Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Von Hippel–Lindau protein signalling in clear cell renal cell carcinoma

Abstract

The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel–Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL–HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.

Key points

  • The tumour suppressor Von Hippel–Lindau protein (pVHL), which has vital functions in proteasomal degradation, is predominantly lost or mutated in kidney cancer.

  • The pVHL–hypoxia-inducible factor (HIF) axis is a major oncogenic signalling pathway in clear cell renal cell carcinoma (ccRCC).

  • New agents that target HIF2α, such as belzutifan, have improved clinical outcomes in patients with ccRCC.

  • A group of newly identified pVHL downstream oncogenes provides potential novel therapeutic targets for ccRCC.

  • Targeting pathways showing synthetic lethality with VHL loss is an attractive and alternative strategy for treating ccRCC.

  • Combination therapies with hypoxia signalling inhibitors plus other therapeutic agents hold potential for the treatment of advanced or metastatic ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: pVHL–HIF signalling pathway and therapeutic interventions targeting HIF2 in ccRCC.
Fig. 2: Targeting synthetic lethality with VHL loss in ccRCC.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Bhatt, J. R. & Finelli, A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat. Rev. Urol. 11, 517–525 (2014).

    Article  PubMed  Google Scholar 

  3. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009 (2017).

    Article  PubMed  Google Scholar 

  4. Moch, H. et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs – part a: renal, penile, and testicular tumours. Eur. Urol. 82, 458–468 (2022).

    Article  PubMed  Google Scholar 

  5. Zhang, Q., Yan, Q., Yang, H. & Wei, W. Oxygen sensing and adaptability won the 2019 Nobel Prize in Physiology or medicine. Genes. Dis. 6, 328–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, C. & Zhang, Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. Am. J. Pathol. 190, 1584–1595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao, C., Liu, X., Zhang, C. & Zhang, Q. Tumor hypoxia: from basic knowledge to therapeutic implications. Semin. Cancer Biol. 88, 172–186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J. & Zhang, Q. VHL and hypoxia signaling: beyond HIF in cancer. Biomedicines 6, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aghamir, S. M. K. et al. The impact of succinate dehydrogenase gene (SDH) mutations in renal cell carcinoma (RCC): a systematic review. OncoTargets Ther. 12, 7929–7940 (2019).

    Article  CAS  Google Scholar 

  10. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes. Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA 94, 4273–4278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third ɑ-class hypoxia inducible factor subunit, HIF3ɑ. Gene Expr. 7, 205–213 (1998).

    CAS  PubMed  Google Scholar 

  15. Lin, F. K. et al. Cloning and expression of the human erythropoietin gene. Proc. Natl Acad. Sci. USA 82, 7580–7584 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular O-2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaelin, W. G. Jr Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albadari, N., Deng, S. S. & Li, W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert. Opin. Drug. Dis. 14, 667–682 (2019).

    Article  CAS  Google Scholar 

  20. Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2ɑ in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schodel, J. et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur. Urol. 69, 646–657 (2016).

    Article  PubMed  Google Scholar 

  23. Gordan, J. D. et al. HIF-ɑ effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr Inhibition of HIF2ɑ is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zimmer, M., Doucette, D., Siddiqui, N. & Iliopoulos, O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol. Cancer Res. 2, 89–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Qiu, B. et al. HIF2ɑ-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 5, 652–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Monzon, F. A. et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod. Pathol. 24, 1470–1479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen, C. et al. Genetic and functional studies implicate HIF1ɑ as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoefflin, R. et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun. 11, 4111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fong, G. H. & Takeda, K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 15, 635–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. McDermott, D. F. et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y. W., Rini, B. I. & Beckermann, K. E. Emerging targets in clear cell renal cell carcinoma. Cancers 14, 4843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choueiri, T. K. & Kaelin, W. G. Jr Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Posadas, E. M., Limvorasak, S., Sharma, S. & Figlin, R. A. Targeting angiogenesis in renal cell carcinoma. Expert. Opin. Pharmacother. 14, 2221–2236 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378, 1931–1939 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, Y. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 6, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  46. Rini, B. I. et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Ganner, A. et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci. Rep. 11, 14827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elorza, A. et al. HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol. Cell 48, 681–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Doan, H. et al. HIF-mediated suppression of DEPTOR confers resistance to mTOR kinase inhibition in renal cancer. iScience 21, 509–520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan, J., Bayliss, P. E., Wood, J. M. & Roberts, T. M. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 1, 257–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Powles, T. et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur. Urol. 69, 450–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Choueiri, T. K. et al. Randomized phase II trial of sapanisertib ± TAK-117 vs. everolimus in patients with advanced renal cell carcinoma after VEGF-targeted therapy. oncologist 27, 1048–1057 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Scheuermann, T. H. et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rogers, J. L. et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J. Med. Chem. 56, 1739–1747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallace, E. M. et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, T. et al. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells. Oncotarget 7, 79154–79169 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02293980 (2024).

  66. Jonasch, E. et al. Phase II study of the oral HIF-2α inhibitor MK-6482 for Von Hippel-Lindau disease-associated renal cell carcinoma. J. Clin. Oncol. 38, 5003–5003 (2020).

    Article  Google Scholar 

  67. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fallah, J. et al. FDA approval summary: belzutifan for von Hippel-Lindau disease-associated tumors. Clin. Cancer Res. 28, 4843–4848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choueiri, T. K. et al. Phase III study of the hypoxia-inducible factor 2α (HIF-2α) inhibitor MK-6482 versus everolimus in previously treated patients with advanced clear cell renal cell carcinoma (ccRCC). J. Clin. Oncol. 38, https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS5094 (2020).

  70. Albiges, L. et al. LBA88 Belzutifan versus everolimus in participants (pts) with previously treated advanced clear cell renal cell carcinoma (ccRCC): randomized open-label phase III LITESPARK-005 study. Ann. Oncol. 34, S1329–S1330 (2023).

    Article  Google Scholar 

  71. Xu, R. et al. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62, 6876–6893 (2019).

  72. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04895748 (2024).

  73. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05119335 (2023).

  74. Brugarolas, J. et al. Initial results from the phase 1 study of ARO-HIF2 to silence HIF2-alpha in patients with advanced ccRCC (AROHIF21001). J. Clin. Oncol. 40, https://doi.org/10.1200/JCO.2022.40.6_suppl.339 (2022).

  75. Hong, K. et al. USP37 promotes deubiquitination of HIF2α in kidney cancer. Proc. Natl Acad. Sci. USA 117, 13023–13032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong, S. C. et al. HIF2α-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol. Cancer Ther. 17, 140–149 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Ma, Y. et al. HIF2 inactivation and tumor suppression with a tumor-directed RNA-silencing drug in mice and humans. Clin. Cancer Res. 28, 5405–5418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes, M. D., Kapllani, E., Alexander, A. E., Burk, R. D. & Schoenfeld, A. R. HIF-2ɑ downregulation in the absence of functional VHL is not sufficient for renal cell differentiation. Cancer Cell Int. 7, 13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Calzada, M. J. et al. von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res. 66, 1553–1560 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Cockman, M. E. et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. Elife 8, e46490 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang, J. et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science 361, 290–295 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu, X. J. et al. Genome-wide screening identifies SFMBT1 as an oncogenic driver in cancer with VHL loss. Mol. Cell 77, 1294–1306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawata, H. et al. Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the ZHX family, functions as a transcriptional repressor. Biochem. J. 373, 747–757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xie, H. et al. USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc. Natl Acad. Sci. USA 119, e2119854119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yue, X. et al. Zinc fingers and homeoboxes 2 inhibits hepatocellular carcinoma cell proliferation and represses expression of Cyclins A and E. Gastroenterology 142, 1559–1570.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Tian, X. D., Wang, Y. D., Li, S. H., Yue, W. M. & Tian, H. ZHX2 inhibits proliferation and promotes apoptosis of human lung cancer cells through targeting p38MAPK pathway. Cancer Biomark. 27, 75–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Nagel, S. et al. Transcriptional deregulation of homeobox gene ZHX2 in Hodgkin lymphoma. Leuk. Res. 36, 646–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Y. K. et al. ZHX2 inhibits thyroid cancer metastasis through transcriptional inhibition of S100A14. Cancer Cell Int. 22, 76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fang, W. et al. ZHX2 promotes HIF1ɑ oncogenic signaling in triple-negative breast cancer. Elife 10, e70412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonasio, R., Lecona, E. & Reinberg, D. MBT domain proteins in development and disease. Semin. Cell Dev. Biol. 21, 221–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Tang, M. et al. The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J. Biol. Chem. 288, 27680–27691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, J. et al. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes. Dev. 27, 749–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pan, R. et al. SFMBT1 facilitates colon cancer cell metastasis and drug resistance combined with HMG20A. Cell Death Discov. 8, 263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang, Z. et al. MicroRNA-218 inhibits EMT, migration and invasion by targeting SFMBT1 and DCUN1D1 in cervical cancer. Oncotarget 7, 45622–45636 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Hager, M. et al. Increased activated Akt expression in renal cell carcinomas and prognosis. J. Cell Mol. Med. 13, 2181–2188 (2009).

    Article  PubMed  Google Scholar 

  97. Polytarchou, C. et al. Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res. 71, 4720–4731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chae, Y. C. et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell 30, 257–272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, J. et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 353, 929–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, R., Zhang, Q. & Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 52, 757–767 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Ahmad, L., Zhang, S. Y., Casanova, J. L. & Sancho-Shimizu, V. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol. Med. 22, 511–527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Revach, O. Y., Liu, S. & Jenkins, R. W. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert. Opin. Ther. Targets 24, 1065–1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu, L. et al. TBK1 is a synthetic lethal target in cancer with VHL loss. Cancer Discov. 10, 460–475 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    Article  PubMed  Google Scholar 

  106. Zhang, T. et al. Prolonged hypoxia alleviates prolyl hydroxylation-mediated suppression of RIPK1 to promote necroptosis and inflammation. Nat. Cell Biol. 25, 950–962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Strepkos, D., Markouli, M., Klonou, A., Papavassiliou, A. G. & Piperi, C. Histone methyltransferase SETDB1: a common denominator of tumorigenesis with therapeutic potential. Cancer Res. 81, 525–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes. Dev. 23, 2484–2489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Park, S. et al. Hypoxia stabilizes SETDB1 to maintain genome stability. Nucleic Acids Res., 51, 11178–11196 (2023).

  112. Hoffman, M. A. et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Clifford, S. C. et al. Contrasting effects on HIF-1ɑ regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Russell, R. C. & Ohh, M. NEDD8 acts as a ‘molecular switch’ defining the functional selectivity of VHL. EMBO Rep. 9, 486–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, Q. et al. Role of von Hippel-Lindau protein in fibroblast proliferation and fibrosis. FASEB J. 25, 3032–3044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, J. et al. Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile winch. Dev. Cell 52, 631–646.e634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koochekpour, S. et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol. Cell Biol. 19, 5902–5912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu, C. Y. & Lai, S. C. Matrix metalloproteinase-2 and -9 lead to fibronectin degradation in astroglia infected with toxoplasma gondii. Acta Trop. 125, 320–329 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Jiao, Y. et al. Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS ONE 7, e41591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hennessy, K. M., Lee, A., Chen, E. & Botstein, D. A group of interacting yeast DNA replication genes. Genes. Dev. 5, 958–969 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 1295–1305 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 59, 37–44 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).

    Article  PubMed  Google Scholar 

  125. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Feng, X. et al. Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors. Sci. Adv. 8, eabm6638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun, N. et al. VHL synthetic lethality signatures uncovered by genotype-specific CRISPR-Cas9 screens. CRISPR J. 2, 230–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Bommi-Reddy, A. et al. Kinase requirements in human cells: III. Altered kinase requirements in VHL−/− cancer cells detected in a pilot synthetic lethal screen. Proc. Natl Acad. Sci. USA 105, 16484–16489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chakraborty, A. A. et al. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1 histone methyltransferase. Sci. Transl. Med. 9, eaal5272 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Turcotte, S. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14, 90–102 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thompson, J. M. et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 36, 1080–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Wolff, N. C. et al. High-throughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget 6, 16951–16962 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Liu, Z. et al. Exploring synthetic lethal network for the precision treatment of clear cell renal cell carcinoma. Sci. Rep. 12, 13222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiao, Y. et al. The m6A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc. Natl Acad. Sci. USA 117, 21441–21449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Turcotte, S., Sutphin, P. D. & Giaccia, A. J. Targeted therapy for the loss of von Hippel-Lindau in renal cell carcinoma: a novel molecule that induces autophagic cell death. Autophagy 4, 944–946 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Nicholson, H. E. et al. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 12, eaay0482 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fassl, A., Geng, Y. & Sicinski, P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. O’Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    Article  PubMed  Google Scholar 

  142. Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P. & Boutros, M. CRISPR/Cas9 for cancer research and therapy. Semin. Cancer Biol. 55, 106–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Sinha, S. et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat. Commun. 8, 15580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, D., Wornow, S., Peehl, D. M., Rankin, E. B. & Brooks, J. D. The controversial role and therapeutic development of the m6A demethylase FTO in renal cell carcinoma. Transl. Oncol. 25, 101518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bayat Mokhtari, R. et al. Combination therapy in combating cancer. Oncotarget 8, 38022–38043 (2017).

    Article  PubMed  Google Scholar 

  147. Sager, R. A. et al. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat. Rev. Urol. 19, 305–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rini, B. I. & Atkins, M. B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 10, 992–1000 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Lai, X. M. et al. HAF mediates the evasive resistance of anti-angiogenesis TKI through disrupting HIF-1ɑ and HIF-2ɑ balance in renal cell carcinoma. Oncotarget 8, 49713–49724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Choueiri, T. K. et al. Belzutifan plus cabozantinib for patients with advanced clear cell renal cell carcinoma previously treated with immunotherapy: an open-label, single-arm, phase 2 study. Lancet Oncol. 24, 553–562 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04627064 (2024).

  152. McDermott, D. F. et al. LITESPARK-024: a randomized phase 1/2 study of belzutifan with or without palbociclib in patients with advanced renal cell carcinoma. J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.2023.41.6_suppl.TPS747 (2023).

  153. Ruf, M., Moch, H. & Schraml, P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int. J. Cancer 139, 396–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Rini, B. I. et al. Results from a phase I expansion cohort of the first-in-class oral HIF-2α inhibitor PT2385 in combination with nivolumab in patients with previously treated advanced RCC. J. Clin. Oncol. 37, 558–558 (2019).

    Article  Google Scholar 

  155. Choueiri, T. K. et al. Phase 3 study of first-line treatment with pembrolizumab plus belzutifan plus lenvatinib or pembrolizumab/quavonlimab plus lenvatinib versus pembrolizumab plus lenvatinib for advanced renal cell carcinoma (RCC). J. Clin. Oncol. 40, https://doi.org/10.1200/JCO.2022.40.6_suppl.TPS39 (2022).

  156. Nair, S. et al. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102, 964–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Hegde, P. S., Wallin, J. J. & Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 52, 117–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Choueiri, T. K. et al. Cabozantinib plus nivolumab and ipilimumab in renal-cell carcinoma. N. Engl. J. Med. 388, 1767–1778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Powles, T. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 21, 1563–1573 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Choueiri, T. K. et al. Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): extended follow-up from the phase 3, randomised, open-label study. Lancet Oncol. 24, 228–238 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03324373 (2024).

  164. Lafleur, V. N., Halim, S., Choudhry, H., Ratcliffe, P. J. & Mole, D. R. Multi-level interaction between HIF and AHR transcriptional pathways in kidney carcinoma. Life Sci. Alliance 6, e202201756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ishida, M. et al. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke. Int. J. Cancer 137, 299–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, M. J. et al. HDAC inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma cells. Anticancer. Res. 32, 3161–3168 (2012).

    CAS  PubMed  Google Scholar 

  167. Rausch, M. et al. Optimized combination of HDACI and TKI efficiently inhibits metabolic activity in renal cell carcinoma and overcomes sunitinib resistance. Cancers 12, 3172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wood, A. et al. Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma. Invest. N. Drugs 38, 1108–1116 (2020).

    Article  CAS  Google Scholar 

  169. Zibelman, M. et al. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest. N. Drugs 33, 1040–1047 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kidney cancer research in Zhang lab is supported by the National Cancer Institute (R01CA211732 and R01CA284591), Department of Defense Kidney Cancer Research Program (W81XWH1910813) and Cancer Prevention and Research Institute of Texas (CPRIT, RR190058 to Q.Z.). Q.Z. was an American Cancer Society Research Scholar, CPRIT Scholar in Cancer Research, V Scholar, Kimmel Scholar, Susan G. Komen Career Catalyst awardee and Mary Kay Foundation awardee. Q.Z. was also previously supported by Kidney Cancer Research Alliance (KCCure).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and L.H. researched data for the article. All authors contributed substantially to discussion of the content. All authors. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Qing Zhang.

Ethics declarations

Competing interests

Q.Z. received the consultation fee from Exelixis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks P. Maxwell, E. Jonasch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Hu, L. & Zhang, Q. Von Hippel–Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00876-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00876-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing