Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A secondary atmosphere on the rocky exoplanet 55 Cancri e

Abstract

Characterizing rocky exoplanets is a central aim of astronomy, and yet the search for atmospheres on rocky exoplanets has so far resulted in either tight upper limits on the atmospheric mass1,2,3 or inconclusive results4,5,6. The 1.95REarth and 8.8MEarth planet 55 Cancri e (abbreviated 55 Cnc e), with a predominantly rocky composition and an equilibrium temperature of around 2,000 K, may have a volatile envelope (containing molecules made from a combination of C, H, O, N, S and P elements) that accounts for up to a few percent of its radius7,8,9,10,11,12,13. The planet has been observed extensively with transmission spectroscopy14,15,16,17,18,19,20,21,22 and its thermal emission has been measured in broad photometric bands23,24,25,26. These observations disfavour a primordial H2/He-dominated atmosphere but cannot conclusively determine whether the planet has a secondary atmosphere27,28. Here we report a thermal emission spectrum of the planet obtained by the NIRCam and MIRI instruments aboard the James Webb Space Telescope (JWST) from 4 to 12 μm. The measurements rule out the scenario in which the planet is a lava world shrouded by a tenuous atmosphere made of vaporized rock29,30,31,32 and indicate a bona fide volatile atmosphere that is probably rich in CO2 or CO. This atmosphere can be outgassed from and sustained by a magma ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: White-light curves of the secondary eclipses of 55 Cnc e.
Fig. 2: Thermal emission spectrum of 55 Cnc e.
Fig. 3: Self-consistent atmosphere models of 55 Cnc e.

Similar content being viewed by others

Data availability

The data used in this paper are associated with JWST guest observer programme 1952 and are available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). The data products required to generate Figs. 13 and Extended Data Figs. 19, as well as the stellar spectrum and the data reduction configuration files for the Eureka! – reduction 1 and SPARTA analyses are available at https://osf.io/2s6md/ with doi 10.17605/OSF.IO/2S6MD. All further data are available on request.

Code availability

The codes used in this publication to extract, reduce and analyse the data are as follows: STScI JWST calibration pipeline (https://github.com/spacetelescope/jwst), Eureka! (https://eurekadocs.readthedocs.io/en/latest/), stark (https://github.com/Jayshil/stark), SPARTA (https://github.com/ideasrule/sparta), batman (http://lkreidberg.github.io/batman/docs/html/index.html), emcee (https://emcee.readthedocs.io/en/stable/), dynesty (https://dynesty.readthedocs.io/en/stable/index.html) and juliet (https://juliet.readthedocs.io/en/latest/). Also, we have made use of HELIOS (https://github.com/exoclime/HELIOS), FastChem (https://github.com/exoclime/FastChem), PLATON (https://github.com/ideasrule/platon), petitRADTRANS (http://gitlab.com/mauricemolli/petitRADTRANS) and LavAtmos (https://github.com/cvbuchem/LavAtmos) to produce models.

References

  1. Kreidberg, L. et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573, 87–90 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Crossfield, I. J. et al. GJ 1252b: a hot terrestrial super-Earth with no atmosphere. Astrophys. J. Lett. 937, L17 (2022).

    Article  ADS  Google Scholar 

  3. Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tsiaras, A. et al. Detection of an atmosphere around the super-Earth 55 Cancri e. Astrophys. J. 820, 99 (2016).

    Article  ADS  Google Scholar 

  5. Lustig-Yaeger, J. et al. A JWST transmission spectrum of the nearby Earth-sized exoplanet LHS 475 b. Nat. Astron. 7, 1317–1328 (2023).

    Article  ADS  Google Scholar 

  6. Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischer, D. A. et al. Five planets orbiting 55 Cancri. Astrophys. J. 675, 790 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Dawson, R. I. & Fabrycky, D. C. Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937 (2010).

    Article  ADS  Google Scholar 

  9. Winn, J. N. et al. A super-Earth transiting a naked-eye star. Astrophys. J. Lett. 737, L18 (2011).

    Article  ADS  Google Scholar 

  10. Demory, B. O. et al. Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer. Astron. Astrophys. 533, A114 (2011).

    Article  Google Scholar 

  11. Bourrier, V. et al. The 55 Cancri system reassessed. Astron. Astrophys. 619, A1 (2018).

    Article  CAS  Google Scholar 

  12. Crida, A., Ligi, R., Dorn, C., Borsa, F. & Lebreton, Y. Mass, radius, and composition of the transiting planet 55 Cnc e: using interferometry and correlations—a quick update. Res. Notes AAS 2, 172 (2018).

    Article  ADS  Google Scholar 

  13. Dorn, C., Harrison, J. H., Bonsor, A. & Hands, T. O. A new class of Super-Earths formed from high-temperature condensates: HD219134 b, 55 Cnc e, WASP-47 e. Mon. Not. R. Astron. Soc. 484, 712–727 (2019).

    Article  ADS  CAS  Google Scholar 

  14. Ehrenreich, D. et al. Hint of a transiting extended atmosphere on 55 Cancri b. Astron. Astrophys. 547, A18 (2012).

    Article  Google Scholar 

  15. Ridden-Harper, A. R. et al. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e. Astron. Astrophys. 593, A129 (2016).

    Article  Google Scholar 

  16. Esteves, L. J., Mooij, E. J., Jayawardhana, R., Watson, C. & Kok, R. A search for water in a super-earth atmosphere: high-resolution optical spectroscopy of 55Cancri e. Astron. J. 153, 268 (2017).

    Article  ADS  Google Scholar 

  17. Jindal, A. et al. Characterization of the atmosphere of super-Earth 55 Cancri e using high-resolution ground-based spectroscopy. Astron. J. 160, 101 (2020).

    Article  ADS  CAS  Google Scholar 

  18. Tabernero, H. M. et al. HORuS transmission spectroscopy of 55 Cnc e. Mon. Not. R. Astron. Soc. 498, 4222–4229 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Deibert, E. K. et al. A near-infrared chemical inventory of the atmosphere of 55 Cancri e. Astron. J. 161, 209 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Keles, E. et al. The PEPSI exoplanet transit survey (PETS) I: investigating the presence of a silicate atmosphere on the super-earth 55 Cnc e. Mon. Not. R. Astron. Soc. 513, 1544–1556 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Zhang, M. et al. No escaping helium from 55 Cnc e. Astron. J. 161, 181 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Rasmussen, K. C. et al. A nondetection of iron in the first high-resolution emission study of the lava planet 55 Cnc e. Astron. J. 166, 155 (2023).

    Article  ADS  Google Scholar 

  23. Demory, B. O. et al. A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature 532, 207–209 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Demory, B. O., Gillon, M., Madhusudhan, N. & Queloz, D. Variability in the super-Earth 55 Cnc e. Mon. Not. R. Astron. Soc. 455, 2018–2027 (2016).

    Article  ADS  Google Scholar 

  25. Tamburo, P., Mandell, A., Deming, D. & Garhart, E. Confirming variability in the secondary eclipse depth of the super-Earth 55 Cancri e. Astron. J. 155, 221 (2018).

    Article  ADS  Google Scholar 

  26. Mercier, S. J., Dang, L., Gass, A., Cowan, N. B. & Bell, T. J. Revisiting the iconic Spitzer phase curve of 55 Cancri e: hotter dayside, cooler nightside, and smaller phase offset. Astron. J. 164, 204 (2022).

    Article  ADS  CAS  Google Scholar 

  27. Angelo, I. & Hu, R. A case for an atmosphere on super-Earth 55 Cancri e. Astron. J. 154, 232 (2017).

    Article  ADS  Google Scholar 

  28. Brandeker, A. An asynchronous rotation scenario for 55 Cancri e. AAS/Division Extreme Sol. Syst. Abstr. 51, 311-07 (2019).

    Google Scholar 

  29. Schaefer, L. & Fegley, B. Chemistry of silicate atmospheres of evaporating super-Earths. Astrophys. J. 703, L113 (2009).

    Article  ADS  CAS  Google Scholar 

  30. Miguel, Y., Kaltenegge, L., Fegley, B. & Schaefer, L. Compositions of hot super-Earth atmospheres: exploring Kepler candidates. Astrophys. J. 742, L19 (2011).

    Article  ADS  Google Scholar 

  31. Ito, Y. et al. Theoretical emission spectra of atmospheres of hot rocky super-Earths. Astrophys. J. 801, 144 (2015).

    Article  ADS  Google Scholar 

  32. Zilinskas, M. et al. Observability of evaporating lava worlds. Astron. Astrophys. 661, A126 (2022).

    Article  CAS  Google Scholar 

  33. Schlawin, E. et al. JWST noise floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).

    Article  ADS  Google Scholar 

  34. Lally, M. & Vanderburg, A. Reassessing the evidence for time variability in the atmosphere of the exoplanet HAT-P-7 b. Astron. J. 163, 181 (2022).

    Article  ADS  Google Scholar 

  35. Bell, T. J. et al. A first look at the JWST MIRI/LRS phase curve of WASP-43b. Preprint at https://arxiv.org/abs/2301.06350 (2023).

  36. Essack, Z., Seager, S. & Pajusalu, M. Low-albedo surfaces of lava worlds. Astrophys. J. 898, 160 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Kipping, D. & Jansen, T. Detection of the occultation of 55 Cancri e with TESS. Res. Notes AAS 4, 170 (2020).

    Article  ADS  Google Scholar 

  38. Demory, B. O. et al. 55 Cancri e’s occultation captured with CHEOPS. Astron. Astrophys. 669, A64 (2023).

    Article  Google Scholar 

  39. Meier Valdés, E. A., Morris, B. M., Wells, R. D., Schanche, N. & Demory, B. O. Weak evidence for variable occultation depth of 55 Cnc e with TESS. Astron. Astrophys. 663, A95 (2022).

    Article  ADS  Google Scholar 

  40. Meier Valdés, E. A. et al. Investigating the visible phase-curve variability of 55 Cnc e. Astron. Astrophys. 677, A112 (2023).

    Article  Google Scholar 

  41. Kite, E. S., Fegley, B. Jr., Schaefer, L. & Gaidos, E. Atmosphere-interior exchange on hot, rocky exoplanets. Astrophys. J. 828, 80 (2016).

    Article  ADS  Google Scholar 

  42. Hammond, M. & Pierrehumbert, R. T. Linking the climate and thermal phase curve of 55 Cancri e. Astrophys. J. 849, 152 (2017).

    Article  ADS  Google Scholar 

  43. Zilinskas, M., Miguel, Y., Lyu, Y. & Bax, M. Temperature inversions on hot super-Earths: the case of CN in nitrogen-rich atmospheres. Mon. Not. R. Astron. Soc. 500, 2197–2208 (2021).

    Article  ADS  CAS  Google Scholar 

  44. Gaillard, F. et al. Redox controls during magma ocean degassing. Earth Planet. Sci. Lett. 577, 117255 (2022).

    Article  CAS  Google Scholar 

  45. Meier, T. G., Bower, D. J., Lichtenberg, T., Hammond, M. & Tackley, P. J. Interior dynamics of super-Earth 55 Cancri e. Astron. Astrophys. 678, A29 (2023).

    Article  ADS  CAS  Google Scholar 

  46. Heng, K. The transient outgassed atmosphere of 55 Cancri e. Astrophys. J. Lett. 956, L20 (2023).

    Article  ADS  Google Scholar 

  47. Piette, A. A. et al. Rocky planet or water world? Observability of low-density lava world atmospheres. Astrophys. J. 954, 29 (2023).

    Article  ADS  Google Scholar 

  48. Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/ZENODO.7038885 (2022).

  49. Bell, T. J. et al. Eureka!: An End-to-End Pipeline for JWST Time-Series Observations. J. Open Source Softw. 7, 4503 (2022).

  50. Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article  ADS  Google Scholar 

  51. Espinoza, N., Kossakowski, D. & Brahm, R. Juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc. 490, 2262–2283 (2019).

    Article  ADS  Google Scholar 

  52. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  53. Kempton, E. M. R. et al. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve. Nature 620, 67–71 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Winn, J. N. et al. The Transit Light Curve project. IX. Evidence for a smaller radius of the exoplanet XO‐3b. Astrophys. J. 683, 1076–1084 (2008).

    Article  ADS  CAS  Google Scholar 

  55. Crossfield, I. J. ACME stellar spectra-I. Absolutely calibrated, mostly empirical flux densities of 55 Cancri and its transiting planet 55 Cancri e. Astron. Astrophys. 545, A97 (2012).

    Article  ADS  Google Scholar 

  56. Cutri, R. M. et al. Explanatory Supplement to the AllWISE Data Release Products. https://ui.adsabs.harvard.edu/abs/2013wise.rept....1C (2013).

  57. Zhang, M., Chachan, Y., Kempton, E. M. R., Knutson, H. A. & Chang, W. PLATON II: new capabilities and a comprehensive retrieval on HD 189733b transit and eclipse data. Astrophys. J. 899, 27 (2020).

    Article  ADS  CAS  Google Scholar 

  58. Damiano, M. & Hu, R. Reflected spectroscopy of small exoplanets I: determining the atmospheric composition of sub-Neptunes planets. Astron. J. 162, 200 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).

    Article  ADS  Google Scholar 

  60. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  61. Koll, D. D. A scaling for atmospheric heat redistribution on tidally locked rocky planets. Astrophys. J. 924, 134 (2022).

    Article  ADS  CAS  Google Scholar 

  62. Buchem, C. P. A., Miguel, Y., Zilinskas, M. & Westrenen, W. LavAtmos: an open-source chemical equilibrium vaporization code for lava worlds. Meteorit. Planet. Sci. 58, 1149–1161 (2023).

    Article  ADS  Google Scholar 

  63. Ghiorso, M. S. & Sack, R. O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Article  ADS  CAS  Google Scholar 

  64. Asimow, P. D. & Ghiorso, M. S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 83, 1127–1131 (1998).

    Article  ADS  CAS  Google Scholar 

  65. Palme, H. & O’Neill, H. St. C. in Treatise on Geochemistry Vol 2 (eds Holland, H. D. & Turekian, K. K.) 1–38 (Elsevier, 2003).

  66. Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Article  ADS  CAS  Google Scholar 

  67. Morgan, J. W. & Anders, E. Chemical composition of Earth, Venus, and Mercury. Proc. Natl Acad. Sci. 77, 6973–6977 (1980).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stock, J. W., Kitzmann, D. & Patzer, A. B. C. FastChem 2: an improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Mon. Not. R. Astron. Soc. 517, 4070–4080 (2022).

    Article  ADS  CAS  Google Scholar 

  69. Malik, M. et al. HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. Astron. J. 153, 56 (2017).

    Article  ADS  Google Scholar 

  70. Malik, M. et al. Self-luminous and irradiated exoplanetary atmospheres explored with HELIOS. Astron. J. 157, 170 (2019).

    Article  ADS  CAS  Google Scholar 

  71. Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).

    Article  ADS  CAS  Google Scholar 

  72. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  73. Kurucz, R. L. Atomic and molecular data for opacity calculations. Rev. Mex. Astron. Astrofis. 23, 45 (1992).

    ADS  CAS  Google Scholar 

  74. Zilinskas, M., Miguel, Y., Buchem, C. P. A. & Snellen, I. A. G. Observability of silicates in volatile atmospheres of super-Earths and sub-Neptunes. Exploring the edge of the evaporation desert. Astron. Astrophys. 671, 138 (2023).

    Article  Google Scholar 

  75. Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).

    Article  Google Scholar 

  76. Zieba, S. et al. K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere. Astron. Astrophys. 664, A79 (2022).

    Article  CAS  Google Scholar 

  77. Gordon, S. & McBride, B. J. The NASA Computer Program CEA (Chemical Equilibrium with Applications). https://www1.grc.nasa.gov/research-and-engineering/ceaweb/ (NASA Reference Publication, 1996).

  78. Toon, O. B., McKay, C. P., Ackerman, T. P. & Santhanam, K. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. Atmos. 94, 16287–16301 (1989).

    Article  ADS  Google Scholar 

  79. Rothman, L. S. & Gordon, I. E. The HITRAN molecular database. AIP Conf. Proc. 1545, 223–231 (2013).

    Article  ADS  CAS  Google Scholar 

  80. Piskunov, N. & Kupka, F. Model atmospheres with individualized abundances. Astrophys. J. 547, 1040 (2001).

    Article  ADS  CAS  Google Scholar 

  81. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  82. Kitzmann, D., Stock, J. W. & Patzer, A. B. C. FASTCHEM COND: equilibrium chemistry with condensation and rainout for cool planetary and stellar environments. Mon. Not. R. Astron. Soc. 527, 7263–7283 (2023).

    Article  ADS  Google Scholar 

  83. Chubb, K. L. et al. The ExoMolOP database: cross sections and k-tables for molecules of interest in high-temperature exoplanet atmospheres. Astron. Astrophys. 646, A21 (2021).

    Article  CAS  Google Scholar 

  84. Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    Article  ADS  CAS  Google Scholar 

  85. Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).

    Article  ADS  Google Scholar 

  86. Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).

    Article  ADS  CAS  Google Scholar 

  87. Hu, R. & Seager, S. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes. Astrophys. J. 784, 63 (2014).

    Article  ADS  Google Scholar 

  88. Heng, K., Malik, M. & Kitzmann, D. Analytical models of exoplanetary atmospheres. VI. Full solutions for improved two-stream radiative transfer, including direct stellar beam. Astrophys. J. Suppl. Ser 237, 29 (2018).

    Article  ADS  Google Scholar 

  89. Askar, S. S. & Karawia, A. A. On solving pentadiagonal linear systems via transformations. Math. Probl. Eng. 2015, 232456 (2015).

    Article  MathSciNet  Google Scholar 

  90. Bolmont, E. et al. Tidal dissipation and eccentricity pumping: implications for the depth of the secondary eclipse of 55 Cancri e. Astron. Astrophys. 556, A17 (2013).

    Article  Google Scholar 

  91. Salz, M., Czesla, S., Schneider, P. C. & Schmitt, J. H. M. M. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron. Astrophys. 586, A75 (2016).

    Article  ADS  Google Scholar 

  92. Kubyshkina, D. et al. Grid of upper atmosphere models for 1–40 M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151 (2018).

    Article  CAS  Google Scholar 

  93. Lammer, H. et al. Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. 430, 1247–1256 (2013).

    Article  ADS  CAS  Google Scholar 

  94. Nakayama, A., Ikoma, M. & Terada, N. Survival of terrestrial N2–O2 atmospheres in violent XUV environments through efficient atomic line radiative cooling. Astrophys. J. 937, 72 (2022).

    Article  ADS  Google Scholar 

  95. Mamajek, E. E. & Hillenbrand, L. A. Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J. 687, 1264 (2008).

    Article  ADS  CAS  Google Scholar 

  96. Pearson, V. K., Sephton, M. A., Franchi, I. A., Gibson, J. M. & Gilmour, I. Carbon and nitrogen in carbonaceous chondrites: elemental abundances and stable isotopic compositions. Meteorit. Planet. Sci. 41, 1899–1918 (2006).

    Article  ADS  CAS  Google Scholar 

  97. Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    Article  ADS  CAS  Google Scholar 

  98. Zahnle, K. J. & Kasting, J. F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986).

    Article  ADS  CAS  Google Scholar 

  99. Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).

    Article  ADS  CAS  Google Scholar 

  100. Zahnle, K., Kasting, J. F. & Pollack, J. B. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502–527 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Hu, R., Seager, S. & Yung, Y. L. Helium atmospheres on warm Neptune- and sub-Neptune-sized exoplanets and applications to GJ 436b. Astrophys. J. 807, 8 (2015).

    Article  ADS  Google Scholar 

  102. Sulis, S. et al. Multi-season optical modulation phased with the orbit of the super-Earth 55 Cancri e. Astron. Astrophys. 631, A129 (2019).

    Article  Google Scholar 

  103. Morris, B. M. et al. CHEOPS precision phase curve of the Super-Earth 55 Cancri e. Astron. Astrophys. 653, A173 (2021).

    Article  Google Scholar 

  104. Oza, A. V. et al. Sodium and potassium signatures of volcanic satellites orbiting close-in gas giant exoplanets. Astrophys. J. 885, 168 (2019).

    Article  ADS  CAS  Google Scholar 

  105. Folsom, C. P. et al. Circumstellar environment of 55 Cancri. The super-Earth 55 Cnc e as a primary target for star–planet interactions. Astron. Astrophys. 633, A48 (2020).

    Article  Google Scholar 

  106. Gebek, A. & Oza, A. V. Alkaline exospheres of exoplanet systems: evaporative transmission spectra. Mon. Not. R. Astron. Soc. 497, 5271–5291 (2020).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Gaillard for helpful discussion on magma ocean outgassing and J. Inglis for helpful discussion on data reduction with the James Webb Space Telescope (JWST). This research is based on observations with the NASA/ESA/CSA JWST obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS 5-03127. These observations are associated with programme no. JWST-GO-1952. Support for programme no. JWST-GO-1952 was provided through a grant from the STScI under NASA contract NAS 5-03127. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Part of the high-performance computing resources used in this investigation were provided by funding from the JPL Information and Technology Solutions Directorate. M.Zh. acknowledges support from the 51 Pegasi b Fellowship financed by the Heising-Simons Foundation. Y.M. and M.Zi. have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101088557, N-GINE). Y.M. and C.v.B. acknowledge the support of a Dutch Science Foundation (NWO) Planetary and Exoplanetary Science (PEPSci) grant. B.-O.D. acknowledges support from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00046.

Author information

Authors and Affiliations

Authors

Contributions

R.H. designed the observations, led the interpretation and simulated the magma ocean–atmosphere models. A.B.-A. led the data analysis using Eureka! M.Zh. led the data analysis using SPARTA. K.P. and H.A.K. provided spectral retrievals. M.Zi., C.v.B. and Y.M. provided self-consistent models for vaporized-rock and volatile atmospheres. M.B., J.P., D.D., A.B. and B.-O.D. provided independent data analyses. M.D. contributed to the design of the observations and the data analysis. Y.I. provided independent models of vaporized-rock atmospheres. M.S. developed the climate routine used for the magma ocean–atmosphere models. A.V.O. assessed the plausibility of a circumstellar dusty torus. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Renyu Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Reduction of the NIRCam eclipse observation of 55 Cnc e.

a, The relative eclipse depths derived by fitting to the relative light curves obtained by dividing the spectroscopic light curves by the white-light curve (WLC). The spectrum is consistent between the analyses and we adopt the SPARTA analysis for model interpretation. b, The SPARTA analysis in comparison with the eclipse depths derived by direct fitting to the spectroscopic light curves (minus respective while-light (WL) depth). Direct fitting results in considerably noisier spectra, whereas the overall shape is approximately consistent with the SPARTA analysis. c, Relative spectroscopic light curves in the SPARTA analysis. The vertical dashed lines denote the phases in which the planet is eclipsed by the star. d, Comparison between the scatters of the light curves and the uncertainties of binned data for the relative spectroscopic light curves from the SPARTA analysis. All error bars correspond to 1σ.

Extended Data Fig. 2 Reduction of the MIRI eclipse observation of 55 Cnc e.

a, Drift of the trace along the spectral (x) and spatial (y) directions during the observation, binned to 1-min intervals. b, Wavelength-dependent coefficients for linear decorrelation against the drift in the x and y directions, calculated with and without masking the in-eclipse data. c, Raw spectroscopic light curves and best-fit models, binned to 2-min intervals for easier visualization, after trimming the first 30 min of data. d, Systematics-corrected spectroscopic light curves and eclipse models, binned to 10-min intervals. e, Comparison between the Eureka! and SPARTA eclipse depth spectra. The spectrum is consistent between the analyses and the Eureka! analysis has smaller final uncertainties (owing to less scatter in binned light curves) and is thus adopted for model interpretation. All error bars correspond to 1σ.

Extended Data Fig. 3 Parameters adopted in retrievals and self-consistent models.

The table lists the system parameters of 55 Cnc e adopted in this study and their sources.

Extended Data Fig. 4 Summary of key retrieval results.

a, Bayes evidence (Z) when fitting both the NIRCam and MIRI datasets. The Bayes evidence was obtained by fitting the thermal emission spectrum of 55 Cnc e with a blackbody and varied atmospheric scenarios in a spectral retrieval framework. b, Qualities and parameter constraints from the preferred scenarios. The uncertainties are 1σ.

Extended Data Fig. 5 Posterior distribution of retrieval parameters and sample pressure–temperature profiles.

The full posterior distribution of parameters and randomly sampled pressure–temperature profiles were obtained by fitting the emission spectrum to an N2-dominated (blue) or CO-dominated (red) atmosphere with varied volume mixing ratios (VMRs) of CO2 and pressure–temperature profiles.

Extended Data Fig. 6 Sensitivity to retrieval assumptions.

a, The Bayes evidence when fitting to the NIRCam data only. We allowed the mean eclipse depth to vary freely and applied a physically motivated lower bound on the temperature (1,700 K, corresponding to the equilibrium temperature with full heat redistribution and a high Bond albedo of 0.5). b, The Bayes evidence when fitting to the MIRI data only. c, The Bayes evidence when fitting to the full dataset (NIRCam + MIRI) with an independent parameterization of the temperature profile, in which the surface temperature and the atmospheric temperature (assumed to be isothermal) determine the emission spectra46. d, The Bayes evidence when fitting to the full dataset excluding the two red-most binned MIRI data points (corresponding to the shadow region). e, The best-fit models when fitting to the full dataset excluding the two red-most binned MIRI data points. Coloured points show the model results binned to the same wavelength channels as the MIRI data.

Extended Data Fig. 7 Thermal emission spectra of 55 Cnc e if it has a thin, vaporized-rock atmosphere.

a, The spectrum is calculated with the model of ref. 32 for varied silicate-based melt compositions. b, The spectrum is calculated with the model of ref. 31 assuming the bulk silicate Earth composition as magma composition. The NIRCam spectrum is shown with a mean eclipse depth of 150 ppm in both panels. The difference between the two models is mainly because of the different opacities used for SiO but, regardless, a vaporized-rock atmosphere is inconsistent with the MIRI-measured spectrum.

Extended Data Fig. 8 Grid of self-consistent models for various volatile (C–H–O–N–S–P) compositions.

a, Emission spectra and temperature profiles of best-fit volatile-only models compared with variant models enriched by rock-forming elements. The labels denote the dominant atmospheric constituents, as well as the C/O ratio and heat redistribution parameter. χ2 values represent the minimum achieved when allowing the NIRCam mean eclipse depth to vary freely, and the NIRCam data are shown with a mean eclipse depth of 55 ppm. The two magenta data points represent previous Spitzer observations24. b, χ2 values against the C + O mole fraction and the initial C/O ratio for three NIRCam mean eclipse depths for f = 2/3 grid models. c, Same as panel b but for models with f = 0.3. d, Minimum achieved χ2 values when the NIRCam mean depth is allowed to vary freely. The leftmost panel includes both NIRCam and MIRI data; the middle panel shows the minimum χ2 values when only fitting the NIRCam data; the rightmost panel shows the minimum χ2 values when only fitting the MIRI data.

Extended Data Fig. 9 Modelled atmosphere in equilibrium with a magma ocean on 55 Cnc e.

a, Partial pressure of gases for the volatile content of H, C, N and S as Earth’s early magma ocean (solid lines) and 3% H content (dashed lines), simulated by a magma ocean–atmosphere partitioning and chemical equilibrium/speciation model44. b, Emission spectra and associated pressure–temperature profiles for a 200-bar atmosphere with Earth-like C–H–N–S volatile abundance ratios in the atmosphere–magma ocean system, simulated by our atmospheric radiative transfer and chemistry model. c, Same as panel b but for a 1-bar atmosphere and a H abundance ratio in the atmosphere–magma ocean system reduced to 3% of the standard cases. The NIRCam data are offset to match with the best-fit model (64 ppm for panel b and 58 ppm for panel c). The total number of data points is 30 for the interpretation of the χ2 values.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Bello-Arufe, A., Zhang, M. et al. A secondary atmosphere on the rocky exoplanet 55 Cancri e. Nature 630, 609–612 (2024). https://doi.org/10.1038/s41586-024-07432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07432-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing