positive T cell  

subsets (Extended Data Fig, 8c); we zoomed into the CD8+ sub-
set and identified a range of activation states based on the expres-
sion of key markers (Extended Data Fig. 8d). After computing the 
MELD mortality likelihood score, we identified that the T Effector 
Memory re-expressing CD45RA (TEMRA) population displayed 
the most enrichment in severe infection. Furthermore, across all 
CD8+ T cells, the activation state markers PD1, TIM3, HLA-DR and 
CD45RA were also positively correlated with mortality on DREMI 
analysis (Extended Data Fig. 8e). In agreement with another study of 
patients with SARS-CoV-2 (ref. 32), we found a hyperactivated CD8+ 
T cell response in the form of CD8+CD45RA+TIM3+HLA-DR+PD1+ 
TEMRA cells likely expressing granzyme B that were correlated 
with disease lethality.

Patient manifold revealed potential mechanisms of disease. Here, 
we showed that Multiscale PHATE-derived clusters across multiple 
scales form a rich set of feature descriptors for patients measured 
in single-cell modalities. Although, the purpose of measuring 
single-cell data is indeed to derive features in the form of cells, 
patients can be hard to compare and analyze at this level. Because 
Multiscale PHATE creates cellular groupings at multiple granulari-
ties, we can derive a rich summarization of patients across scales. 
Furthermore, it can be useful to use patient data to predict outcome.

We created patient embedding using cluster proportions from 
several levels of the condensation topology of the myeloid-focused 
flow cytometry using our patient manifold approach (Fig. 5a and 
Methods). The resultant embedding demonstrated that patients (or 
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patient time points) lie on a continuum or manifold themselves. 
When the patient embedding is colored by the MELD mortal-
ity likelihood, we saw that the dominant progression in the data 
was indeed clinical outcome. We compared our patient manifold 
construction against a patient manifold constructed from a single 
resolution of Louvain clustering and conventional flow cytometry 
gates (Extended Data Fig. 9c). As done in our multiscale approach, 
we computed feature descriptors of cluster proportions, this time 
using Louvain partitions and flow cytometry gates as the cellu-
lar groupings. Unlike the Multiscale PHATE patient manifold, 
single-resolution Louvain and flow cytometry patient manifolds 
representing patients who died of COVID-19 appeared in all 

regions of the embedding, indicating that this manifold was sub-
stantially less meaningful at capturing patient states and outcomes.

To associate previously identified cellular populations with out-
come, we computed DREMI between these population proportions 
and mortality likelihood score. We identified that although T cells 
were negatively correlated with mortality overall, CD4+ IFN-γ+ 
granzyme B+ Th17 cells, CD16hi neutrophils and CD14−CD16hi 
monocytes were strongly positively associated with mortality (Fig. 
5b). These findings indicate that a precipitous decline in T cells cor-
relates with mortality, whereas subsets of neutrophils, monocytes 
and Th17 cells are increased in patients with adverse outcomes. 
Finally, we traced clinical states of three patients (19, 63 and 54) 
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across the patient manifold to determine whether our construct 
accurately recapitulated patient trajectories. Surviving patients 
19 and 63 had their clinical trajectories consistently go from the 
high-mortality region to the low-mortality region. In contrast, 
patient 54, who died of disease, had a tortuous set of clinical states, 
all of which mapped within the high-mortality region (Fig. 5c). To 
identify clinical variables associated with mortality, we mapped 
these patient features onto the manifold, identifying that patients 
who were older, male, received ventilatory support and had higher 
markers of inflammation were more likely to experience poor out-
comes (Extended Data Fig. 9a). We subsequently ran DREMI analy-
sis to find associations between these clinical variables and key cell 
types implicated in infection pathogenesis. We found that females 
and young individuals were more likely to mount a robust T cell 
response, which agrees with previous literature demonstrating sex- 
and age-dependent immune responses33–35.

To determine whether Multiscale PHATE-derived subpopula-
tions could predict disease outcome, we combined the features of 
patients that we identified in our myeloid-focused flow cytom-
etry panel with clinical outcome to train a random forest classifier 

(Methods). Using these abstracted features, we achieved prediction 
accuracy of 83.7 ± 0.6% via fivefold cross-validation, with an accu-
racy of 74.2 ± 0.8% for mortality cases and 85.5 ± 0.7% for survival 
cases. Furthermore, we identified that monocytes, CD16hi neutro-
phils and T cells were three of the top four cell types most predictive 
of eventual disease outcome in our Multiscale PHATE-based clas-
sifier model (Fig. 5d). When performing a similar prediction task 
using flow cytometry-gated populations and Louvain-computed 
populations, however, we predicted outcome with a lower accura-
cies of 73.8 ± 0.8% and 64.7 ± 1.1%, respectively.

Clinical manifold revealed mechanisms of disease convalescence. 
Thus far, we have primarily used Multiscale PHATE to identify mul-
tiresolution structure in single-cell flow cytometry data. We now 
showcase the utility of Multiscale PHATE on a laboratory, clini-
cal and demographic data generated from routine clinical care of 
patients with COVID-19 admitted to YNHH. Using 18 clinical and 
demographic measurements collected on 2,135 patients admitted 
to YNHH and diagnosed with COVID-19, we created a multiscale 
embedding capturing patient states across the spectrum of disease 
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severity. Patient outcomes at discharge were categorized as dis-
charge to home, discharge to rehabilitation for extended recovery, 
discharge to hospice or death while in hospital. Using each of these 
outcomes, we computed likelihood scores with MELD correspond-
ing to each outcome: survival likelihood score, extended recovery 
likelihood score and mortality likelihood score (Fig. 6a). To under-
stand how clinical features could inform outcomes, we performed 
DREMI and DREVI analysis between clinical features and each of 
our likelihood scores (Extended Data Fig. 10a,b). As anticipated, 
markers of physiologic instability and organ dysfunction (e.g., 
decreased systolic blood pressure and increased respiratory rate, 
blood urea nitrogen, creatinine, aspartate aminotransferase and ala-
nine aminotransferase) and systemic inflammatory markers (e.g., 
increased ferritin, procalcitonin and C-reactive protein) were asso-
ciated with higher mortality. Although COVID-19 most commonly 
involves the respiratory system, these findings are consistent with 
clinical reports of severe disease from a generalized inflammatory 
state resulting in multiorgan damage and failure.

A subset of patients infected with SARS-CoV-2 experience pro-
longed recovery periods. In fact, our multiscale embedding of patient 
clinical states suggests a transition between a region of high survival 
likelihood score and a region of high extended recovery likelihood 
score (Fig. 6a). To understand which cellular populations and clini-
cal features drive the difference between these outcomes, we zoomed 
into this transition point (Fig. 6b). We computed DREMI associa-
tion scores between clinical features and flow sorted cellular popula-
tions to identify features differentially associated with survival and 
extended recovery. Our analysis found that age and kidney dysfunc-
tion were strongly associated with extended recovery indicating that 
older patients with worse kidney function were more likely to expe-
rience lengthy recovery periods from infection (Fig. 6c).

Discussion
Here, we present a multiscale data exploration technique to visu-
alize, cluster and compare large-scale datasets, filling a key gap in 
biological data exploration. Multiscale PHATE found groupings 
of data at varying scales that were predictive of clinical outcome. 
Biological data naturally contain multigranular structure. Most 
analysis methods, however, whether clustering or dimensionality 
reduction algorithms, generally only look at a single level of resolu-
tion and do not offer a systematic way to explore different scales. 
Hierarchical clustering is one method that could offer certain scales 
of resolution. However, because of the constant merges that occur 
in hierarchical clustering approaches (e.g., Louvain), many levels of 
resolution are missed, and biologically relevant levels of granularity 
are not recapitulated. In contrast, Multiscale PHATE offers a fast 
manifold learning-based technique for uncovering a continuum of 
resolutions of structure and features by understanding data topol-
ogy. We show that Multiscale PHATE can be combined with other 
techniques, such as MELD and mutual information (DREMI), to 
provide deep and detailed insights into biological processes. With 
Multiscale PHATE, these tools allow users to find resolutions that 
naturally capture the salient differences between patients, isolate 
pathogenic and protective cellular subsets across scales and iden-
tify key markers associated with disease. T cells, for instance, have 
been shown to be protective against poor outcomes, corroborat-
ing previous work done with COVID-19. Although this cell type is 
broadly protective, a multiscale zoom in of CD4+ T cells, in combi-
nation with MELD and DREMI analysis, reveals a pathogenic CD4+ 
IFN-γ+ granzyme B+ Th17 cell subpopulation. The multiresolution 
analysis we performed stresses the need to analyze data at multi-
ple granularities. Although broad cell types, such as T cells, may 
appear to be protective, smaller cellular subsets, such as pathogenic 
Th17 cells, may actually be driving patient mortality. Although we 
have demonstrated Multiscale PHATE in the context of data from 
patients with COVID-19, both the technique and the ways in which 

we have used it to analyze a variety of biomedical data, including 
scRNA-seq, scATAC-seq, cytometry by time of flight, T cell recep-
tor repertoire sequencing and clinical datasets. Generally, as datas-
ets continue to increase in size and the number of samples continue 
to expand, our scalable algorithm will become even more critical 
for analysis.
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Methods
Computational methods. In the following sections, we provide a thorough 
description of each aspect of the Multiscale PHATE algorithm and the use of 
downstream analysis tools. This includes, but is not limited to, explanations of 
algorithm design choices, information on how comparisons between algorithms 
were run and details on how the patient manifold was constructed.

Multiscale PHATE algorithm. The Multiscale PHATE algorithm is summarized in 
Alg. 1 as a full integration of PHATE and diffusion condensation.

Algorithm 1. Multiscale PHATE

Input: Data matrix X, kernel parameter ε and merge threshold ζ, gradient 
parameter ϵ
Output: Multiscale PHATE coordinates at T resolutions J = {J1, J2, …JT}, 
selection of scales for visualization S
1: [J0, U0] ← PHATE(X)
2: for t ∈ [0, T] do
3: Dt ← compute pairwise distance matrix from Ut

4: Kt ← kernel affinity(Dt, εt)
5: Pt ← row normalize Kt to get a Markov transition matrix (diffusion 

operator)
6: Ut+1 ← PtUt

7: Merge data points i,j if ∣∣Ut+1(i) − Ut+1(j)∣∣2 < ζ, where Ut+1(i) is the i-th 
row of Ut+1

8: DUtþ1  
I

 compute pairwise distance matrix from Ut+1

9: Jtþ1  MMDS ðDUtþ1Þ
I10: gt+1 ← compute gradient from (Ut+1, Ut)

11: εt+1 ← update(εt, Ut+1)
12: end for
13: for i ∈ [1, T − 1] do
14: if gi is a local minimum then
15: add i to visualization scale set S
16: end if

17: end for

Diffusion information geometry for visualization and condensation. The 
multiresolution visualization provided by Multiscale PHATE relies on the 
construction of a diffusion geometry that captures the intrinsic structure of the 
data. Such a construction was first presented in the context of manifold learning 
with diffusion maps (DMs), which rely on diffusion coordinates derived from 
spectral decomposition of the heat kernel over (Riemannian) manifolds37. The 
DM construction approximates the heat kernel on data by defining a Markovian 
diffusion process whose transition probabilities are given by pðx; yÞ ¼ kðx;yÞ

kkðx;Þk1
I

, 
where the L1 norm is taken over the input data and k( ⋅ , ⋅ ) is a kernel function for 
capturing the similarity between local neighborhoods in the data. Then, a diffusion 
operator is constructed as a matrix with entries [P]ij = p(xi, xj), where {x1, x2, …} 
are the input data points (e.g., cells or strains in our case). By taking powers of 
this diffusion operator, we can consider t-step diffusion probabilities between data 
points given by ptðxi; xjÞ :¼ Pr½xi !

t� steps
xj ¼ ½Pt ij

I

. Finally, the diffusion geometry 
considers each data point x via its t-step diffusion distribution ptx ¼ ptðx; Þ

I
, and 

DM aims to extract low-dimensional coordinates where Euclidean distances 
capture a diffusion distance metric defined as L2 distances between these 
distributions, called diffusion distances.

Although a DM provides appealing analytic relation between spectral 
embedding with diffusion coordinates37–39, it often separates trajectories, pathways 
or clusters into independent eigenspaces. This, in turn, yields multidimensional 
representations that cannot be conveniently visualized (e.g., having substantially 
more than two or three dimensions) and cannot be directly projected into 
two- or three-dimensional displays that faithfully capture diffusion distances. 
To overcome this and extract a low-dimensional data visualization, the recently 
proposed PHATE method treats the constructed diffusion geometry as a statistical 
manifold and uses tools from information geometry to define a family of diffusion 
information distances defined as Dγ

t ðx; yÞ ¼ ΔðγÞðx;yÞðÞ
���

���
2

I

, where

ΔðγÞðx;yÞðzÞ ¼ �
Z ptyðzÞ

ptxðzÞ
u�

γþ1
2 du ¼

ptxðzÞ � ptyðzÞ γ ¼ �1
log ptxðzÞ � log ptyðzÞ γ ¼ þ1
2

1�γ ðptxðzÞÞ
1�γ
2 � ðptyðzÞÞ

1�γ
2

h i
otherwise

8
>><
>>:

ð1Þ

and the parameter − 1≤γ≤ + 1 attenuates the influence of lower-probability 
differences in the overall distance. On one extreme (γ = − 1), the resulting metric 
yields the traditional diffusion distance. When γ = 0, it yields an f-divergence 
corresponding to Hellinger distances between diffusion distributions. On the other 
extreme (γ = + 1), the resulting information distance yields an L2 distance between 
localized diffusion energy potentials given by Ut

xðÞ ¼ log ptxðzÞ
I

, as discussed 
by Moon et al10. There, as well as in other work40,41, it has been shown that this 
potential distance is amenable to a low-dimensional embedding that captures and 
visually accentuates emergent global and local structures in the data. Therefore, the 
PHATE method is based on embedding potential distances directly into two- or 
three-dimensional coordinates via a stress-minimizing optimization procedure 
provided by MDS. In addition to the core utilization of diffusion information 
geometry, the PHATE algorithm also includes robust construction of the initial 
neighborhood kernel, automatic tuning of diffusion resolution and efficient 
sampling for scalability purposes. For more details about these aspects of PHATE, 
we refer the reader to the study by Moon et al10.

Multiscale PHATE uses PHATE not only for visualization of several chosen 
iterations of the condensation process (explained below), representing multiple 
scales of data coarse graining, but also as the potential coordinate system that 
learns geometry of the data.

Multiresolution analysis of diffusion information geometry. The diffusion 
geometry underlying PHATE is naturally multiscale, via the diffusion time 
parameter t that controls the resolution of information captured by the diffusion 
process. Indeed, as the diffusion time increases, the distributions ptxðÞ

I
 (or 

potentials Ut
xðÞ
I

) consider increasingly diffused energy that attenuates local 
differences until eventually, as t → ∞, all of these distributions converge to a unique 
equilibrium stationary distribution, as the process is ergodic. PHATE employs an 
optimal timescale tD for visualization, which can be identified automatically by 
distinguishing between a rapid denoising phase and a slow decay from metastable 
to equilibrium diffusion states. This alleviates the problem of an overly rapid 
diffusion of information that prohibits multiresolution representation as discussed 
elsewhere42,43. In this paper, we aim to provide a full multiscale or multiresolution 
data geometry, and therefore, we need to provide better control of the propagation 
of information by intrinsic diffusion over the data.

One of the first attempts at alleviating the rapid convergence to stationary 
distribution in multiscale DM was presented by David and Averbuchin42 as part of 
a hierarchical construction of localized diffusion folders using a localized diffusion 
process, which was further analyzed by Wolf et al43. The localized diffusion 
process limited each instantiation of the diffusion random walks to only traverse 
between two ‘diffusion folders’ (i.e., clusters), thus blocking global pathways that 
quickly diffuse to wide regions in the data. Although this process was shown to 
be effective in some applications involving hierarchical clustering, it requires 
separate clustering steps and a priori determination of scales at which to pause the 
diffusion and cluster into localized diffusion folders. Furthermore, the pruning of 
the diffusion process there is computationally intensive, as each diffusion affinity 
(or transition probability) requires simulating or approximating a local diffusion 
process between two considered clusters. However, the principles posed by this 
approach clearly established the need for careful manipulation of the underlying 
Markov process of DM to truly enable multiscale representation learning via 
diffusion geometry and by extension the diffusion information geometry used  
in PHATE.

Topological data analysis naturally creates multiscale structure by combining 
geometric and topological perspectives into a single framework. Although studying 
data geometry is useful in understanding the precise measurements between 
objects, topological analysis is useful in describing the relationships between 
objects. A hybrid perspective can be appealing in situations such as ours, where 
geometry and relationships between data points are both important.

Learning data topology with diffusion filters in diffusion condensation. A 
more recent approach toward multiresolution diffusion-based coarse graining 
was presented in Brugnone et al9. Diffusion condensation relies on replacing 
the traditional time-homogeneous Markov process typically used in diffusion 
frameworks37,10 with an inhomogeneous process, following the theoretical analysis 
in Marshall et al44 that established the mathematical viability of diffusion geometry 
construction of such processes. In diffusion condensation, a diffusion operator P 
is calculated at each condensation iteration and applied back to an input dataset to 
slowly condense points toward local centers of gravity as determined by the points 
diffusion probability between them. This process reduces all eigenvalues besides 
1 and diminishes the importance of eigenvectors associated with high-frequency 
eigenvalues by repeatedly multiplying by a diffusion operator, akin to applying a 
convolutional filter to the input data, implemented spectrally via a graph Fourier 
transform, as explained in the following paragraph.

Because the eigenvectors of P, denoted Φ ¼ ϕ0; ϕ1; ¼ ; ϕn
� �

I
, represent 

frequency harmonics over the graph based on a normalized graph Laplacian and 
graph Laplacian eigenvectors have been shown to be equivalent to graph frequency 
harmonics45, signal loadings onto diffusion eigenvectors create a graph Fourier 
transform defined as f̂ ¼ ΦT f

I
 for a graph signal f. A graph filter can be defined as 

a rescaling of the coefficients of the graph Fourier transform of a signal. To apply 
the graph filter to the data, we can apply the graph Fourier transform, rescale the 
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Fourier coefficients and invert the Fourier transform back to the original space. 
Thus, a graph filter can be defined by a diagonal matrix H containing rescaled 
values applied as ΦHΦTf. However, note that the diagonal matrix of eigenvalues 
of the diffusion operator Λ can itself serve as a low-pass filter. Because P is a 
transition matrix of a Markov chain, it has eigenvalues λ0, λ1, …, λn such that 
1 = λ0≥λ1≥λn≥0 and thus high-frequency eigenvalues are of lower magnitudes. To 
apply this diffusion filter to the data, we simply multiply the diffusion operator 
by the data matrix PX, with PX = ΦΛΦTQX, where X is the data matrix and Q is 
a diagonal matrix whose diagonal elements are the row sum of the affinity matrix 
K. This diffusion condensation process naturally downscales high-frequency and 
noisy eigenvectors, taking in the whole dataset as the graph signal.

Unlike previous approaches, the coarse graining used in Brugnone et al9 does 
not rely on a clustering and pruning approach. Instead, it proposes to base the 
intuition for the diffusion construction from heat propagation that rapidly spreads 
over the data based on connectivity to a condensation process that alternates 
between slow gravitation (e.g., as drops of water slowly gravitate toward each 
other) and fast merging, with concentrated regions collapsing (e.g., as water 
drops merge together) to single points, creating a topological understanding of a 
dataset by calculating the persistence of individual points. If we view the merges 
of diffusion condensation as a change in terms of the topology of the dataset, 
then the alternation between these metastable and transient regimes also provides 
a diffusion-analogous notion of persistence used in topological data analysis, 
which in turn naturally gives rise to emergent stable resolutions for multiscale 
visualization and clustering.

Condensation on potential coordinates. The computation of the diffusion 
condensation process described by Brugone et al9 only uses the diffusion operator 
P, which is interpreted as a low-pass (smoothing) filter that can be applied to any 
dataset encoded in a points-by-features data matrix X. However, condensing in 
this feature space can lead to ‘averaged’ points that deviate from the intrinsic data 
manifold, especially in cases where the intrinsic manifold is very curved (Extended 
Data Fig. 1a). As cellular state spaces can be heavily nonlinear10,36,46, we required 
an alternative method of diffusion condensation that ensured that the condensed 
points remain on the manifold. A straightforward method for achieving this 
might be DM coordinates. However, the computation of DM coordinates requires 
eigendecomposition of a diffusion operator, which is known to be slow (O(n3) 
complexity). In the current paper, rather than using the original features, we used 
the potential representation of data points used in PHATE (equation (1)) as the as 
initial features.

The diffusion potential representation, U, of the data is recovered from the 
transition probabilities of the powered diffusion operator PtD

I

10 with the optimal 
timescale tD. For the i-th data point, its tD-step distribution is the i-th row of 
PtD

I
 and its potential representation is the i-th row of U. Intuitively, a smaller 

potential distance corresponds to higher similarity in that it takes less time to 
diffuse between the point pair. By taking logarithm of PtD

I
, we allow faraway data 

points to inform the local distances and balance local and global geometry of 
the representation. This is the prominent advantage of using diffusion potential 
instead of directly using the data distribution PtD

I
, which is found particularly 

useful for visualizing biological data10. This effectively re-represents points by 
features that consist of the log

I
 of diffusion probabilities to all other features. 

We use these diffusion potential coordinates here as a high-dimensional 
representation of the data on which the condensation operates, offering a 
‘straightened’ and globally coherent intrinsic manifold space upon which to 
operate the diffusion condensation process. This way, when data points are 
condensed, they are condensed in terms of their diffusion probabilities. Using 
default settings, diffusion condensation is calculated on potential distance using 
a fixed-bandwidth Gaussian kernel, where the initial bandwidth is set to 1/10 of 
Silverman’s rule of thumb for kernel bandwidth47. The bandwidth is then increased 
by a ratio of 1.025 every iteration.

Scalable coarse graining with fast diffusion condensation. In order to 
allow Multiscale PHATE to enable scalable exploration of large datasets, such 
as high-dimensional biological data, we propose speeding up of the initial 
condensation iteration in the following ways: (1) speeding up the initial iteration 
using graph partitioning, (2) fast computation of the diffusion potential via 
landmarking and (3) merging of data points to increase computational efficiency 
over iterations.

The complexity of computing a diffusion operator on n points is n2. To reduce 
n for initial condensation iterations, we run hierarchical k means on the PCA 
space of the data with a high k (by default 100) to obtain a coarse graining of the 
data in feature space. In each iteration of the k-means approach, we partition the 
data into k more clusters. In subsequent iterations, we compute another k clusters 
from each of these clusters. This process continues until we have a large number 
of clusters from which to compute the diffusion operator (by default 25,000). 
We then compute a landmarked diffusion potential (as done by Moon et al10 and 
explained below) on the centroid of each of these clusters before starting the 
coarse-graining process.

Instead of using spectral clustering on the full dataset, we came up with cluster 
centroids that were treated as ‘landmarks’. Transition probabilities were computed 
between points and landmarks and then used with the diffusion potential of 

landmarks to recover the diffusion potential of all data points. Moon et al10 showed 
that this leads to high-quality approximations of the diffusion operator, which leads 
to near-identical visualizations with PHATE. In addition, we previously found 
that this leads to low-error approximations of diffusion operators in general48. We 
used this fast approach to compute a low-error diffusion potential system for our 
coarse-graining process. By default, diffusion potential is calculated using an alpha 
decay adaptive-bandwidth kernel, which sets its bandwidth to the fifth farthest 
neighbor in the graph, as originally done by Moon et al10.

To increase computational efficiency over successive iterations of condensation, 
we merge points that fall within a threshold distance into a single point. When 
two or more points collapse into the same barycenter (closer than a threshold ζ), 
we merge them into a cluster, as they would then have approximately the same 
coordinates. Using default settings, the merge threshold is set to the 1% smallest 
distance between any two points in potential space. After this merging operation, 
we effectively treat the cluster as a single point. Intuitively, this merging process 
creates a single connected component from two different components in our 
calculation of data topology. This has the effect of density subsampling the data 
iteratively and allowing for subsequent iterations to proceed faster. Therefore, 
the number of points steadily decreases, allowing the algorithm to speed up in 
successive iterations.

As we iterate this process over and over again, the condensation process slowly 
coarse grains the data to reveal structure at all levels of granularity while avoiding 
the typical tendency of traditional hierarchical clustering approaches to force (e.g., 
greedy) cluster merges at every scale.

We show that the resultant method is orders of magnitude faster than 
competing methods, including DM, t-SNE, UMAP, Monocle 2 and PHATE 
(Extended Data Fig. 1d).

Selection of visualization scales via gradient analysis. The iterative coarse 
graining via diffusion condensation generates hundreds of layers for downstream 
analysis. We propose to select salient levels of granularities for visualization based 
on gradient analysis. These salient layers of representation must be stable levels that 
persists for several iterations. To find such levels, we examine the gradient of points 
of diffusion potential U across successive condensation iterations and determine 
where the overall shift in data density from one iteration to the next is locally 
minimal (Fig. 1b). More specifically, the gradient matrix after a condensation step 
t is defined as

Gt ¼ Ut � Ût�1;

where Ût�1
I

 is computed from Ut−1 by taking the average of any subset of rows that 
are merged during condensation step t to match the dimensions of Ut. If no merges 
or shifts in data occurred during step t, Ût�1 ¼ Ut�1

I
. The gradient value is then 

computed by taking the sum

gt ¼
X

i;j

jGtði; jÞj:

Generally, the gradient changes smoothly from one iteration to the next as 
semistable resolutions are reached. We pick scales for visualization by identifying 
local minima in {g1, g2. . . gT}, as observed in the gradient curve (Fig. 1b). Because 
Multiscale PHATE can compute PHATE embeddings at all condensation  
steps, visualization at any granularities identified by gradient analysis is readily 
available (Fig. 1c).

Distinction between the diffusion condensation process and hierarchical 
clustering. One use of diffusion condensation can be to provide a hierarchy 
of clusters determined by merged points. However, it should be noted that the 
condensation process here is different from typical hierarchical clustering and 
instead provides a richer coarse graining of data geometry. Indeed, hierarchical 
clustering algorithms generally belong to two families: divisive algorithms and 
agglomerative ones.

Divisive approaches (e.g., bisecting k-means49 or minimum spanning 
tree-based clustering50) work in a top-down fashion, each time optimizing a 
partition of the data into clusters (e.g., using partitional methods like k means)  
and then recursively partitioning this subspace into further clusters. The difference 
between these and the gradual aggregation approach of the condensation process 
is clear.

Agglomerative methods, on the other hand, work in a bottom-up fashion by 
first merging points into clusters and then recursively merging increasingly larger 
clusters. Although intuitively more related to the gradual merges in diffusion 
condensation, there is a fundamental difference between the coarse-graining 
operation applied here and the (typically greedy) agglomeration in such methods. 
Indeed, most agglomerate clustering methods only operate on determining an 
iterative or recursive sequence of merges, without considering any intermediate 
information or structure in the data. Furthermore, this approach corresponds to 
a very specific epsilon schedule and kernel format (e.g., determined by the used 
linkage type).

The condensation process used here, on the other hand, is derived from a 
continuous process that gradually eliminates local variability in the data using a 
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more gradually changing epsilon schedule and kernel format, which allows for 
exploration of a more continuous range of granularities. At its core, it relies on a 
time-inhomogeneous Markov chain that gradually constructs a diffusion geometry 
that reveals global and local structures in the data at increasingly coarse scales. 
The elimination of local variability in this process allows points to naturally come 
together, thus producing natural data clusters from data regions that collapse to the 
same point, without the need for partitioning or greedy agglomeration. However, 
this is a pattern that emerges from the coarse-graining process rather than directly 
or explicitly guiding it. The constructed multiresolution data geometry also reveals 
other information, beyond clustering, which makes it amenable for visualization 
and other downstream tasks. For instance, condensation homology produces 
persistent features that are meaningful, and levels of metastability can be analyzed, 
as we do for the selection of metastable resolutions (e.g., for visualization) 
explained below.

To demonstrate the difference between diffusion condensation and 
agglomerative clustering, we use the Louvain method15 as a representative example 
because of its popularity in single-cell data analysis. This method greedily selects 
clusters to merge together by their impact on modularity (i.e., whether and how 
much they improve it). Although the forced merges ensure a hierarchy of data 
agglomerations, they do not provide reliable coarse-grained representations for 
revealing varied data resolutions. As we show in Extended Data Fig. 5, they miss 
vital levels of resolution. Meanwhile, diffusion condensation allows for a systematic 
exploration of granularity and is better at capturing levels where biological 
differences may exist (Extended Data Fig. 5e).

Comparison of multigranular clusters. To quantitatively compare the accuracy of 
Multiscale PHATE clusters with hierarchical clustering approaches, we compared 
cluster labels generated from a range of clustering strategies to ground truth labels 
using ARI. We first generated synthetic single-cell data with ground truth cluster 
labels using Splatter14. We then produce a range of noisy splatter datasets, each 
with increasing amounts of either dropout or variational noise, and run Multiscale 
PHATE, Louvain15, Leiden16 and single-linkage hierarchical clustering17 to identify 
groupings across multiple levels of granularity. For each technique at each noise 
level, we compute ARI between clusters computed across all granularties and 
ground truth clusters, saving the highest ARI (Extended Data Fig. 5a).

Next, we generated a hierarchical stochastic block model with different 
clusters at multiple granularities (Extended Data Fig. 5b). We then used Multiscale 
PHATE, Louvain15, Leiden16 and single-linkage hierarchical clustering17 to 
identify groupings across multiple levels of granularity. For each level of ground 
truth clusters, we computed ARI against cluster labels from each algorithm 
across all granularities, storing the highest ARI for each method. Finally, for 
the flow cytometry data, we used gated populations from three samples in our 
myeloid-centric flow cytometry panel as ground truth labels across coarse and fine 
grain cluster labels. For instance, at coarse grain, monocytes would be identified as 
one population; however, at fine grain, monocytes would be part of three distinct 
populations. ARI was computed similarly for this dataset, and ground truth labels 
were compared with all granularties of clusters from each algorithm, with the 
top score stored for each approach (Extended Data Fig. 6c). Networkx51 was used 
to produce Louvain clusters, Leidenalg was used to produce Leiden clusters and 
agglomerative clusters were produced using sklearn52.

Comparison of multigranular visualizations. To show that Multiscale PHATE 
created improved multigranular visualizations when compared to other 
approaches, we presented examples of visualization for qualitative comparison 
and performed two ablation studies for quantitative comparison. First, Splatter 
software was used to simulate ground truth and noisy single-cell data of either 
group (cluster) or path (trajectory) geometries14. We showed Multiscale PHATE 
visualizations of both fine and coarse resolutions on both splatter paths and 
clusters data to demonstrate our method’s ability to visualize at varied granularity. 
Both resolutions were gradient salient based on the gradient analysis described 
in the previous section. A fine resolution was chosen to display 200 points, 
whereas a coarse resolution was chosen to display about 50 points. We compared 
this method with UMAP visualization of other multiscale abstraction methods, 
including diffusion condensation, Louvain and computational homology. The 
resolution of comparison methods in Fig. 2a were chosen to most closely match 
Multiscale PHATE fine resolution. It should be noted that Louvain only returns a 
few resolutions (usually only two or three), whereas Multiscale PHATE generates 
a much wider range of resolutions. The fine granularity of Louvain was the closest 
match for Multiscale PHATE fine resolution. As for the homology method, we can 
explicitly set the resolution to match the Multiscale PHATE fine resolution. The 
same resolution selection strategy for comparison methods applies to the following 
quantitative comparisons.

We performed two ablation studies, the first to show the necessity of diffusion 
condensation to learn data topology and the second to show the necessity of 
PHATE for visualization. In the first ablation study, different approaches used to 
build a multiscale abstraction of the noisy synthetic data were computed, including 
diffusion condensation, Louvain and computational homology, as well as Louvain 
and homology constructed from diffusion potential. Across all methods that use 
diffusion potential, diffusion potential coordinates were computed using default 
settings in PHATE (five nearest neighbors, 40 α, 1 γ). Louvain or homology 

clusters were then computed using these diffusion potential coordinates as the 
substrate instead of the raw data values. Finally, these abstractions were visualized 
with a range of dimension reduction and visualization strategies, including 
PHATE, t-SNE and UMAP. For techniques that use diffusion potential for the 
calculation of clusters (as done by potential-agglomerative and potential-Louvain), 
all data points corresponding to each cluster at the specified resolution were 
merged together to form aggregated points (essentially by averaging their feature 
values). These aggregated points were then visualized with each dimensionality 
reduction technique.

The resultant embeddings were compared with Multiscale PHATE using 
DeMAP (ref. 10). DeMAP is a metric for assessing visualization quality in terms 
of its ability to capture the manifold geometry of noisy data10. DeMAP computes 
correlation between geodesic distances on ground truth noiseless data manifolds to 
Euclidean distances on embedding created from noisy data. High DeMAP scores 
indicate visualization that accurately represents geodesic manifold distances in an 
embedding. We applied each combination of methods to the splatter cluster and 
path data with increasing levels of two types of noise, variation and dropout, and 
we calculated the DeMAP score at selected resolutions. The resolution was selected 
for Multiscale PHATE via gradient analysis and is the same as the fine resolution 
shown in Fig. 2a. To get a fair comparison, we identified resolutions for Louvain 
and homology that matched Multiscale PHATE fine resolution most closely at each 
noise level, respectively.

In the second ablation study, condensation topology on the noisy synthetic 
data was computed via diffusion condensation initialized with diffusion potential, 
and an embedding was created after identifying the gradient salient fine resolution 
via gradient analysis. In order to create multiscale visualizations with other 
dimensionality reduction strategies, we first aggregated all data points in the 
ambient space that belong to a Multiscale PHATE cluster at the gradient salient 
fine resolution as done previously and applied a range of other visualization 
approaches, including t-SNE, Monocle 2, isomap, UMAP, force directed and DM 
to this condensed granularity of noisy data. Finally, all embeddings were compared 
using DeMAP. These studies were repeated across a range of noise types, biological 
variation and dropout and a range of noise levels.

For robustness, all processes run across 10 different splatter datasets with 
group geometry and 10 different splatter datasets with path geometry for each 
comparison. Besides Multiscale PHATE, the DeMAP package was used to build all 
other visualizations10.

Additional datasets and noise simulation. FlowCAP I ND dataset contains 
10-dimensional data from 30 samples with approximately 60,000 cells per sample 
and a total of over 1.7 million cells. The clustering task is to detect seven manually 
gated populations. Further details on the dataset are available from the FlowCAP 
website (http://flowcap.flowsite.org/).

We created two types of noise on this dataset for our clustering and 
visualization comparisons: biological variation and dropout. We simulated 
dropout noise on datasets by subtracting random values sampled from a Gaussian 
distribution to achieve a global undersampling of the data ranging from 10% to 
95%. Variation was simulated by adding Gaussian noise to each dimension, ranging 
from 10% to 50% of the maximum value in each dimension.

Construction of patient manifold through multiresolution cluster evaluation. 
After creating a cellular manifold by integrating hundreds of patients samples, it is 
critical to understand how similar or different each of these patients are from one 
another. Uncovering sample-level density variations along the cellular manifold 
can be used to identify patient clinical states that are similar or dissimilar from 
one another. With the goal of creating a manifold of patients, where each point 
represents a unique patient sample and distances between points represent how 
similar or different the underlying samples are in their cellular states as measured by 
flow cytometry, we evaluated clusters at multiple levels of the condensation topology.

Practically, we created a manifold of samples by simultaneously evaluating 
multiple levels of the diffusion condensation topology. At each level ℓ ∈ {1, 2, …, L}, 
a number of Nℓ clusters were identified. We counted the number of cells, nℓ,j,k, 
of the k-th patient that belong to each cluster Cℓ,j for every j ∈ {1, 2, …, Nℓ} 
and calculated the normalized percentage as rℓ;j;k ¼ nℓ;j;kP

j
nℓ;j;k

I

. We calculated the 

proportions for all patients at a series of selected levels of the topology and 
concatenated these to create a rich multiscale vector of features for each patient. 
These multiscale feature vectors were then used to create an embedding with 
PHATE (ref. 10) and denoise patient-specific signals using MAGIC (ref. 46) using 
Euclidean distance between samples.

By evaluating cluster proportions across multiple resolutions, we created 
high-dimensional multiscale feature descriptors for each patient that can then 
be embedded with PHATE for visualization, MELD for outcome likelihood 
inference and finally DREMI for association analysis (Fig. 5a,b). The constructed 
patient manifold accurately recapitulated the clinical states (Fig. 5c,d) and better 
represented patient states than patient manifolds constructed from Louvain 
clusters and flow cytometry gates (Extended Data Fig. 9c).

Generalizability, scalability and reproducibility of Multiscale PHATE. 
Multiscale PHATE is broadly generalizable to a large number of biological data 
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types, including flow cytometry, scRNA-seq, scATAC-seq and clinical variables, 
among others (Extended Data Fig. 2). When comparing run times between 
different techniques, it became clear that Multiscale PHATE was able to rapidly 
scale to millions of cells, successfully embedding 5 million cells in less than 10 min, 
whereas the next most scalable technique, Monocle 2, could only embed 500,000 
cells in a comparable time frame (Extended Data Fig. 1d). Across all comparisons, 
the number of features did not alter run time drastically, as the initial step of 
each of these dimensionality reduction algorithms is feature compression with 
PCA. Thus, the only major difference in run time was the length to compute PCA 
compression, which is done via a rapid randomized single value decomposition 
process. Finally, Multiscale PHATE is highly reproducible. A common issue with 
UMAP and t-SNE, which shift clusters from run to run based on initialization, is 
addressed by Multiscale PHATE, which can faithfully create the same embedding 
across multiple runs with different initializations (Extended Data Fig. 1e).

Use of MELD with Multiscale PHATE. MELD is a method proposed by 
Burkhardt et al12 that takes a discrete signal defined on a data graph and computes 
a continuous likelihood score of the signal value by using a sophisticated form of 
neighborhood averaging and a heat kernel at each point (Fig. 1c). In order to apply 
MELD to this dataset, we combined the flow cytometry data from all patients and 
used a binary outcome score that we call mortality, which uses a discrete 0 value 
for a positive outcome (the patient was discharged), or a 1 value for a negative 
outcome (patient died or was sent to hospice). The outcome of the patient is used 
as the discrete condition for all cells from that patient. Thus, in our combined 
flow cytometry dataset, every cell from positive-outcome patients gets a raw 
experimental signal value of 0. Using MELD, we estimate the likelihood of each 
outcome over the cellular manifold using a heat-diffusion kernel applied to the data 
graph to obtain mortality likelihood score. Values of the mortality likelihood score 
range from 0 to 1 and constitute a probability likelihood estimate of the condition 
over the manifold. This allows us to identify areas of the cellular manifold that are 
likely to be enriched in those with positive or negative outcomes.

Because Multiscale PHATE identifies clusters of cells across all levels of 
granularity, we could sweep across resolutions to identify levels that isolate 
high- and low-mortality likelihood score regions. In fact, when comparing 
our multigranular clusters with other clustering techniques across a range 
of granularities, we found that Multiscale PHATE was better able to isolate 
high- and low-mortality likelihood score regions in one of our flow cytometry 
panels (Extended Data Fig. 5e). By looking at these informative resolutions, 
we identified populations of cells that were pertinent to patient outcomes. 
When identifying these subpopulations in conjunction with cell type-defining 
markers, we found that we could identify cell types and functional subtypes 
that were differentially enriched across patient outcomes and may drive disease 
pathogenesis. The full Multiscale PHATE and MELD integrated pipeline is shown 
in Extended Data Fig. 1c.

DREMI associations with mortality likelihood score. DREMI (ref. 36) is 
an information-theoretic metric that quantifies associations or strength of a 
relationship between two variables. Like most discrete estimates of mutual 
information, DREMI starts by binning continuous data into equal-sized partitions, 
X = {X1, X2, …, Xn}, and Y = {Y1, Y2, …, Yn}, in both variable dimensions, but instead 
of measuring the mutual information as I(X, y) = H(Y) − ∑iH(Y∣Xi), the difference 
between the entropy of Y and the conditional entropy of X∣Y, DREMI ‘resamples’ 
or equalizes the number of samples in each bin using an extra level of conditioning. 
Thus, DREMI computes DREMI(X, Y) = I(X, Y∣X) = H(Y∣X) − ∑iH(Y∣Xi). The 
rationale for this is that normal mutual information is dominated by the density 
peaks of the X variable and does not reveal the full strength of the relationship 
given imbalanced sampling, which is common in biomedical data.

When combining our DREMI analysis with previously computed mortality 
likelihood score, we identified functional marker trends that are correlated with 
mortality. As cells of the same type can occupy a range of functional states that can 
be enriched in disease, a given subtype may not be associated with mortality, but a 
functional substate could be. By computing DREMI associations between mortality 
likelihood score and cellular functional state markers, we identified markers and, 
by extension, activation states that are associated with outcome.

Multiscale PHATE improves on current methods to identify and extract 
pathogenic populations from large biological manifolds. Multiscale PHATE 
is able to not only visualize and cluster large biological manifolds but also 
better identify and extract populations of interest in crowded submanifolds. All 
dimensionality reduction methods suffer from crowding as a result of squeezing 
high-dimensional data into low-dimensional axes. In crowded regions, it can be 
difficult to resolve fine-grained structure and separations. The multiscale approach 
of Multiscale PHATE alleviates crowding by zooming into crowded regions and 
revealing finer-grained structure (Extended Data Fig. 3a–d). We showcased the 
utility of our approach by zooming into a crowded region of our PBMC dataset 
using both Multiscale PHATE and PHATE (Extended Data Fig. 3a–d). Although 
zooming in clearly separates differing cell types from one another in our Multiscale 
PHATE approach, it does not in PHATE. Furthermore, when MELD is used 
in these crowded submanifolds, extracting pathogenic populations with vertex 
frequency clustering is problematic due to lack of natural separations of the data12. 

When trying to identify populations of cell enriched in patients who died of 
infection, we clearly identify a subpopulation of B cells enriched in lethal disease 
on both PHATE and Multiscale PHATE (Extended Data Fig. 3e,f). However, 
Multiscale PHATE clustering better isolates this population (Extended Data Fig. 
3g,i) and furthermore, because of the hierarchical nature of Multiscale PHATE 
clusters, produces a gating strategy capable of isolating this population (Extended 
Data Fig. 3h). Altogether, this analysis reveals that Multiscale PHATE is able to 
better alleviate crowding problems in high-dimensional data, allowing for the 
identification of sortable pathogenic populations that cannot be done with current 
baseline methods.

Patient manifold analysis from Multiscale PHATE features. To identify the 
differences between individual patient samples, we used Multiscale PHATE to 
construct a manifold of patients as described above. Similar to the mortality 
likelihood score computed by MELD in our flow cytometry analysis, we computed 
a similar mortality likelihood score for our patient manifold by identifying 
whether each patient sample originated from a patient who had a positive 
outcome or a negative outcome. To identify patient sample features correlated 
with mortality likelihood score, we compiled a set of clinical, demographic 
and Multiscale PHATE-identified cell type proportion features for each patient 
sample. Using the geometry of the patient manifold, we denoised our patient 
sample features using MAGIC (ref. 46) before running association analysis between 
features using DREMI (ref. 36).

Mortality prediction using random forest classifier. In addition to being useful 
for visualizing, clustering and identifying condition-specific enrichment of cell 
types, we wanted to see whether the populations we identified across granularities 
were predictive of patient outcome. To predict patient outcomes from a single 
patient sample, we trained a random forest classifier on populations we identified 
in our myeloid-focused flow cytometry panel. Similar to our patient manifold 
analysis, we derived multiscale patient features by identifying the proportion of 
each patient’s cells that were labeled with a particular cell type. After partitioning 
our dataset of 210 patient samples into five sets, we performed fivefold 
cross-validation in which we iteratively shuffled training sets (four of five) and test 
sets (one of five).

Preprocessing of patient flow cytometry data. Flow cytometry was performed 
on PBMCs from each patient over the course of several weeks (the methods are 
explained in detail below). Because of the extended period of patient sample 
processing, the settings of the flow cytometry could change subtly day to day, 
producing differences in the amount of fluorescence measured from sample to 
sample. Because we wanted the distances between cells to reflect real biology 
instead of experimental artifacts, the normalization steps that we took aimed to 
ensure that each cell had equal total fluorescent counts.

The resulting FCS files were preprocessed by applying compensation based on 
the respective single-color compensation controls, selecting only leukocytes and 
singlets based on FSC and SSC and selecting only live cells based on a viability dye. 
Mean fluorescence intensity values for each fluorophore on a per-cell basis were 
then extracted for downstream analysis. To extract T cells for the cytokine-focused 
T cell panel, cells with CD3 staining greater than 425 were extracted. For the T cell 
surface marker panel, cells with a CD3 staining greater than 500 were extracted. 
For the B cell-focused panel, cells with a CD19 staining greater than 400 were 
extracted, and cells expressing less than a total of 2,700 cumulative staining across 
all markers were removed. No extraction of cells was done for the myeloid-focused 
panel; however, cells with cumulative staining across all markers less than 2,700 
across were removed. The total fluorescent counts are affected by experimental 
settings and vary substantially between cells. Therefore, we normalized total 
fluorescent count to 1,000 per cell so that each cell had equal total counts. We 
then applied square-root normalization to each entry of the data matrix. The 
normalization for a data matrix D with n samples and d features is

Dnormði; jÞ ¼ 1000 ´
Dði; jÞ

Pd
k¼1 Dði; kÞ

 !1=2

:

Biological and medical methods. In the following sections, we provide details on 
how patient biological data and clinical information were acquired and processed.

Ethics statement. This study was approved by Yale Human Research Protection 
Program institutional review boards (FWA00002571, protocol ID 2000027690). 
Informed consent was obtained from all enrolled patients and healthcare workers.

Patients. Patient enrollment, sample acquisition, processing and downstream 
analysis by flow cytometry were performed as in Lucas et al11. One-hundred and 
sixty-eight patients admitted to YNHH with SARS-CoV-2 between 18 March 
2020 and 27 May 2020 were recruited to the Yale IMPACT study (Implementing 
Medical and Public Health Action Against Coronavirus CT) after testing positive 
for SARS-CoV-2 by qRT-PCR and included in this study. No statistical methods 
were used to predetermine sample size. Paired whole blood for flow cytometry 
analysis was collected simultaneously in sodium heparin-coated vacutainers and 
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kept on gentle agitation until processing. All blood was processed on the day of 
collection. Patients were scored for COVID-19 disease severity through review 
of electronic medical records at each longitudinal time point. For all patients, 
days from symptom onset were estimated as follows: (1) the highest priority was 
given to explicit onset dates provided by patients; (2) the next highest priority 
was given to the earliest reported symptom by a patient; and (3) in the absence 
of direct information regarding symptom onset, we estimated a date through 
manual assessment of the electronic medical records by an independent clinician. 
The clinical data were collected using EPIC EHR and REDCap 9.3.6 software. 
At the time of sample acquisition and processing, investigators were unaware 
of the patients’ conditions. Blood acquisition was performed and recorded by 
a separate team. Information about patients’ conditions was not available until 
after processing and analysis of raw data by flow cytometry and enzyme-linked 
immunosorbent assay. A clinical team, separate from the experimental team, 
performed chart reviews to determine relevant statistics. Flow cytometry analyses 
were performed blinded. Patients’ clinical information and clinical score coding 
were revealed only after data collection.

Isolation of PBMCs. PBMCs were isolated from heparinized whole blood using 
Histopaque (Sigma-Aldrich, 10771-500ML) density gradient centrifugation in a 
biosafety level 2+ facility. After isolation of undiluted serum, blood was diluted 1:1 
in room-temperature PBS, layered over Histopaque in a SepMate tube (StemCell 
Technologies, 85460) and centrifuged for 10 min at 1,200g. The PBMC layer was 
isolated according to the manufacturer’s instructions. Cells were washed twice 
with PBS before counting. Pelleted cells were briefly treated with ACK lysis buffer 
for 2 min and then counted. Percentage viability was estimated using standard 
Trypan blue staining and an automated cell counter (Thermo Fisher Scientific, 
AMQAX1000).

Flow cytometry. In brief, freshly isolated PBMCs were plated at 1–2 × 106 cells 
per well in a 96-well U-bottom plate. Cells were resuspended in Live/Dead 
Fixable Aqua (Thermo Fisher Scientific) for 20 min at 4 °C. Following a wash, 
cells were blocked with Human TruStain FcX (BioLegend) for 10 min at room 
temperature. Cocktails of desired staining antibodies were added directly to 
this mixture for 30 min at room temperature. For secondary stains, cells were 
first washed and supernatant aspirated; then, to each cell pellet, a cocktail of 
secondary markers was added for 30 min at 4 °C. Before analysis, cells were 
washed and resuspended in 100 μl of 4% paraformaldehyde for 30 min at 4 °C. 
For intracellular cytokine staining following stimulation, cells were resuspended 
in 200 μl cRPMI (RPMI-1640 supplemented with 10% FBS, 2 mM L-glutamine, 
100 U ml−1 penicillin, and 100 μg ml−1 streptomycin, 1 mM sodium pyruvate and 
50 μM 2-mercaptoethanol) and stored at 4 °C overnight. Subsequently, these cells 
were washed and stimulated with 1 × Cell Stimulation Cocktail (eBioscience) 
in 200 μl cRPMI for 1 h at 37 °C. Then, 50 μl of 5x Stimulation Cocktail (plus 
protein transport inhibitor) (eBioscience) was added for an additional 4 h of 
incubation at 37 °C. Following stimulation, cells were washed and resuspended 
in 100 μl of 4% paraformaldehyde for 30 min at 4 °C. To quantify intracellular 
cytokines, these samples were permeabilized with 1 × permeabilization buffer 
from the FOXP3/Transcription Factor Staining Buffer Set (eBioscience) for 
10 min at 4 °C. All subsequent staining cocktails were made in this buffer. 
Permeabilized cells were then washed and resuspended in a cocktail containing 
Human TruStain FcX (BioLegend) for 10 min at 4 °C. Finally, intracellular 
staining cocktails were added directly to each sample for 1 h at 4 °C. Following 
this incubation, cells were washed and prepared for analysis on an Attune NXT 
(Thermo Fisher Scientific). Data were analyzed using FlowJo software v10.6 
software (Tree Star).

Acquisition of clinical data for flow cytometry analysis and patient manifold. 
Longitudinal patient data were extracted from the electronic medical record 
(Epic) only for the patients who were hospitalized and included in the repository. 
Time-varying data, specifically vital signs and laboratory studies, were extracted 
specifically 24 h before and after the collection of blood specimens for flow 
cytometry as described above. This ensured that the measurements correlated 
with the patient state at the time of flow cytometry measurements. Laboratory 
values reflecting clinical evaluation of general inflammatory states (white blood 
cell count and high-sensitivity C-reactive protein) were extracted. The values 
for the laboratory measurements were then consolidated by taking the most 
abnormal value (e.g., highest ferritin value) in the 72-h period and overlaid onto 
the patient manifolds.

Acquisition of clinical data for clinical manifold. For patients who did not 
undergo flow cytometry analysis, the time-varying clinical, laboratory and 
treatment data were extracted for the first 24 h from admission with consolidation 
by the most abnormal value as described before. Otherwise, the consolidated 
data temporally correlating to flow cytometry measurements were extracted as 
described above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw flow cytometry data and count matrices have been deposited to ImmPort and 
are available through study number SDY1886.

Code availability
The Multiscale PHATE package, as implemented in Python, is available for 
download with a guided tutorial on the Krishnaswamy Lab GitHub page (https://
github.com/KrishnaswamyLab/Multiscale_PHATE).
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Extended Data Fig. 1 | Condensing on manifold, reproducibility and run time comparisons. a, Visualization of toy swiss roll after performing condensation 
in euclidean space or on diffusion potential. Top: schematic of the movement vectors of each point when run in euclidean space or on diffusion potential 
for one iteration. Bottom: Visualization of toy swiss roll dataset after several iterations of diffusion condensation, running in both euclidean space and 
diffusion potential. b, Comparison of diffusion condensation on diffusion potential to diffusion condensation on ambient measurement dimensions on an 
increasingly noisy stochastic block model to simulate nonlinear noise in a high-dimensional space. In this model, increasing amounts of Gaussian noise 
were added to the edge weights of the adjacency matrix. c, Pipeline for identifying cellular populations enriched based on clinical variables with Multiscale 
PHATE and MELD. d, Comparing run time across visualization techniques on increasingly high-dimensional flow cytometry data. e, Visualization of 
reproduciblity of Multiscale PHATE across two different runs of PBMCs measured by scRNA-seq. Each run was initialized with a different random seed.
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Extended Data Fig. 2 | Visualization of differing high-dimensional biological data types. Visualization comparison across a range of data types: 22 million 
PBMCs measured by flow cytometry (Lucas et al.), 49,942 PBMCs by scRNA-seq (Lee et al.), 2,135 patients admitted to YNHH by demographic and lab 
clinical variables, 25,528 cells from a diverse set of mouse tissues measured by scATAC-seq (Cusanovich et al.), 1,010,964 PBMCs measured by CyTOF 
(Hartmann et al.) and 50,000 TCRs from COVID-19 infected patients and healthy controls (Nolan et al., Corrie et al.).
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Extended Data Fig. 3 | Multiscale PHATE is capable of identify extractable cellular subsets from massive single-cell data. a, Multiscale PHATE 
visualization of PBMCs identifies all major cell types based on cell type–specific markers. b, PHATE visualization of subsample of 25,000 PBMCs helps 
identify all major cell types based on cell type–specific markers using Multiscale PHATE clustering. c, Zoom in of subsection of Multiscale PHATE manifold 
resolves crowding in coarse grain visualization. d, Zoom in of subsection of PHATE manifold does not resolve crowding. e, Multiscale PHATE is able to 
identify subpopulations enriched in patients who die from COVID. The plot on the right is colored by Multiscale PHATE-identified clusters. f, PHATE and 
vertex frequency clustering (VFC) are unable to identify subpopulations enriched in patients who die from COVID. The plot on the right is colored by VFC 
identified clusters. g, Multiscale PHATE-identified populations show differing enrichments in patients who die from COVID19. One of the B cell subsets 
(lighter blue color) are enriched in patients who die from COVID. h, Multiscale PHATE’s hierarchical approach to clustering provides a gating strategy to 
isolate subsets of B cells enriched in patients who die from COVID19. i, VFC identified populations do not isolate mortality enriched cellular subsets as well 
as Multiscale PHATE.
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Extended Data Fig. 4 | Visualization of differing multiscale dimensionality reduction techniques. a, Visualization of noisy splatter data with either 
path of cluster geometry embedded with algorithms created for condensation ablation study performed in Fig. 2b. b, Visualization of noisy splatter data 
with either path of cluster geometry embedded with algorithms created for PHATE ablation study performed in Fig. 2c. c, Quantitative study comparing 
embeddings produced by Multiscale PHATE and visualization strategies which either employ community based or topologically based abstractions of 
data on 1.7 million cells from FlowCAP I Normal Donor (ND) dataset. Comparisons were evaluated using DeMAP with increasing levels of 2 different types 
of biological noise, dropout and variation. Shading represents standard deviation around mean DeMAP score for each comparison. d, Quantitative study 
comparing embeddings produced by Multiscale PHATE and visualization strategies which visualize condensation based abstractions of data. Comparisons 
were run and represented as described in b.
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Extended Data Fig. 5 | Comparison of Multiscale PHATE with other clustering techniques on hierarchical stochastic block model. a, Computed Adjusted 
Rand Index (ARI) between each algorithm’s predicted clusters and the known clusters on synthetic single-cell data generated by splatter (Zappia et al.) 
across a range of noise types, dropout and biological variation, and noise levels. Shading represents one standard deviation around mean ARI score 
for each comparison. b, Schematic of the hierarchical stochastic block model we generated for multigranular cluster comparisons. For each method, 
increasing amounts of random Gaussian noise were added to the adjacency matrix of stochastic block model to simulate increasing amounts of noise. 
While adding noise directly to data introduces simple linear noise, adding Gaussian noise to the edge weights of an adjacency matrix simulates more 
complex non-linear type of noise which is often present in high-dimensional biological data. c, Computed Adjusted Rand Index (ARI) between each 
algorithm’s predicted clusters and the known clusters across coarse and fine granularities of 2 layer stochastic block model perturbed with increasing 
amounts of noise. Shading represents one standard deviation around mean ARI score for each comparison. d, Computed Adjusted Rand Index (ARI) 
between each algorithm’s predicted clusters and the known clusters across coarse, intermediate and fine granularities of 3 layer stochastic block model 
perturbed with increasing amounts of noise. Shading represents one standard deviation around mean ARI score for each comparison.
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Extended Data Fig. 6 | Comparison of Multiscale PHATE with other clustering tools on real data. a, Comparison of multiple clustering approaches 
on flow cytometry data where cell types and subtypes have been identified through gating analysis. Clusters identified by different approaches were 
compared to gated populations using ARI and F1 score. b, Comparison of multiple clustering techniques at identifying regions with uniform MELD 
likelihood scores across a range of comparable granularities. c, Comparison of multiple clustering techniques across a range of granularities on flow 
cytometry data with cell types and subtypes identified as done in a. d, Comparison of multiple clustering techniques across increasing amounts of noise of 
different types, biological variation and dropout, as done in Extended Data Fig. 3. As done in Extended Data Fig. 3, noise was added to FlowCAP I Normal 
Donor (ND) dataset with known clusters. Shading represents one standard deviation around mean ARI score for each comparison.
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Extended Data Fig. 7 | Multiscale PHATE identifies subsets of monocytes and B cells enriched in patients who died of COVID-19. a, Zoom in of 
monocyte population identifies subsets based on expression of markers. Colors denote cell type and size of a dot is proportional to number of cells 
represented. b, Visualization of mortality likelihood score as computed by MELD in monocytes identifies subsets enriched in patients who die from 
COVID-19. Key associations between markers and mortality likelihood score computed by DREMI and visualized with DREVI. c, Visualization of B cells 
panel identifies a range of subsets based on expression of known markers. Colors denote cell type and size of a dot is proportional to number of cells 
represented. d, Visualization of mortality likelihood score identifies B cell subsets enriched in patients who die from COVID-19. e, Comparison of mortality 
likelihood score across panels reveals that granulocytes and monocytes are broadly the most enriched cell types in patients who die from COVID-19.
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Extended Data Fig. 8 | Multiscale PHATE analysis identifies subsets of CD8+ T cells enriched in patients with poor COVID-19 outcomes. a, Zoom in of 
CD8+ T cells identifies subsets based on expression of markers. Colors denote cell type and size of a dot is proportional to number of cells represented. 
b, Visualization of mortality likelihood score as computed by MELD in CD8+ T cells identifies subsets enriched in patients who die from COVID-19. Key 
associations between Granzyme B and mortality likelihood computed by DREMI and visualized with DREVI. c, Multiscale PHATE visualization of T cell 
focused surface marker panel with broad T cell subtypes identified. Colors denote cell type and size of a dot is proportional to number of cells represented. 
d, Zoom in of CD8+ T cells identifies subsets based on expression of known markers. e, Visualization of mortality likelihood score as computed by MELD 
in CD8+ T cells identifies subsets enriched in patients who die from COVID-19. Key associations between markers and mortality likelihood computed by 
DREMI and visualized with DREVI.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles NATuRE BIOTECHnOlOgy

Extended Data Fig. 9 | Visualization of patient manifold and correlation with clinical features. a, Visualizing clinical variables on patient manifold. Darker 
color indicates higher normalized numerical values. b, DREMI and DREVI association analysis between clinical variables and mortality as well as cellular 
populations. c, PHATE visualizations of patient manifolds created by Multiscale PHATE (top), conventional flow cytometry gating (middle) and single 
resolution of louvain clusters (bottom). Patients who died are highlighted in orange.
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Extended Data Fig. 10 | Visualization of multiscale clinical manifold and correlation with patient clinical features. a, Visualizing clinical variables on 
clinical manifold as computed by Multiscale PHATE. Size of a dot is proportional to number of patients represented and darker color indicates higher 
normalized numerical values. b, DREMI and DREVI association analysis between clinical features and patient hospitalization outcome likelihood as 
computed by MELD.
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