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Scaling neural machine translation to  
200 languages

NLLB Team*

The development of neural techniques has opened up new avenues for research in 
machine translation. Today, neural machine translation (NMT) systems can leverage 
highly multilingual capacities and even perform zero-shot translation, delivering 
promising results in terms of language coverage and quality. However, scaling quality 
NMT requires large volumes of parallel bilingual data, which are not equally available 
for the 7,000+ languages in the world1. Focusing on improving the translation qualities 
of a relatively small group of high-resource languages comes at the expense of directing 
research attention to low-resource languages, exacerbating digital inequities in  
the long run. To break this pattern, here we introduce No Language Left Behind— 
a single massively multilingual model that leverages transfer learning across languages. 
We developed a conditional computational model based on the Sparsely Gated Mixture 
of Experts architecture2–7, which we trained on data obtained with new mining 
techniques tailored for low-resource languages. Furthermore, we devised multiple 
architectural and training improvements to counteract overfitting while training  
on thousands of tasks. We evaluated the performance of our model over 40,000 
translation directions using tools created specifically for this purpose—an automatic 
benchmark (FLORES-200), a human evaluation metric (XSTS) and a toxicity detector 
that covers every language in our model. Compared with the previous state-of-the-art 
models, our model achieves an average of 44% improvement in translation quality as 
measured by BLEU. By demonstrating how to scale NMT to 200 languages and making 
all contributions in this effort freely available for non-commercial use, our work lays 
important groundwork for the development of a universal translation system.

The recent advent of neural machine translation (NMT) has pushed 
translation technologies to new frontiers, but its benefits are unevenly 
distributed1. The vast majority of improvements made have mainly ben-
efited high-resource languages, leaving many low-resource languages 
behind. (For the purpose of our research, we define a high-resource 
language as a language for which we have at least 1 million sentences of 
aligned textual data (or bitext) with another language). This disparity 
could largely be attributed to a data gap: NMT models typically require 
large volumes of data to produce quality translations and, by defini-
tion, these volumes are not available for lower-resource languages. The 
No Language Left Behind (NLLB-200) project seeks to overcome this 
limitation by leveraging previously unknown approaches for building 
massively multilingual models with cross-lingual transfer abilities8,9, 
thereby enabling related languages to learn from each other1,10,11.

It has now been widely acknowledged that multilingual models have 
demonstrated promising performance improvement over bilingual 
models12. However, the question remains whether massively multilin-
gual models can enable the representation of hundreds of languages 
without compromising quality. Our results demonstrate that dou-
bling the number of supported languages in machine translation and 
maintaining output quality are not mutually exclusive endeavours. 
Our final model—which includes 200 languages and three times as 

many low-resource languages as high-resource ones—performs, as a 
mean, 44% better than the previous state-of-the-art systems. This paper 
presents some of the most important data-gathering, modelling and 
evaluation techniques used to achieve this goal.

First, compared with their high-resource counterparts, training data 
for low-resource languages are expensive and logistically challenging 
to procure13–15. Publicly available digital resources are either limited 
in volume or difficult for automated systems to detect (particularly 
in large public web datasets such as CommonCrawl). Regardless of 
whether collecting a critical mass of human-translated seed data is 
necessary, sufficient data acquisition relies on large-scale data mining 
and monolingual data pipelines16–19. The latter techniques are often 
affected by noise and biases, thereby making validating the quality 
of the datasets they generate tedious20. In NLLB-200, we show that a 
distillation-based sentence encoding technique, LASER3 (ref. 21), facili-
tates the effective mining of parallel data for low-resource languages.

Second, on the modelling side, we use an assemblage of seed, mined, 
open-source and back-translated datasets to train multilingual con-
ditional computational models (more specifically, Sparsely Gated 
Mixtures-of-Experts models2–7 that enable cross-lingual transfer 
between related languages without increasing interference between 
unrelated languages). We show how we can achieve state-of-the-art 
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performance with a more optimal trade-off between cross-lingual 
transfer and interference, and improve performance for low-resource 
languages.

Finally, for the purpose of quality evaluation, we created FLORES- 
200—a massive multilingual benchmark that enables the measure-
ment of translation quality across any of the approximately 40,000 
translation directions covered by the NLLB-200 models. Apart from 
automatic metrics, we also created Cross-lingual Semantic Text 
Similarity (XSTS) and Evaluation of Toxicity (ETOX). XSTS is a human 
evaluation protocol that provides consistency across languages; 
ETOX is a tool to detect added toxicity in translations using toxicity  
word lists.

Beyond creating these models, we also reflect on the potential 
societal impact of NLLB. To amplify the practical applicability of our 
work in service of low-resource-speaking communities, we provide 
all the benchmarks, data, code and models described in this effort as 
resources freely available for non-commercial use (https://github.com/
facebookresearch/fairseq/tree/nllb) (see Data and Code availability 
statements for details).

Automatically creating translation training data
The current techniques used for training translation models are dif-
ficult to extend to low-resource settings, in which aligned bilingual 
textual data (or bitext data) are relatively scarce22. Many low-resource 
languages are supported only by small targeted bitext data consisting 
primarily of translations of the Christian Bible23, which provide limited 
domain diversity.

To build a large-scale parallel training dataset that covers hundreds 
of languages, our approach centres around extending existing data-
sets by first collecting non-aligned monolingual data. Then, we used a 
semantic sentence similarity metric to guide a large-scale data mining 
effort aiming to identify sentences that have a high probability of being 
semantically equivalent in different languages18.

Language identification for monolingual data collection
Collecting monolingual data at scale requires a language identification 
(LID) system that accurately classifies textual resources for all NLLB-200 
languages. Although LID could be seen as a solved problem in some 
domains24, it remains an open challenge for web data25,26. Specifically, 
issues coalesce around domain mismatch26, similar language disam-
biguation27 and successful massively multilingual scaling28.

Devoted attention to advancing LID techniques led to a noticeable 
increase in both language coverage and accuracy over time. CLD3 
(https://github.com/google/cld3) and fasttext29 are two readily avail-
able models offering high detection performance for 107 and 187 lan-
guages, respectively. By using numerous public datasets, previous 
studies30,31 report even higher coverage—464 and 1,366 languages, 
respectively. Another study32 scales LID performance up to 1,629 lan-
guages using word lists and self-supervision to bootstrap training data 
found on the web. However, these approaches using found data suffer 
from domain imbalance. That is, because the available text domains 
vary by language, classifiers conflate different domains with different 
languages.

In our work, we curated FLORES-200 to use as a development set 
so that our LID system performance33 is tuned over a uniform domain 
mix. Our approach combines a data-driven fasttext model trained on 
FLORES-200 with a small set of handwritten rules to address human 
feedback on classification errors. These rules are specifically men-
tioned in section 5.1.3 of ref. 34 and include linguistic filters to mitigate 
the learning of spurious correlations due to noisy training samples 
while modelling hundreds of languages.

We compare our LID model with three publicly available models: 
CLD3, LangId (https://github.com/saffsd/langid.py) and LangDetect 
(https://pypi.org/project/langdetect/). Table 1 reports the performance 

on three cascading sets of languages intersecting with NLLB-200:  
(1) 51 languages also supported by LangId, LangDetect and CLD3;  
(2) 78 languages also supported by LangId and CLD3; (3) 95 languages 
also supported by CLD3. We also report false-positive rates (FPR) to 
reflect the impact of false positives on unseen languages. Our results 
show that our model is equipped to handle all 200 languages found in 
FLORES-200 while achieving notably higher performance than LangId, 
LangDetect and CLD3. Furthermore, the gain in F1 score is accompanied 
by a notable improvement in FPR, suggesting a much stronger fit for 
extracting low-resource languages from web corpora32.

Mining for bitext
Previous work35 notes that translation quality generally increases with 
the amount of high-quality training data, which is difficult to procure 
when working with low-resource languages. Existing parallel corpora 
for low-resource languages are often conveniently drawn from known 
multilingual collections, such as the Christian Bible or the publica-
tions of multinational organizations, which are limited in quantity 
and domain. To overcome this problem, we created training datasets 
through global bitext mining in publicly available web content (drawn 
from repositories such as CommonCrawl). The underlying idea of our 
bitext mining approach is first to learn a multilingual sentence embed-
ding space and use a similarity measure in that space to decide whether 
two sentences are parallel. This comparison can be done for all possible 
pairs in two collections of monolingual texts.

As our mining approach requires a multilingual embedding space, 
there are several challenges when scaling this representation to all 
NLLB-200 languages. First, we had to ensure that all languages were well 
learnt and that we accounted for large imbalances in available training 
data. Second, training a massively multilingual sentence encoder from 
scratch each time a new set of languages is introduced is computation-
ally expensive. Furthermore, the main drawback of this approach is that 
the learnt embedding spaces from each new model are not necessarily 
mutually compatible. This can make mining intractable as for each 
new encoder, the entirety of available monolingual data needs to be 
re-embedded (for example, for English alone, this means thousands of 
millions of sentences and considerable computational resources). We 
solved this problem using a teacher–student approach21 that extends 
the LASER embedding space36 to all NLLB-200 languages. Languages 
are trained either as individual students or together with languages 
from the same family. The training of students follows the approach 
described in ref. 21.

Our approach enables us to focus on the specifics of each language 
while taking advantage of related languages, which is crucial for deal-
ing with very low-resource languages. (A language is defined as very 
low-resource if it has fewer than 100,000 samples across all pairings 
with any other language in our dataset). Using this method, we gener-
ated more than 1,100 million new sentence pairs of training data for 148 
languages. This additional training data, paired with back translation  

Table 1 | Comparison of publicly available language 
identification models with various intersections of labels

FLORES-200 ∩ 
CLD3 ∩ LangId ∩ 
LangDetect

FLORES-200 ∩ 
CLD3 ∩ LangId

FLORES-200 ∩ 
CLD3

No. of supported 
languages

51 labels 78 labels 95 labels

F1 FPR F1 FPR F1 FPR

LangDetect 55 97.3 0.0526 64.4 0.4503 53.1 0.4881

LangId 97 98.6 0.0200 92.0 0.0874 75.8 0.2196

CLD3 107 98.2 0.0225 97.7 0.0238 97.0 0.0283

Ours 218 99.4 0.0084 98.8 0.0133 98.5 0.0134

F1 is the micro-F1 score, and FPR is the micro-false-positive rate.

https://github.com/facebookresearch/fairseq/tree/nllb
https://github.com/facebookresearch/fairseq/tree/nllb
https://github.com/google/cld3
https://github.com/saffsd/langid.py
https://pypi.org/project/langdetect/


Nature | www.nature.com | 3

(a conventional technique for data augmentation in NMT; ref. 37), 
ushered notable improvements in translation quality—specifically, 
+12.5 chrF++ (ref. 38) for translating very low-resource languages into 
English. For more details, see Supplementary Information D.

Modelling
Even with marked data volume increases, the main challenge of 
low-resource translation is for training models to adequately represent 
200 languages while adjusting to variable data capacity per language 
pair. Apart from techniques such as data augmentation (for example, 
with back translation) and self-supervision strategies on monolingual 
data, we used conditional computational models—more specifically, 
Sparsely Gated Mixture of Experts (henceforth MoE)—to minimize 
interference between unrelated language directions.

MoE transformer models differ from dense transformer models in 
that some of the feed-forward network layers are replaced with MoE 
layers in both the encoder and the decoder. An MoE layer consists of 
E experts (each is a feed-forward network) and a gating network to 
decide how to route input tokens to experts. The transformer encoder–
decoder model, supplemented with MoE layers and their respective 
gating networks, learns to route input tokens to the corresponding 
top two experts by optimizing a linearly weighted combination of 
label-smoothed cross entropy39 and an auxiliary load balancing loss6.

We find that vanilla MoE models with overall dropout are suboptimal 
for low-resource languages and significantly overfit on low-resource 
pairs. To remedy this issue, we designed Expert Output Masking (EOM), 
a regularization strategy specific to MoE architectures, and compared 
it with existing regularization strategies, such as Gating Dropout40. We 
find that Gating Dropout performs better than vanilla MoE with overall 
dropout but is outperformed by EOM.

To further reduce overfitting on low-resource language pairs, we 
devised a curriculum learning that introduces language pairs in phases 
during model training. Pairs that empirically overfit within K updates 
are introduced with K updates before the end of training. This reduces 
overfitting while allowing pairs that benefit from additional training 

to continue their learning. Table 2 shows that combining curricu-
lum learning and EOM improves performance, especially on low and 
very low-resource language pairs (see section ‘Modelling’ for more  
details).

To understand how MoE models are helpful for multilingual machine 
translation, we visualize similarities of experts in the MoE layers using 
heat maps (Fig. 1a–d). These heat maps demonstrate that in late decoder 
layers (Fig. 1d), languages are being separated (that is, dispatched to 
different sets of experts). Moreover, we observe that languages within 
the same family are highly similar in their choice of experts (that is, the 
late decoder MoE layers are language-specific). This is particularly the 
case for the Arabic dialects (the six rows and columns in the top-left 
corner), languages in the Benue–Congo subgrouping, as well as lan-
guages in the Devanagari script. By contrast, the early decoder MoE 
layers (Fig. 1c) seem to be less language-specific. The late encoder MoE 
layers are particularly language-agnostic in how they route tokens as 
can be attested by the uniform heat map in Fig. 1b.

Combining data (see section ‘Automatically creating translation 
training data’) and modelling contributions, Table 3 shows that NLLB-
200 outperforms the nearest state-of-the-art system by almost +7.3 
spBLEU (ref. 41) on average, constituting a 44% improvement. We then 
compared NLLB-200 with a few other state-of-the-art models, such 
as Deepnet42 and M2M-100 (ref. 1), to report scores for 87 languages 
against FLORES-101. On this smaller subset, NLLB-200 again outper-
forms by +7.0 spBLEU on average. Overall, the results show that NLLB-
200 improves on state-of-the-art systems by a notable margin despite 
supporting 200 languages, or twice as many languages (and more than 
30,000 additional directions) compared with any previous work. We 
also show in additional experiments that NLLB-200 is a general-purpose 
NMT model, transferable to other domains by fine-tuning on small 
quantities of high-quality bitexts (see Supplementary Information E.3).

Evaluations
Among the many aspects of model performance that can be evaluated43, 
this section emphasizes three aspects that have a marked impact on 

Table 2 | Improvements from EOM and CL

eng_Latn-xx xx-eng_Latn xx-yy Average

All High Low Very low All High Low Very low All All

(1) Baseline MoE 44.8 54.3 41.4 39.0 56.2 64.0 53.4 52.5 41.9 47.6

(2) Baseline MoE +  CL 45.2 54.7 41.8 39.5 57.6 64.5 55.1 55.4 42.7 48.5

(2) Baseline MoE + CL + EOM 45.4 52.9 41.6 41.2 57.2 61.4 55.1 56.4 44.9 51.0

We report chrF++ scores on FLORES-200 dev set on different types of language pairs. For eng_Latn-xx and xx-eng_Latn, we included all 199 pairs. For xx-yy, we randomly chose 200 directions. 
We observe that combining EOM and CL is particularly helpful for low and very low-resource languages. A language is defined as a very low resource if it has fewer than 100,000 samples across 
all pairings with any other language in our dataset. The highest score in each column is shown in bold.
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Fig. 1 | Cosine similarity scores between languages at different layers of the 
encoder–decoder architecture. a–d, The first (a) and last (b) encoder layers 
and then the first (c) and last (d) decoder layers. The similarity is measured with 

respect to the gating decisions (expert choice) per language (source side in  
the encoder and target side in the decoder). Lighter colours represent higher 
experts similarity, hence, a language-agnostic processing.
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the overall quality assessment: benchmarks for automatic evaluation, 
human evaluation protocols and toxicity evaluation.

A benchmark for automatic evaluation using FLORES-200
The quality of NMT outputs is typically evaluated by automatic 
metrics such as BLEU44 or spBLEU41. The computation of automatic 
quality scores using these metrics requires benchmark datasets that 
provide gold-standard human translations as references. In turn, the 
apples-to-apples evaluation of different approaches made possible 
by these benchmark datasets gives us a better understanding of what 
requires further research and development. For example, creating 
benchmark data sets at the Workshop on Machine Translation (WMT)45 
led to rapid progress in translation directions such as English to Ger-
man and English to French.

For massively multilingual NMT, the largest benchmark dataset 
available was FLORES-101, which supports roughly half the number 
of languages in NLLB-200. The necessary expansion of FLORES-101 to 
FLORES-200 constitutes a further challenge in terms of quality assur-
ance, in part because of differences in standardization practices and 
limited access to professional translators for all languages involved. 
To overcome this challenge, we adapted our workflow to pay particular 
attention to quality assurance mechanisms. The FLORES-200 workflow 
consists of four phases: (1) alignment; (2) translation, initial quality 
assurance and iteration(s); (3) final quality assurance; and (4) com-
pletion. A language FLORES-200 set is considered ready after passing 
a final human quality test with a 90 out of 100 quality score (that is, 
independent raters agreed with 90% of the FLORES-200 reference 
translations in that direction).

As a result of this redesigned workflow, we produced a three-split 
(dev, devtest, test) data set of parallel human reference translations 
for all NLLB-200 languages meeting the 90% quality threshold in a 
maximum turnaround time of 287 days (119 days on average, 70 days 
minimum). (Note that to avoid leakage with our models, we filtered 
data from FLORES and other evaluation benchmarks used (such as 
WMT and IWSLT) from our training data. This was done by comparing 

the hashes of training sentences against those of evaluation sen-
tences, using the xxHash algorithm). Please refer to Supplementary 
Information C for more details on the evaluation process. Figure 2 
shows the quality scores for all languages, some of which are labelled  
as examples.

Reliable human evaluation
State-of-the-art automatic metrics often fail to capture aspects of 
language that, while subtle, can have a notable bearing on translation 
quality. Human evaluations are, therefore, essential to ensuring mean-
ingful quality assessments46. That said, relying on them comes with 
two challenges: (1) any large-scale human evaluation of NMT quality, 
regardless of the number of translation directions involved, contends 
with potentially low inter-evaluator agreement (in the vicinity of 0.5 
kappa); and (2) massively multilingual NMT introduces another com-
plexity—that of quality evaluation consistency across language direc-
tions. We address these two issues by developing XSTS47, a new scoring 
metric focused on meaning, and by using a protocol that allows for the 
calibration of scores across evaluators and language pairs.

XSTS is a human evaluation protocol inspired by STS48, emphasizing 
meaning preservation over fluency. XSTS uses a five-point scale, in 
which 1 is the lowest score, and 3 represents the acceptability threshold. 
To ensure consistency not only across languages but also among differ-
ent evaluators of any given language, we included the same subset of 
sentence pairs in the full set of sentence pairs given to each evaluator, 
making it possible to calibrate results.

We find that automated metrics such as spBLEU and chrF++ correlate 
reasonably well with calibrated human evaluations of translation qual-
ity, as shown in Fig. 3. Spearman’s R correlation coefficients between 
aggregated XSTS and spBLEU, chrF++ (corpus) and chrF++ (average 
sentence-level) are 0.710, 0.687 and 0.694, respectively. Other correla-
tion coefficients (Kendall’s τ and Pearson’s R) have the same ordering. 
Corpus spBLEU provides the best nominal correlation, followed by 
average sentence-level chrF++.

We also find that calibrated human evaluation scores correlate more 
strongly with automated scores than uncalibrated human evaluation 
scores across all automated metrics and choices of correlation coeffi-
cient. In particular, uncalibrated human evaluation scores have a Spear-
man’s R correlation coefficient of 0.625, 0.607 and 0.611 for spBLEU, 
chrF++ (corpus) and chrF++ (average sentence-level), respectively.

Overall, a sample of 55 language directions were evaluated, including 
8 into English, 27 out of English, and 20 other direct language direc-
tions. The overall mean of calibrated XSTS scores was 4.26, with 38/55 
directions scoring over 4.0 (that is, high quality) and 52/56 directions 
scoring over 3.0.

We hypothesize that added toxicity may be because of the presence 
of toxicity in the training data and used our detectors to estimate, more 
specifically, unbalanced toxicity in the bitext data. We find that esti-
mated levels of unbalanced toxicity vary from one corpus of bitext 
to the next and that unbalanced toxicity can be greatly attributed to 
misaligned bitext. In other words, training with this misaligned bitext 
could encourage mistranslations with added toxicity.

Table 3 | Comparison of FLORES-101 devtest

eng_Latn-xx xx-eng_Latn xx-yy Average

87 languages

M2M-100 –/– –/– –/– 13.6/–

Deepnet –/– –/– –/– 18.6/–

NLLB-200 35.4/52.1 42.4/62.1 25.2/43.2 25.5/43.5

101 languages

DeltaLM 26.6/– 33.2/– 16.4/– 16.7/–

NLLB-200 34.0/50.6 41.2/60.9 23.7/41.4 24.0/41.7

We evaluated using FLORES-101 for 10,000 directions. We report both spBLEU and chrF++ 
scores when available. Scores for DeltaLM are taken from the FLORES-101 leaderboard.  
M2M-100 and Deepnet averages only apply to 87 languages that overlap with FLORES-101. 
The performance of NLLB-200 was evaluated on this subset of languages. The highest score 
in each column and in each grouping of languages is shown in bold.
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Fig. 2 | Quality of FLORES-200. Quality assurance scores for the languages in FLORES-200. The minimum acceptable standard is 90%.
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To mitigate this issue, we designed a bitext filtering procedure based 
on the detection of multiple instances of added toxicity (that is, cases 
in which one sentence in the bitext pair contains at least two more toxic 
items than the other sentence in the pair). (A previous detector quality 
analysis showed that a higher precision was reached in this situation). 
We added this toxicity filtering procedure as an option to the filtering 
process and experimented with or without it for comparison.

The experimental results on the FLORES-200 dev set for 10 transla-
tion directions (from and into English for Somali, Southern Sotho, Twi, 
Umbundu and Venetian) show that after filtering an average amount 
of around 30% parallel sentences, the translation quality (chrF++) 
improves by 5% and added toxicity (ETOX) reduces by the same amount. 
Therefore, the filtering pipeline that includes toxicity filtering not only 
reduces the number of toxic items in the translation output but also 
improves the overall translation performance.

Conclusion
In 2016, the United Nations declared internet access a basic human 
right. Although the intent of this declaration was to limit censorship 
and allow for information and ideas to flow without interference, much 
of the internet today remains inaccessible to many due to language 
barriers. Our effort was designed to contribute one solution to help 
alter this status quo.

For many low-resource language communities, NLLB-200 is one of 
the first models designed to support translation into or out of their 
languages. Although applications of these new translation capabilities 
could be found in several domains of everyday life, we believe their 
impact would be most significant in a domain such as education. In for-
mal educational settings, for instance, students and educators belong-
ing to low-resource language groups could, with the help of NLLB-200, 
tap into more books, research articles and archives than before. Within 
the realms of informal learning, low-resource language speakers could 
experience greater access to information from global news outlets 
and social media platforms, as well as online encyclopaedias such as 
Wikipedia. Access to machine translation motivates more low-resource 
language writers or content creators to share localized knowledge 
or various aspects of their culture. Giving individuals access to new 
translation tools could thus open up opportunities for bidirectional 
learning, thereby also challenging Western-centric modes of knowledge 
production and dissemination, ultimately aiding in revitalizing certain 
minority cultures and languages.

Since launching NLLB-200, we can already see the impact of the 
model across many directions. Four months after the launch of NLLB-
200, Wikimedia reported that our model was the third most used 
machine translation engine used by Wikipedia editors (accounting 

for 3.8% of all published translations) (https://web.archive.org/web/ 
20221107181300/https://nbviewer.org/github/wikimedia-research/
machine-translation-service-analysis-2022/blob/main/mt_service_
comparison_Sept2022_update.ipynb). Compared with other machine 
translation services and across all languages, articles translated with 
NLLB-200 has the lowest percentage of deletion (0.13%) and highest 
percentage of translation modification kept under 10%.

In many ways, the composition of the NLLB-200 effort speaks to the 
centrality of interdisciplinarity in shaping our vision. Machine trans-
lation and AI advancements lie at the intersection of technological,  
cultural and societal development, and thus require scholars with 
diverse training and standpoints to fully comprehend every angle49,50. 
It is our hope that in future iterations, NLLB-200 continues to include 
scholars from fields underrepresented in the world of machine trans-
lation and AI, particularly those from humanities and social sciences 
backgrounds. More importantly, we hope that teams developing 
these initiatives would come from a wide range of race, gender and 
cultural identities, much like the communities whose lives we seek to  
improve.

Finally, we want to emphasize that overcoming the challenges that 
prevent the web from being accessible to speakers of all languages 
requires a multifaceted approach. At the technical level, NLLB-200 
overcomes many data, modelling and evaluation challenges in NMT 
research, but it still has its limitations, some of which are documented in 
Supplementary Information G. As a single technological intervention, 
NLLB-200 is all but one piece of a massive puzzle; policy interventions 
aimed at more fundamental issues surrounding education, internet 
access and digital literacy are imperative to eradicate the structural 
problem of language disparities.

Online content
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ries, source data, extended data, supplementary information, acknowl-
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Fig. 3 | Correlations between aggregated human quality scores and 
automated metrics. a, The relationship between spBLEU and XSTS. b, The 
relationship between chrF++ and XSTS. c, The relationship between average 
sentence-level chrF++ and XSTS. All automated scores were computed only on 
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full FLORES-200 dataset or a subset). NLLB-200 refers to a 55B parameter MoE 
model, and NLLB-200 Baseline refers to a dense 3.3B parameter model.
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Methods

Data
This section describes the steps taken to design our language identi-
fication system and bitext mining protocol.

Language identification. To train language identification models, 
we used fasttext33,51, which has been widely used for text classification 
tasks because of its simplicity and speed. We embedded character-level 
n-grams from the input text and leveraged a multiclass linear classifier 
on top. The lightweight nature of fasttext enables our LID models to 
handle web-scale data. Furthermore, a linear model has the benefit of 
being easily explainable, allowing us to trace any classification error  
back to its root cause. This is instrumental in addressing common  
pitfalls that arise when detecting language on web corpora32.
Classifier design. We experimented with two different designs. First, 
we used a combination of multiple binary classifiers in which the final 
decision was obtained by selecting the language with the highest 
score after applying a threshold. We applied threshold optimization 
so that when the confidence of a classifier is low, the correspond-
ing language is not considered for the final decision. A sentence was 
filtered out if none of the classifiers surpassed its threshold. Sec-
ond, we built a multiclass classifier using softmax over all possible 
languages. In this case, the threshold optimization is done after the  
softmax.

Our results directed us to focus on the second approach, which offers 
several advantages. First, changing the threshold for one language did 
not affect the performance of the other (which is not true in the first 
setting). Second, this approach generalizes better to out-of-domain 
data, which is our primary use case (Wikipedia → web data). Finally, a 
single classifier has the added benefit of being computationally simpler, 
thus streamlining the language identification process.
Training data and handling massive class imbalance. We used pub-
licly available datasets to train our LID system, partially covering our 
languages of interest. The public datasets deployed were mostly built 
from web pages such as CommonCrawl. We then supplemented these 
with NLLB-Seed data (Supplementary Information B) for any missing 
languages. However, this supplementation is insufficient in ensuring 
balance in the raw training data32,30. For example, English alone repre-
sents 10.1% of our training data, whereas Minangkabau (Latin script) 
represents only 0.06%. Following ref. 10, we experimented with mul-
tiple settings of temperature upsampling for underrepresented lan-
guages, in which sentences from a language l representing pl per cent 
of the data set are sampled proportionally to pl

T1/ . Optimal performance 
was obtained at 1/T = 0.3 (for more details, see section 5.1 of ref. 34).
Training parameters. Our best-performing model was trained with 
softmax loss over two epochs with a learning rate of 0.8 and embed-
dings with 256 dimensions. We discarded words with less than a thou-
sand occurrences after upsampling and selecting a minimum and 
maximum character n-gram length of two and five, respectively (which 
were assigned a slot in buckets of size 1,000,000). (In fasttext, we refer 
to ‘word’ when it is separated by spaces. When it is a non-segmenting 
language, there is only one ‘word’ for the whole sentence (and we take 
character n-grams)). All hyperparameters were tuned on FLORES-200 
dev (see section 5.1.2 of ref. 34).
Improving LID with linguistic analysis. Language identification is a 
challenging task in which numerous failure modes exist, often exac-
erbated by the gaps between the clean data on which LID models are 
trained and noisy data on which LID models are applied. In other words, 
LID models trained in a supervised manner on fluently written sen-
tences may have difficulty identifying grammatically incorrect and 
incomplete strings extracted from the web. Furthermore, models can 
easily learn spurious correlations that are not meaningful for the task 
itself. Given these challenges, we collaborated closely with a team of 
linguists throughout different stages of LID development to identify 

proper focus areas, mitigate issues and explore solutions (see section 
5.1.3 of ref. 34).

Bitext mining. The overall approach for bitext mining focused on start-
ing with a massively multilingual sentence encoder teacher model 
and adapting it to several different low-resource student models.  
This approach enabled us to add low-resource languages without 
competing with high-resource languages for capacity. Doing so cir-
cumvents the need to retrain the entire model from scratch while 
maintaining compatibility with the multilingual embedding spaces 
for subsequent mining. Extended data Fig. 1 summarizes the overall 
architecture of the teacher–student approach. The teacher, LASER2, 
is an improved version of the open-source LASER encoder (https://
github.com/facebookresearch/LASER). The original training proce-
dure36 was adapted to include SentencePiece tokenization (including 
a vocabulary of 7,000 tokens) and the upsampling of low-resource  
languages.

The architecture of the five-layer BiLSTM encoder and the max pool-
ing method to obtain sentence embeddings were left unchanged. The 
training was then performed on the same 93 languages with public 
resources obtained from OPUS52. See ref. 36 for details on the origi-
nal LASER training procedure. Training of the students followed the 
approach described in greater detail in ref. 21, summarized below:
• students specialized in one language or several similar languages;
• students were randomly initialized because we wanted to handle 

low-resource language for which we did not have a pre-trained  
language model;

• students may have a dedicated SentencePiece vocabulary different 
from the teacher to better accommodate scripts and tokens in the 
student languages;

• as we used cosine distance for bitext mining (Fig. 1), students learnt 
to minimize the cosine loss with the teacher;

• students can have an MLM loss to leverage student language mono-
lingual data (Fig. 1).

Training parameters. Our student encoders used a 12-layer trans-
former with a hidden size of 1,024, four attention heads, and around 
250 million parameters. All students were trained with available bitexts 
in their respective language, complemented by 2 million sentences 
of English/English and English/Spanish. The motivation behind this 
approach is to anchor the students to the English embedding space, 
increasing robustness by including English/Spanish bitexts from  
CCMatrix and allowing for the joint learning of new languages. This 
technique is particularly useful when only limited amounts of bitexts 
are available to train the students. Teacher–student training was  
performed on 16 GPUs, the ADAM optimizer, a learning rate of 0.0005 
and a batch size of 10,000. We trained student encoders for 148  
languages and named these models LASER3.
Proxy metric for new encoders. Mined bitexts were subsequently 
used to improve translation quality for the languages of NLLB-200. 
However, mining and NMT training are computationally expensive, 
and it is intractable to perform this evaluation systematically for 
many different sentence encoder variants. As an evaluation proxy, 
we used a mining-based multilingual similarity search error rate, 
referred to here as xsim. In contrast to cosine accuracy, which aligns 
embeddings based on the highest cosine score, xsim aligns source 
and target embeddings based on the highest margin score, which has 
been shown to be beneficial in mining53. The margin-based score is  
defined as
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where x and y are the source and target sentences, and NNk(x) denotes 
the k nearest neighbours of x in the other language. We set k to 4. All 
xsim results are calculated on FLORES-200 devtest, using the ratio 
margin, where margin(a, b) = a/b. Moreover, all scores are calculated 
for translations into English (that is, xxx → eng). English is encoded 
by the teacher, and the other language is encoded by the LASER3 stu-
dent. To facilitate further research using xsim, we also provide this 
evaluation method as an open-source resource (https://github.com/
facebookresearch/LASER/).
End-to-end encoder evaluation. Once we had identified the best 
sentence encoder for each language using the xsim scores, we per-
formed mining, added the mined data to the existing bitexts and 
trained a bilingual NMT system. Initial experiments indicated that 
a threshold on the margin of 1.06 seems to be the best compro-
mise between precision and recall for most languages. For these 
NMT baselines, we do not apply extra filtering on the bitexts and 
leave this to the training procedure of our massively multilingual  
NMT system.

We did not attempt to optimize the architecture and parameters of 
the bilingual NMT systems to the characteristics of each language pair 
but used the same architecture for all. Therefore, the reported results 
should not be interpreted as the best possible ones given the available 
resources—they are mainly provided to validate the mined bitexts. 
We used a 12-layer encoder and decoder and trained for 100 epochs. 
Moreover, we looked for the best performance on the FLORES-200 
development set and report detokenized BLEU on the FLORES-200 
devtest.

Modelling
In this section, we first describe the multilingual machine translation 
task setup, which includes tokenization and base model architecture. 
Then, we outline how we leveraged conditional computation for mas-
sively multilingual machine translation with EOM regulation and our 
Curriculum Learning (CL) strategy for low-resource languages.

Task setup. We modelled multilingual NMT as a sequence-to-sequence 
task, in which we conditioned on an input sequence in the source lan-
guage with an encoder and generated the output sequence in the ex-
pected target language with a decoder54. With the source sentence S, 
source language ℓs, and target language ℓt in hand, we trained to maxi-
mize the probability of the translation in the target language T—that is, 
P(T∣S, ℓs, ℓt). Below, we discuss details of the (1) tokenization of the text 
sequences in the source and target languages; and (2) model architec-
ture with the input and output designed specifically for multilingual 
machine translation. For further details on the task setup, such as the 
amount of training data per language pair, please refer to Supplemen-
tary Information F or section 8 of ref. 34.
Segmentation with SentencePiece. To tokenize our text sequences, 
we trained a single SentencePiece model (SPM)55 for all languages. We 
sampled a total of 100 million sentences from primary bitext data. To 
ensure low-resource languages are well-represented in the vocabulary, 
we downsampled high-resource and upsampled low-resource lan-
guages with a sampling temperature of five (ref. 10). Notably, vocabu-
lary size is an important hyperparameter in multilingual translation 
models involving low-resource languages56–58. The vocabulary size of 
our trained SPM model is 256,000. Such a large vocabulary ensures 
adequate representation across the wide spectrum of languages we 
support.
Model architecture. Our sequence-to-sequence multilingual machine 
translation model is based on the transformer encoder–decoder archi-
tecture59. The encoder transforms the source token sequence into 
a sequence of token embeddings. Then, the decoder attends to the 
encoder output and autoregressively generates the target sentence 
token by token. More precisely, the encoder takes the sequence of 
tokens W = (w1, …, wS) and the source language ℓs, and produces a 

sequence of embeddings H = (h1, …, hS), which are then provided to 
the decoder with the target language ℓt to produce the target tokens 
V = (v1, …, vT) sequentially. In sum,

H W= encoder( , ), (2)sℓ

i T v H v v∀ ∈ [1, …, ], = decoder( , , , …, ). (3)i i+1 t 1ℓ

Note that we prefixed the source sequence with the source language, 
as opposed to the target language, as done in previous work10,60. We 
did so because we prioritized optimizing the zero-shot performance 
of our model on any pair of 200 languages at a minor cost to super-
vised performance. Empirically, we find zero-shot performance to 
be negatively affected when conditioning the encoder on the target 
language. When the source is conditioned on only the source language, 
the encoder generalizes better to pairs of source and target languages 
not encountered during training1.

Conditional computation for multilingual machine translation.  
A massively multilingual translation (MMT) model uses the same 
shared model capacity to train on several translation directions  
simultaneously. While doing so can lead to beneficial cross-lingual 
transfer between related languages, it can also add to the risk of  
interference between unrelated languages1,61. MoE models are a 
type of conditional computational models62,63 that activate a subset 
of model parameters per input, as opposed to dense models that  
activate all model parameters per input. MoE models unlock marked 
representational capacity while maintaining the same inference and 
training efficiencies in terms of FLOPs compared with the core dense 
architecture.

However, as we increase the model capacity and the computational 
cost per update, the propensity for low or very low-resource languages 
to overfit increases, thus causing performance to deteriorate. In this 
section, we examine how we can use Sparsely Gated Mixture of Experts 
models2–7 to achieve a more optimal trade-off between cross-lingual 
transfer and interference and improve performance for low-resource 
languages.
Sparsely gated mixture of experts. To build our MoE models, we 
substitute a quarter of the encoder and decoder feed-forward net-
work layers with MoE layers, each with E distinct experts. We followed 
the Top-k-Gating algorithm in ref. 4 and dispatched each token to at 
most k = 2 experts. For more details on the training of MoE models, see  
Supplementary Information E.
Expert output masking. In this proposed regularization strategy, 
we masked the expert output for a random fraction (peom) of the input 
tokens. For input tokens with dropped expert outputs, the first and/
or second expert is effectively skipped. As shown in the second panel 
of Extended data Fig. 2, we masked both experts for the first token  
(x1 in red), chose not to mask any of the expert outputs for the second 
token (x2 in blue) and in the final scenario, masked only one expert for 
the last token (x3 in green).

Curriculum learning for MMT. Orthogonal to model-side regulariza-
tion methods such as dropout, we explored regularizing MMT models 
by means of CL. We proposed starting training with high-resource pairs 
first, then introducing low-resource pairs—prone to overfitting—in 
later phases. To derive the phases of the curriculum, we first trained a 
vanilla MoE model (without CL), followed by partitioning the transla-
tion directions into n bins {b1, …, bn}. If T is the total number of training 
updates, we introduced each bin bi after T − ki updates. We based when 
k( )i i and what b( )i i directions to add at every phase of the step when we 

observed a language pair starting to overfit. Review the step-based CL 
algorithm in ref. 64 for more on how the directions are partitioned.  
See Supplementary Information E.2 for the list of directions added at  
each stage.

https://github.com/facebookresearch/LASER/
https://github.com/facebookresearch/LASER/


Evaluations
Automatic evaluation. Many automatic translation quality assess-
ment metrics exist, including model-based ones such as COMET65 and 
BLEURT66. Although model-based metrics have shown better correla-
tion with human judgement in recent metrics shared tasks of the WMT43, 
they require training and are not easily extendable to a large set of 
low-resource languages. In this work, we rely on BLEU (and a variant  
of it) and chrF++. Both measures draw on the idea that translation qual-
ity can be quantified based on how similar a machine translation output 
is compared with that produced by a human translator.
BLEU and spBLEU. The BLEU score44 has been the standard metric for 
machine translation evaluation since its inception two decades ago. 
It measures the overlap between machine and human translations by 
combining the precision of 1-grams to 4-grams with a brevity penalty. 
The main disadvantage of BLEU is that it is tokenization-dependent. 
Efforts such as sacrebleu67 have taken strides towards standardiza-
tion, supporting the use of community-standard tokenizers under the 
hood. However, these tokenizers do not extend to many languages. 
Reference 41 proposes spBLEU, a BLEU metric based on a standardized 
SentencePiece model (SPM) covering 101 languages, released alongside 
FLORES-101. In this work, we provide SPM-200 along with FLORES-200 
to enable the measurement of spBLEU. (Our analyses demonstrate 
that there are minor differences between SPM-200 from FLORES-200 
and SPM-100 from FLORES-101 when measuring on the FLORES-101 
languages. The major advantage of SPM-200 is that it covers 200 lan-
guages. More details on SPM-200 are reported in section 8.1.1 of ref. 34).
chrF++. The chrF++ score38 overcomes the limitation of the BLEU score, 
which requires that a sentence can be broken up into word tokens. 
However, some languages, such as Chinese or Thai, do not use spaces 
to separate words, and word segmentation tools may not be readily 
available. There is also a concern about highly agglutinative languages 
in which BLEU fails to assign any credit to morphological variants. 
chrF++ overcomes these weaknesses by basing the overlap calcula-
tion on character-level n-grams F-score (n ranging from 1 to 6) and 
complementing with word unigrams and bi-grams. In this work, we 
primarily evaluated using chrF++ using the settings from sacrebleu. 
However, when comparing with other published work, we used BLEU 
and spBLEU where appropriate.

Human evaluation methodology. When building machine translation 
systems for thousands of different language pairs, a core question is 
which pairs reach certain levels of quality. Therefore, we needed mean-
ingful scores that are comparable across language pairs.
XSTS evaluation protocol. We adapted the recently proposed XSTS 
methodology48. In short, XSTS is a human evaluation protocol focusing 
on meaning preservation above fluency. See details on this protocol in 
Supplementary Information F. For low-resource languages, translations 
are usually of poorer quality, and so we focused more on usable (that 
is, meaning-preserving) translations, even if they are not fully fluent. 
Compared with Direct Assessment68 with a 5-point scale (the original 
direct assessment uses a 100-point scale), it is found that XSTS yields 
higher inter-annotator agreement47. XSTS rates each source sentence 
and its machine translation on a 5-point scale, in which 1 is the lowest 
and 5 is the highest.
Calibration set. To enable meaningful scores comparable across lan-
guage pairs, we asked each evaluator to provide assessments using 
the XSTS scale on precisely the same set of sentence pairs. This aims to 
identify annotators who have a systematic tendency to be more harsh 
or generous in their scoring and correct for this effect. The calibration 
set consists of the machine translation output paired with the reference 
translation only in English. Based on how evaluators used the XSTS 
scale on this calibration set, we adjusted their raw scores on the actual 
evaluation task to ensure consistency across evaluators. Although this 
monolingual calibration task does not precisely mimic the bilingual 

XSTS task, it is a reasonable first approximation and has been shown 
to increase the correlation between human and automatic metrics 
primarily by reducing one source of ‘noise’ in the human evaluations— 
the lack of score calibration between annotators.
Obtaining aggregated human quality metrics from multiple  
studies. To obtain an aggregate human quality metric for each lan-
guage direction in an evaluation study, we take the majority XSTS 
score (that is, mean–median score) for each sentence and average 
these majority scores over all evaluated sentences. In a given study, 
the aggregate human evaluation score for any translation direction  
ls → lt is

∣ ∣
∣∑H X S T i M=

1
median{ ( , ) 1 ≤ ≤ }, (4)l l

l l S T
l l i l l→

→ ( , )∈
→ , →

l l

s t
s t s→ t

s t s tT T

where ls and lt denote the source language and the target language, 
respectively; X S T( , )l l i→ ,s t

 denotes the XSTS score of the ith evaluator 
who evaluates sentences in a given translation direction ls → lt for a 
source sentence S and a target sentence T; Ml l→s t

 denotes the total num-
ber of evaluators who evaluate the (source, translation) sentence pair 
(S, T) for translation direction ls → lt; T ∣S T k N= {( , ) 1 ≤ ≤ }l l l l k l l k l l→ → , → , →s t s t s t s t

  
is the set of Nl l→s t

 (source, translation) sentence pairs being evaluated 
for translation direction ls → lt.

Every evaluator in a given study s is also asked to provide ratings for 
all or parts of a calibration set— ∣S T k K= {( , ) 1 ≤ ≤ }s s k s k s, ,C . Ss,k denotes  
the kth source sentence in the calibration set for an evaluation study; 
s, Ts,k denotes the translated sentence corresponding to Ss,k; and ∣ ∣K =s sC  
is the number of sentence pairs in the calibration set for an evaluation 
study.

For each language direction evaluated in a study, we obtained the 
majority score on the calibration set as follows:
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where X S T( , )l i
s
,

( )  denotes the XSTS score provided by the ith evaluator, 
for the language direction ls → lt, in study s, for a given source sentence 
S and a translated sentence T, in the calibration set sC  of the study.

To obtain aggregated calibrated XSTS scores on the language direc-
tion level, we explored several different calibration methodologies. 
None of the calibration methods we investigated showed a marked 
difference in correlation with automated scores, and all calibration 
methodologies we explored provided superior correlation compared 
with uncalibrated XSTS scores. For more details on these calibration 
methodologies, see section 7.2 of ref. 34.

Added toxicity detection for 200 languages. To enable toxicity det-
ection at scale, we used a detector based on word lists. In this section, 
we provide more details about our toxicity definition and describe the 
detector (ETOX) and associated word lists.
Toxic content. Owing to the subjective nature of toxicity, definitions of 
toxic language can vary. We included items that are commonly referred 
to as vulgar or profane language. (Note that vulgar or profane language 
is not always necessarily toxic. Some common slang, for instance, may 
be considered vulgar but is not necessarily toxic). Moreover, we also 
included items associated with depictions of pornographic content 
or sexual acts, some frequently used hate speech expressions and 
some expressions tied to bullying. We also included items, vulgar or 
not, referring to body parts that are commonly associated with sexual  
practices.
The ETOX detector. We started with the assumption that general- 
purpose machine translation systems should remain faithful to the 
source content and not add any toxic elements during the translation 
process. We define toxic elements as word tokens or short phrases pre-
sent in our lists. ETOX identifies added toxicity using the following two 
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criteria: number of toxic items and matched or non-matched toxicity.  
A toxic item is considered detected if it is present in a line and surroun-
ded by spaces or the start or end of a line. ETOX tracks the number of 
unique toxic items found in a line but does not count a phrase again if it 
has multiple occurrences. Matched toxicity indicates that the number 
of toxic items is the same in both the source and the translated content 
(that is, no added toxicity). Added toxicity is an instance of non-matched 
toxicity in which more toxic items are found in the translation output 
than in the source. For non-segmenting languages or some languages  
that use complex diacritics, space tokenization is insufficient to distin-
guish words from one another. In those cases, we used SentencePiece 
tokenization of both the sentence and toxicity word list.
Toxicity-200 lists. Lists are based on professional translations from 
English, which were then heuristically adapted by linguists to better 
serve the target language. As toxicity is culturally sensitive, attempting 
to find equivalents in a largely multilingual setting constitutes a chal-
lenge when starting from one source language. To address this issue, 
translators were allowed to forgo translating some of the source items 
and add more culturally relevant items.

In the initial release of the Toxicity-200 lists, the average number of 
items in a toxicity detection list was 271 entries, whereas the median 
number of entries was 143. The latter may be a better measure of cen-
tral tendency than the mean average, given that languages with a rich 
inflectional morphology constitute extreme outliers (for example, the 
Czech list had 2,534 entries and the Polish list 2,004). The shortest list 
had 36 entries, and the longest 6,078.

Data availability
All data generated and described in the Article and its Supplemen-
tary Information are available at GitHub (https://github.com/face-
bookresearch/fairseq/tree/nllb)69 as follows. The FLORES-200 dataset 
contains human-translated evaluation data in 204 languages. The 
NLLB-Seed database contains human-translation seed training data 
in 39 languages (Supplementary Information I). The NLLB-MD data-
base contains human-translated seed data in different domains in six 
languages to assess generalization (Supplementary Information J). 
The Toxicity-200 database contains wordlists to detect toxicity in 200 
languages. Mined bitext database contains publicly available web data 
for 148 English-centric and 1,465 non-English-centric language pairs. 
Publicly available data used to train NLLB models with references to 
download the data are listed in Supplementary Table 2.

Code availability
To make our work available to the community, we provide the fol-
lowing models and supporting code as resources freely available 
for non-commercial use, available at GitHub (https://github.com/
facebookresearch/fairseq/tree/nllb)69 as follows. The translation 
models cover 200 languages; the NLLB models come in multiple sizes 
(54.5B MoE, 3.3B and 1.3B Dense, and 1.3B and 600M distilled). The 
language identification models contain more than 200 languages. 
LASER3 comprises sentence encoders for identifying aligned bitext 
for 148 languages. Stopes consists of a data-mining library that can be 
used to process and clean monolingual data, followed by the creation 
of aligned bitext. Scripts to recreate our training data and training 
and generation scripts to reproduce our models are also included.
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Extended Data Fig. 1 | Architecture of the LASER3 teacher-student approach. See21 for more details.
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Extended Data Fig. 2 | Illustration of EOM (panel c) in contrast to overall dropout (panel b) for MoE layers. A color represents a token, and each token is 
dispatched to two experts (Top-2-Gating) depending on the gating decision (panel a). Faded colors correspond to dropped units or masked outputs.
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