Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammasomes in neurological disorders — mechanisms and therapeutic potential

Abstract

Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.

Key points

  • Inflammasomes are key molecular scaffolds that mediate innate immune responses.

  • Many neurological conditions involve an underlying chronic inflammatory process that worsens the trajectory of these conditions.

  • Increased activation of NLRP3 and other inflammasomes, leading to increases in IL-1β and IL-18 and neuronal damage, is seen in post-mortem brain tissue from people with neurological conditions.

  • Genetic ablation and synthetic inhibition of inflammasomes and inflammasome-associated proteins can ameliorate neurological deficits in rodent models of neurological conditions.

  • Use of inflammasome-targeted therapeutic approaches could improve existing therapeutic strategies for multiple neurological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of inflammasomes and inflammasome complexes.
Fig. 2: Inflammasome activation in neurological conditions.

Similar content being viewed by others

References

  1. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Gordon, R. et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Deora, V. et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68, 407–421 (2020).

    Article  PubMed  Google Scholar 

  5. Guo, H., Callaway, J. B. & Ting, J. P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis, B. K., Wen, H. & Ting, J. P.-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF‐κB and caspase‐1. FEBS Lett. 530, 73–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Khare, S. et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J. Biol. Chem. 277, 29874–29880 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chae, J. J. et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34, 755–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, K. S. et al. Diphtheria toxin activates ribotoxic stress and NLRP1 inflammasome-driven pyroptosis. J. Exp. Med. 220, e20230105 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Mangan, M. S. J. et al. Transcriptional licensing is required for pyrin inflammasome activation in human macrophages and bypassed by mutations causing familial Mediterranean fever. PLoS Biol. 20, e3001351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minkiewicz, J., de Rivero Vaccari, J. P. & Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121 (2013).

    Article  PubMed  Google Scholar 

  23. Hara, H. et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 175, 1651–1664.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Radian, A. D., Khare, S., Chu, L. H., Dorfleutner, A. & Stehlik, C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol. Immunol. 67, 294–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sundaram, B. et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell 186, 2783–2801.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Ravichandran, K. A. & Heneka, M. T. Inflammasome activation in neurodegenerative diseases. Essays Biochem. 65, 885–904 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Morrone, S. R. et al. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun. 6, 7827 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Won, J.-H., Park, S., Hong, S., Son, S. & Yu, J.-W. Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J. Biol. Chem. 290, 27425–27437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakanishi, H. Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural Regen. Res. 15, 25–29 (2020).

    Article  PubMed  Google Scholar 

  33. Duan, T., Du, Y., Xing, C., Wang, H. Y. & Wang, R.-F. Toll-like receptor signaling and its role in cell-mediated immunity. Front. Immunol. 13, 812774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xing, Y. et al. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J. Immunol. 199, 1561–1566 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Eriksson, I., Wäster, P. & Öllinger, K. Restoration of lysosomal function after damage is accompanied by recycling of lysosomal membrane proteins. Cell Death Dis. 11, 370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Kaushal, V. et al. Neuronal NLRP1 inflammasome activation of caspase-1 coordinately regulates inflammatory interleukin-1-β production and axonal degeneration-associated caspase-6 activation. Cell Death Differ. 22, 1676–1686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18, 1106–1121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. et al. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc. Natl Acad. Sci. USA 115, 10845–10852 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Xu, Z. et al. Homotypic CARD-CARD interaction is critical for the activation of NLRP1 inflammasome. Cell Death Dis. 12, 57 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klann, E. M. et al. The gut–brain axis and its relation to Parkinson’s disease: a review. Front. Aging Neurosci. 13, 782082 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. L, K., Ng, T. K. S., Wee, H. N. & Ching, J. Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer’s disease pathology: review and recommendations. Mech. Ageing Dev. 211, 111787 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Prim. 7, 33 (2021).

    Article  PubMed  Google Scholar 

  47. Hughes, C. et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun. Biol. 3, 79 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meng, J. X. et al. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nat. Commun. 13, 2692 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Zhang, X. et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci. Adv. 6, eabb8680 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Ismael, S. et al. ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer’s disease. Neurochem. Int. 148, 105104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahmed, M. E. et al. Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J. Alzheimer’s Dis. 60, 1143–1160 (2017).

    Article  CAS  Google Scholar 

  53. Hishimoto, A. et al. Neurexin 3 transmembrane and soluble isoform expression and splicing haplotype are associated with neuron inflammasome and Alzheimer’s disease. Alzheimers Res. Ther. 11, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vontell, R. T. et al. Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer’s disease. Brain Pathol. 33, e13142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moonen, S. et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol. 145, 175–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Tang, H. & Harte, M. Investigating markers of the NLRP3 inflammasome pathway in Alzheimer’s disease: a human post-mortem study. Genes 12, 1753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Stancu, I. C. et al. The NLRP3 inflammasome modulates tau pathology and neurodegeneration in a tauopathy model. Glia 70, 1117–1132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tejera, D. et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 38, e101064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Couturier, J. et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J. Neuroinflammation 13, 20 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y. et al. NLRP3 inflammasome-dependent increases in high mobility group box 1 involved in the cognitive dysfunction caused by tau-overexpression. Front. Aging Neurosci. 13, 721474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar, S. et al. Role of the caspase-8/RIPK3 axis in Alzheimer’s disease pathogenesis and Aβ-induced NLRP3 inflammasome activation. JCI Insight 8, e157433 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Han, C. et al. New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J. Cell Mol. Med. 24, 8078–8090 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Friker, L. L. et al. β-Amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep. 30, 3743–3754.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han, C. et al. Double-negative T cells mediate M1 polarization of microglial cells via TNF-α-NLRP3 to aggravate neuroinflammation and cognitive impairment in Alzheimer’s disease mice. J. Cell Physiol. 237, 3860–3871 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Rui, W. et al. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer’s disease. J. Neuroinflammation 18, 280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mancuso, R. et al. Circulatory miR-223-3p discriminates between Parkinson’s and Alzheimer’s patients. Sci. Rep. 9, 9393 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  68. Scott, X. O. et al. The inflammasome adaptor protein ASC in mild cognitive impairment and Alzheimer’s disease. Int. J. Mol. Sci. 21, 4674 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lonnemann, N. et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 32145–32154 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Kuwar, R. et al. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer’s disease transgenic mice. J. Alzheimer’s Dis. 82, 1769–1783 (2021).

    Article  CAS  Google Scholar 

  71. Yin, J. et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 1977–1987 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Park, M. H. et al. N,N′-diacetyl-p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer’s disease transgenic mice. Proc. Natl Acad. Sci. USA 116, 23426–23436 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Han, S. et al. Effect of increased IL-1β on expression of HK in Alzheimer’s disease. Int. J. Mol. Sci. 22, 1306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haseeb, M. et al. Novel small-molecule inhibitor of NLRP3 inflammasome reverses cognitive impairment in an Alzheimer’s disease model. ACS Chem. Neurosci. 13, 818–833 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Sbai, O. et al. RAGE-TXNIP axis drives inflammation in Alzheimer’s by targeting Aβ to mitochondria in microglia. Cell Death Dis. 13, 302 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu, W., Zhang, L., Geng, Y., Liu, Y. & Zhang, N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol. 85, 106614 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Tan, M.-S., Liu, Y., Hu, H., Tan, C.-C. & Tan, L. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. Metab. Brain Dis. 37, 1197–1205 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Flores, J., Fillion, M.-L. & LeBlanc, A. C. Caspase-1 inhibition improves cognition without significantly altering amyloid and inflammation in aged Alzheimer disease mice. Cell Death Dis. 13, 864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hou, Y. et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING. Proc. Natl Acad. Sci. USA 118, e2011226118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Španić, E., Langer Horvat, L., Ilić, K., Hof, P. R. & Šimić, G. NLRP1 inflammasome activation in the hippocampal formation in Alzheimer’s disease: correlation with neuropathological changes and unbiasedly estimated neuronal loss. Cells 11, 2223 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reimers, D. et al. Immunohistochemical study of ASC expression and distribution in the hippocampus of an aged murine model of Alzheimer’s disease. Int. J. Mol. Sci. 22, 8697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, M. et al. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer’s disease by suppressing NLRP2 activation in astrocytes. Mol. Cell Endocrinol. 542, 111529 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Cao, L.-L. et al. Downregulating expression of OPTN elevates neuroinflammation via AIM2 inflammasome- and RIPK1-activating mechanisms in APP/PS1 transgenic mice. J. Neuroinflammation 18, 281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flores, J., Noël, A., Fillion, M.-L. & LeBlanc, A. C. Therapeutic potential of Nlrp1 inflammasome, caspase-1, or caspase-6 against Alzheimer disease cognitive impairment. Cell Death Differ. 29, 657–669 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Oronsky, B. et al. REPLATINUM phase III randomized study: RRx-001 + platinum doublet versus platinum doublet in third-line small cell lung cancer. Future Oncol. 15, 3427–3433 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Reid, T., Oronsky, B., Caroen, S. & Cabrales, P. The direct NLRP3 inhibitor and phase 3 small molecule anticancer agent, RRx‐001, protects aged triple transgenic Alzheimer’s disease model mice from CNS degeneration and cognitive decline. Alzheimers Dement. 18 (Suppl. 10), e061516 (2022).

    Article  Google Scholar 

  87. Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J. & Ulland, T. K. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflammation 17, 280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wirianto, M. et al. The clock modulator nobiletin mitigates astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer’s disease model. FASEB J. 36, e22186 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Deng, Y. et al. AVE 0991 suppresses astrocyte-mediated neuroinflammation of Alzheimer’s disease by enhancing autophagy. J. Inflamm. Res. 16, 391–406 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun, J. et al. Microbiota-derived metabolite Indoles induced aryl hydrocarbon receptor activation and inhibited neuroinflammation in APP/PS1 mice. Brain Behav. Immun. 106, 76–88 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Duan, R. et al. Angiotensin-(1–7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer’s disease. J. Inflamm. Res. 14, 7007–7019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scheiblich, H. et al. Microglial NLRP3 inflammasome activation upon TLR2 and TLR5 ligation by distinct α-synuclein assemblies. J. Immunol. 207, 2143–2154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Codolo, G. et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Lawrence, G. M., Holley, C. L. & Schroder, K. Parkinson’s disease: connecting mitochondria to inflammasomes. Trends Immunol. 43, 877–885 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Hernandez-Baltazar, D., Zavala-Flores, L. M. & Villanueva-Olivo, A. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurologia 32, 533–539 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Sarkar, S. et al. Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinsons Dis. 3, 30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, X. et al. α-synuclein promotes progression of Parkinson’s disease by upregulating autophagy signaling pathway to activate NLRP3 inflammasome. Exp. Ther. Med. 19, 931–938 (2020).

    CAS  PubMed  ADS  Google Scholar 

  98. Cao, H., Han, X., Jia, Y. & Zhang, B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NFκB axis. Aging 13, 11455–11469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, Q., Wang, Z., Xing, H., Wang, Y. & Guo, Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol. Ther. Nucleic Acids 23, 1334–1344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dong, A. et al. Pramipexole inhibits astrocytic NLRP3 inflammasome activation via Drd3-dependent autophagy in a mouse model of Parkinson’s disease. Acta Pharmacol. Sin. 44, 32–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Kou, L. et al. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome. J. Neuroinflammation 19, 133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, C.-M. et al. Pathomechanism characterization and potential therapeutics identification for Parkinson’s disease targeting neuroinflammation. Int. J. Mol. Sci. 22, 1062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. De Nuccio, F. et al. Inflammatory response modulation by vitamin C in an MPTP mouse model of Parkinson’s disease. Biology 10, 1155 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hou, L. et al. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase–NLRP3 inflammasome axis-dependent microglial activation. J. Neuroinflammation 20, 42 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chiu, Y.-J. et al. Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of Parkinson’s disease. Int. J. Mol. Sci. 24, 2642 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Panicker, N. et al. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 216, 1411–1430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. von Herrmann, K. M. et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis. 4, 24 (2018).

    Article  Google Scholar 

  108. Panicker, N. et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110, 2422–2437.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Javed, H. et al. NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson’s disease. Int. Immunopharmacol. 83, 106441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Anderson, F. L. et al. Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients. NPJ Parkinsons Dis. 7, 2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fan, Z. et al. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J. Neuroinflammation 17, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roy, A., Choudhury, S., Banerjee, R., Basu, P. & Kumar, H. Soluble LAG-3 and Toll-interacting protein: novel upstream neuro-inflammatory markers in Parkinson’s disease. Parkinsonism Relat. Disord. 91, 121–123 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Cabrera Ranaldi, E. D. L. R. M. et al. Proof-of-principle study of inflammasome signaling proteins as diagnostic biomarkers of the inflammatory response in Parkinson’s disease. Pharmaceuticals 16, 883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rui, W. et al. Microglial AIM2 alleviates antiviral‐related neuro‐inflammation in mouse models of Parkinson’s disease. Glia 70, 2409–2425 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, S. et al. Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model. Front. Pharmacol. 11, 618787 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lee, E. et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 26, 213–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Ou, Z. et al. NLRP3 inflammasome inhibition prevents α-synuclein pathology by relieving autophagy dysfunction in chronic MPTP-treated NLRP3 knockout mice. Mol. Neurobiol. 58, 1303–1311 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Qiao, C. et al. Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson’s disease. J. Neuroinflammation 15, 193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shao, Q. et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson’s disease. Acta Pharmacol. Sin. 40, 1503–1512 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hou, L. et al. Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson’s disease model. J. Neuroinflammation 17, 148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, X. et al. Salidroside ameliorates Parkinson’s disease by inhibiting NLRP3-dependent pyroptosis. Aging 12, 9405–9426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zheng, R. et al. ASC specks exacerbate α-synuclein pathology via amplifying NLRP3 inflammasome activities. J. Neuroinflammation 20, 26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cheng, J. et al. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 16, 2193–2205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kwon, O.-C. et al. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol. Med. 13, e13076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zheng, R. et al. Melatonin attenuates neuroinflammation by down-regulating NLRP3 inflammasome via a SIRT1-dependent pathway in MPTP-induced models of Parkinson’s disease. J. Inflamm. Res. 14, 3063–3075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang, Z. et al. β-Hydroxybutyrate alleviates pyroptosis in MPP+/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int. Immunopharmacol. 113, 109451 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Qiu, J. et al. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson’s disease model. Neuropharmacology 207, 108963 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Ahmed, S., Panda, S. R., Kwatra, M., Sahu, B. D. & Naidu, V. G. M. Perillyl alcohol attenuates nlrp3 inflammasome activation and rescues dopaminergic neurons in experimental in vitro and in vivo models of Parkinson’s disease. ACS Chem. Neurosci. 13, 53–68 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, Y. et al. Impeding the combination of astrocytic ASCT2 and NLRP3 by talniflumate alleviates neuroinflammation in experimental models of Parkinson’s disease. Acta Pharm. Sin. B 13, 662–677 (2023).

    Article  PubMed  ADS  Google Scholar 

  130. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    Article  PubMed  Google Scholar 

  131. Masrori, P. & Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27, 1918–1929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Urushitani, M., Kurisu, J., Tsukita, K. & Takahashi, R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 83, 1030–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Schwenk, B. M. et al. TDP‐43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J. 35, 2350–2370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Higgins, C. M. J., Jung, C. & Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4, 16 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Apolloni, S. et al. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis. Model. Mech. 7, 1101–1109 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Heitzer, M. et al. Administration of 17β-estradiol improves motoneuron survival and down-regulates inflammasome activation in male SOD1(G93A) ALS mice. Mol. Neurobiol. 54, 8429–8443 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Hummel, C. et al. Expression and cell type-specific localization of inflammasome sensors in the spinal cord of SOD1(G93A) mice and sporadic amyotrophic lateral sclerosis patients. Neuroscience 463, 288–302 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Moreno-García, L. et al. Inflammasome in ALS skeletal muscle: NLRP3 as a potential biomarker. Int. J. Mol. Sci. 22, 288 (2021).

    Article  Google Scholar 

  140. Zhang, H. et al. Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1G93A ALS mouse model. BMC Neurosci. 23, 50 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Van Schoor, E. et al. Increased pyroptosis activation in white matter microglia is associated with neuronal loss in ALS motor cortex. Acta Neuropathol. 144, 393–411 (2022).

    Article  PubMed  Google Scholar 

  142. Lee, J. D., McDonald, T. S., Fung, J. N. T. & Woodruff, T. M. Absence of receptor for advanced glycation end product (RAGE) reduces inflammation and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 57, 4143–4155 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Johann, S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63, 2260–2273 (2015).

    Article  PubMed  Google Scholar 

  144. Italiani, P. et al. Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J. Neuroinflammation 11, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cunha, C. et al. Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. Mol. Neurobiol. 55, 4207–4224 (2018).

    CAS  PubMed  Google Scholar 

  146. Lehmann, S. et al. Expression profile of pattern recognition receptors in skeletal muscle of SOD1(G93A) amyotrophic lateral sclerosis (ALS) mice and sporadic ALS patients. Neuropathol. Appl. Neurobiol. 44, 606–627 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  148. Shu, X. et al. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep. 42, 112133 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Zhao, W. et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 273, 24–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Bartlett, R., Sluyter, V., Watson, D., Sluyter, R. & Yerbury, J. J. P2X7 antagonism using brilliant blue G reduces body weight loss and prolongs survival in female SOD1(G93A) amyotrophic lateral sclerosis mice. PeerJ 5, e3064 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Maier, A. et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis – a pilot study. PLoS ONE 10, e0139684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Debye, B. et al. Neurodegeneration and NLRP3 inflammasome expression in the anterior thalamus of SOD1(G93A) ALS mice. Brain Pathol. 28, 14–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Dobson, R. & Giovannoni, G. Multiple sclerosis – a review. Eur. J. Neurol. 26, 27–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zirngibl, M., Assinck, P., Sizov, A., Caprariello, A. & Plemel, J. R. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol. Neurodegener. 17, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Keane, R. W., Dietrich, W. D. & de Rivero Vaccari, J. P. Inflammasome proteins as biomarkers of multiple sclerosis. Front. Neurol. 9, 135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hou, B. et al. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis. 11, 377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Barclay, W. E. et al. The AIM2 inflammasome is activated in astrocytes during the late phase of EAE. JCI Insight 7, e155563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Noroozi, S., Meimand, H. A. E., Arababadi, M. K., Nakhaee, N. & Asadikaram, G. The effects of IFN-β1a on the expression of inflammasomes and apoptosis-associated speck-like proteins in multiple sclerosis patients. Mol. Neurobiol. 54, 3031–3037 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Galloway, D. A. et al. Investigating the NLRP3 inflammasome and its regulator miR-223-3p in multiple sclerosis and experimental demyelination. J. Neurochem. 163, 94–112 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Malhotra, S. et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain 143, 1414–1430 (2020).

    Article  PubMed  Google Scholar 

  162. Blandford, S. N. et al. Interleukin-1 receptor antagonist: an exploratory plasma biomarker that correlates with disability and provides pathophysiological insights in relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 52, 103006 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Soares, J. L. S., Oliveira, E. M. L. & Pontillo, A. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. Mult. Scler. Relat. Disord. 29, 26–34 (2019).

    Article  PubMed  Google Scholar 

  164. McKenzie, B. A. et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc. Natl Acad. Sci. USA 115, E6065–E6074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Freeman, L. et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214, 1351–1370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, Q. et al. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat. Commun. 13, 2406 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  167. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Inoue, M. et al. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal. 5, ra38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Jha, S. et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci. 30, 15811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Galloway, D. A. et al. miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia 67, 857–869 (2019).

    Article  PubMed  Google Scholar 

  171. Zhang, Y. et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia. Cell Death Dis. 12, 1159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shao, Y. et al. TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol. Dis. 160, 105534 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, M. et al. TRPV4 inhibition improved myelination and reduced glia reactivity and inflammation in a cuprizone-induced mouse model of demyelination. Front. Cell Neurosci. 12, 392 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sánchez-Fernández, A., Skouras, D. B., Dinarello, C. A. & López-Vales, R. OLT1177 (Dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis. Front. Immunol. 10, 2578 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Guo, C. et al. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci. 8, 2194–2201 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Cao, R. et al. Identification of a small molecule with strong anti-inflammatory activity in experimental autoimmune encephalomyelitis and sepsis through blocking gasdermin D activation. J. Immunol. 209, 820–828 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Lang, Y. et al. Potential role of BAY11-7082, a NF-κB blocker inhibiting experimental autoimmune encephalomyelitis in C57BL/6J mice via declining NLRP3 inflammasomes. Clin. Exp. Immunol. 207, 378–386 (2022).

    Article  PubMed  Google Scholar 

  178. Saito, L. B. et al. Intranasal anti-caspase-1 therapy preserves myelin and glucose metabolism in a model of progressive multiple sclerosis. Glia 69, 216–229 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Desu, H. L. et al. IC100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J. Neuroinflammation 17, 143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  181. Wang, X. et al. Nicotinamide adenine dinucleotide treatment alleviates the symptoms of experimental autoimmune encephalomyelitis by activating autophagy and inhibiting the NLRP3 inflammasome. Int. Immunopharmacol. 90, 107092 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Song, S. et al. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci. Ther. 28, 422–434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu, F., Li, Z., He, X., Yu, H. & Feng, J. Ghrelin attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front. Pharmacol. 10, 1320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Malhotra, S. et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain 138, 644–652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Li, Z., Liu, Y., Jia, A., Cui, Y. & Feng, J. Cerebrospinal fluid cells immune landscape in multiple sclerosis. J. Transl. Med. 19, 125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kuriakose, D. & Xiao, Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int. J. Mol. Sci. 21, 7609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Campbell, B. C. V. et al. Ischaemic stroke. Nat. Rev. Dis. Prim. 5, 70 (2019).

    Article  PubMed  Google Scholar 

  188. Yan, J. et al. CCR5 activation promotes NLRP1-dependent neuronal pyroptosis via CCR5/PKA/CREB pathway after intracerebral hemorrhage. Stroke 52, 4021–4032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sun, X. et al. NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem. Biophys. Res. Commun. 479, 656–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Yang-Wei Fann, D. et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 4, e790 (2013).

    Article  PubMed Central  Google Scholar 

  191. He, X. et al. Extracellular ASC exacerbated the recurrent ischemic stroke in an NLRP3-dependent manner. J. Cereb. Blood Flow. Metab. 40, 1048–1060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Huang, X. et al. BRCC3 promotes activation of the NLRP6 inflammasome following cerebral ischemia/reperfusion (I/R) injury in rats. Neurosci. Lett. 756, 135954 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Li, Z.-G., Shui, S.-F., Han, X.-W. & Yan, L. NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Exp. Cell Res. 389, 111912 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Kim, H. et al. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav. Immun. 87, 765–776 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Li, J. et al. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci. Ther. 26, 925–939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, Q. et al. Correlation between the levels of NLRP3, Hcy, IL-1β, IL-18 and the prognosis in patients with hemorrhagic stroke. Am. J. Transl. Res. 13, 2883–2890 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  197. Ismael, S., Nasoohi, S., Yoo, A., Ahmed, H. A. & Ishrat, T. Tissue plasminogen activator promotes TXNIP-NLRP3 inflammasome activation after hyperglycemic stroke in mice. Mol. Neurobiol. 57, 2495–2508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Denes, A. et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc. Natl Acad. Sci. USA 112, 4050–4055 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  199. Mo, Z. et al. Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci. 242, 117133 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, M.-J. et al. The HDAC3 inhibitor RGFP966 ameliorated ischemic brain damage by downregulating the AIM2 inflammasome. FASEB J. 34, 648–662 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Xu, S. et al. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci. Ther. 27, 1224–1237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cao, Y. et al. Overexpression of microRNA-9a-5p ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience 444, 106–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Bellut, M. et al. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood–brain barrier integrity in murine stroke. Cell Death Dis. 13, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ren, H. et al. Selective NLRP3 (pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke 49, 184–192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miao, H. et al. Edaravone administration confers neuroprotection after experimental intracerebral hemorrhage in rats via NLRP3 suppression. J. Stroke Cerebrovasc. Dis. 29, 104468 (2020).

    Article  PubMed  Google Scholar 

  206. Pan, L. et al. Novel caspase-1 inhibitor CZL80 improves neurological function in mice after progressive ischemic stroke within a long therapeutic time-window. Acta Pharmacol. Sin. 43, 2817–2827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Goddard, G. V. Development of epileptic seizures through brain stimulation at low intensity. Nature 214, 1020–1021 (1967).

    Article  CAS  PubMed  ADS  Google Scholar 

  208. Friedman, L. et al. Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J. Neurosci. 14, 2697–2707 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Turski, W. A. et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behavioural Brain Res. 9, 315–335 (1983).

    Article  CAS  Google Scholar 

  210. Velisek, L. et al. Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Naunyn Schmiedebergs Arch. Pharmacol. 346, 588–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  211. Becker, A. J. Review: animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol. Appl. Neurobiol. 44, 112–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Wang, Y., Wei, P., Yan, F., Luo, Y. & Zhao, G. Animal models of epilepsy: a phenotype-oriented review. Aging Dis. 13, 215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Pohlentz, M. S. et al. Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS ONE 17, e0271995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Samadianzakaria, A., Abdolmaleki, Z. & Faedmaleki, F. The effect of valproic acid and furosemide on the regulation of the inflammasome complex (NLRP1 and NLRP3 mRNA) in the brain of epileptic animal model. Brain Res. Bull. 191, 20–29 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, Z. et al. TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis. 10, 386 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tan, C.-C. et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation 12, 18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Meng, X.-F. et al. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J. Neuroinflammation 11, 212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Yue, J. et al. NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence. Neuropathol. Appl. Neurobiol. 46, 770–785 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Gong, L., Han, Y., Chen, R., Yang, P. & Zhang, C. LncRNA ZNF883-mediated NLRP3 inflammasome activation and epilepsy development involve USP47 upregulation. Mol. Neurobiol. 59, 5207–5221 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Yue, J. et al. Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model. J. Neuroinflammation 17, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Shen, J. et al. TRPV4 channels stimulate Ca2+-induced Ca2+ release in mouse neurons and trigger endoplasmic reticulum stress after intracerebral hemorrhage. Brain Res. Bull. 146, 143–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Jimenez-Pacheco, A. et al. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J. Neurosci. 36, 5920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang, X. et al. DHA and EPA prevent seizure and depression-like behavior by inhibiting ferroptosis and neuroinflammation via different mode-of-actions in a pentylenetetrazole-induced kindling model in mice. Mol. Nutr. Food Res. 66, 2200275 (2022).

    Article  CAS  Google Scholar 

  224. Qin, Z. et al. GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome. J. Neuroinflammation 19, 121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Brito Toscano, E. C.de et al. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res. 1752, 147230 (2021).

    Article  Google Scholar 

  226. Morin-Brureau, M. et al. Microglial phenotypes in the human epileptic temporal lobe. Brain 141, 3343–3360 (2018).

    Article  PubMed  Google Scholar 

  227. Tröscher, A. R. et al. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol. 137, 619–635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Maroso, M. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Ulusoy, C. et al. Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J. Neuroimmunol. 347, 577343 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. DeSena, A. D., Do, T. & Schulert, G. S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation 15, 38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 130, 1080–1097 (2019).

    Article  Google Scholar 

  232. Bodnar, C. N., Roberts, K. N., Higgins, E. K. & Bachstetter, A. D. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J. Neurotrauma 36, 1683–1706 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Sun, Z. et al. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-κB pathways to improve functional outcomes in TBI mice. Oxid. Med. Cell Longev. 2020, 7879629 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ge, X. et al. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res. 1697, 10–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Adamczak, S. E. et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow. Metab. 34, 621–629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kerr, N. et al. Inflammasome proteins as biomarkers of traumatic brain injury. PLoS ONE 13, e0210128 (2019).

    Article  Google Scholar 

  237. Johnson, N. H. et al. Inflammatory biomarkers of traumatic brain injury. Pharmaceuticals 15, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lin, C. et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp. Neurol. 290, 115–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Wu, L. et al. Repetitive mild closed head injury in adolescent mice is associated with impaired proteostasis, neuroinflammation, and tauopathy. J. Neurosci. 42, 2418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Du, H., Li, C.-H., Gao, R.-B., Cen, X.-Q. & Li, P. Ablation of GSDMD attenuates neurological deficits and neuropathological alterations after traumatic brain injury. Front. Cell Neurosci. 16, 915969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Irrera, N. et al. Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front. Pharm. 8, 459 (2017).

    Article  Google Scholar 

  242. Tan, S.-W. et al. HMGB1 mediates cognitive impairment caused by the NLRP3 inflammasome in the late stage of traumatic brain injury. J. Neuroinflammation 18, 241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lopez-Rodriguez, A. B. et al. Activation of NLRP3 is required for a functional and beneficial microglia response after brain trauma. Pharmaceutics 14, 1550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen, Y. et al. NEK7 regulates NLRP3 inflammasome activation and neuroinflammation post-traumatic brain injury. Front. Mol. Neurosci. 12, 202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Xu, X. et al. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol. Dis. 117, 15–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Ismael, S., Nasoohi, S. & Ishrat, T. MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J. Neurotrauma 35, 1294–1303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Kuwar, R. et al. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflammation 16, 81 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Yan, C. et al. Neuroprotective effect of oridonin on traumatic brain injury via inhibiting NLRP3 inflammasome in experimental mice. Front. Neurosci. 14, 557170 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. de Rivero Vaccari, J. P. et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow. Metab. 29, 1251–1261 (2009).

    Article  PubMed  Google Scholar 

  250. Lee, S. W., de Rivero Vaccari, J. P., Truettner, J. S., Dietrich, W. D. & Keane, R. W. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J. Neuroinflammation 16, 27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Zhang, L.-M. et al. STING mediates neuroinflammatory response by activating NLRP3-related pyroptosis in severe traumatic brain injury. J. Neurochem. 162, 444–462 (2022).

    Article  CAS  PubMed  Google Scholar 

  252. Zheng, B. et al. Administration of dexmedetomidine inhibited NLRP3 inflammasome and microglial cell activities in hippocampus of traumatic brain injury rats. Biosci. Rep. 38, BSR20180892 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Shaheen, M. J., Bekdash, A. M., Itani, H. A. & Borjac, J. M. Saffron extract attenuates neuroinflammation in rmTBI mouse model by suppressing NLRP3 inflammasome activation via SIRT1. PLoS ONE 16, e0257211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Widmann, C. N. & Heneka, M. T. Long-term cerebral consequences of sepsis. Lancet Neurol. 13, 630–636 (2014).

    Article  PubMed  Google Scholar 

  255. Sui, D. et al. Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β axis in microglia. Mediators Inflamm. 2016, 1045657 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Moraes, C. A. et al. Microglial NLRP3 inflammasome induces excitatory synaptic loss through IL-1β-enriched microvesicle release: implications for sepsis-associated encephalopathy. Mol. Neurobiol. 60, 481–494 (2022).

    Article  PubMed  Google Scholar 

  257. Manabe, T. et al. Systemic inflammation induced the delayed reduction of excitatory synapses in the CA3 during ageing. J. Neurochem. 159, 525–542 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Zhong, X. et al. JQ1 attenuates neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway in SAE. Brain Res. Bull. 189, 174–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Xie, K. et al. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm. Res. 69, 697–710 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Beyer, M. M. S. et al. Enduring changes in neuronal function upon systemic inflammation are NLRP3 inflammasome dependent. J. Neurosci. 40, 5480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Zhong, X. et al. Ethyl pyruvate protects against sepsis-associated encephalopathy through inhibiting the NLRP3 inflammasome. Mol. Med. 26, 55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhao, Z. et al. A novel role of NLRP3-generated IL-1β in the acute-chronic transition of peripheral lipopolysaccharide-elicited neuroinflammation: implications for sepsis-associated neurodegeneration. J. Neuroinflammation 17, 64 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Danielski, L. G. et al. NLRP3 activation contributes to acute brain damage leading to memory impairment in sepsis-surviving rats. Mol. Neurobiol. 57, 5247–5262 (2020).

    Article  CAS  PubMed  Google Scholar 

  264. Zhang, Y. et al. Thioredoxin-interacting protein (TXNIP) knockdown protects against sepsis-induced brain injury and cognitive decline in mice by suppressing oxidative stress and neuroinflammation. Oxid. Med. Cell Longev. 2022, 8645714 (2022).

    PubMed  PubMed Central  ADS  Google Scholar 

  265. Luo, X.-Y., Ying, J.-H. & Wang, Q.-S. miR-25-3p ameliorates SAE by targeting the TLR4/NLRP3 axis. Metab. Brain Dis. 37, 1803–1813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Chen, L. et al. NU9056, a KAT 5 inhibitor, treatment alleviates brain dysfunction by inhibiting NLRP3 inflammasome activation, affecting gut microbiota, and derived metabolites in LPS-treated mice. Front Nutr. 8, 701760 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Chen, S. et al. Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NF-κB/NLRP3 inflammasome signaling pathway. Front Immunol. 11, 594071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Sun, Y.-B. et al. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 10, 167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Xu, E., Xie, Y. & Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 28, 2406–2415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Rogers, J. P. et al. Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J. Neurol. Neurosurg. Psychiatry 92, 932 (2021).

    PubMed  Google Scholar 

  271. Lee, M. H. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 145, 2555–2568 (2022).

    Article  PubMed  Google Scholar 

  272. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  273. Khan, M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 184, 5932–5949.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Lee, M.-H. et al. Microvascular injury in the brains of patients with Covid-19. N. Engl. J. Med. 384, 481–483 (2021).

    Article  PubMed  Google Scholar 

  275. Roczkowsky, A. et al. COVID‐19 induces neuroinflammation and suppresses peroxisomes in the brain. Ann. Neurol. 94, 531–546 (2023).

    Article  CAS  PubMed  Google Scholar 

  276. Liu, J. et al. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov. 7, 17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article  PubMed  Google Scholar 

  278. Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  281. Cama, V. F. et al. The microglial NLRP3 inflammasome is involved in human SARS-CoV-2 cerebral pathogenicity: a report of three post-mortem cases. J. Neuroimmunol. 361, 577728 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  283. Chen, R. et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 11, 573095 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Albornoz, E. A. et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol. Psychiatry 28, 2878–2893 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Chiu, Y.-J. et al. Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer’s disease cell and mouse models for neuroprotection and cognitive improvement. Aging 13, 15620–15637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Cheng, L. & Zhang, W. DJ-1 affects oxidative stress and pyroptosis in hippocampal neurons of Alzheimer’s disease mouse model by regulating the Nrf2 pathway. Exp. Ther. Med. 21, 557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. La Rosa, F. et al. Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease. Pharmaceuticals 14, 1187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Yu, H.-Y. et al. Exendin-4 and linagliptin attenuate neuroinflammation in a mouse model of Parkinson′s disease. Neural Regen. Res. 18, 1818–1826 (2022).

    PubMed Central  Google Scholar 

  289. Que, R. et al. Dl-3-n-butylphthalide rescues dopaminergic neurons in Parkinson’s disease models by inhibiting the NLRP3 inflammasome and ameliorating mitochondrial impairment. Front. Immunol. 12, 794770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Huang, S. et al. A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson’s disease. J. Neuroimmunol. 354, 577543 (2021).

    Article  CAS  PubMed  Google Scholar 

  291. Chatterjee, K. et al. Inflammasome and α-synuclein in Parkinson’s disease: a cross-sectional study. J. Neuroimmunol. 338, 577089 (2020).

    Article  CAS  PubMed  Google Scholar 

  292. Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D. & Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. FASEB J. 31, 2797–2816 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Liu, Y. et al. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Exp. Neurol. 337, 113593 (2021).

    Article  CAS  PubMed  Google Scholar 

  294. Naeem, A. G., El-Naga, R. N. & Michel, H. E. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology 30, 2197–2209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Ge, Y. et al. CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci. 300, 120564 (2022).

    Article  CAS  PubMed  Google Scholar 

  296. Shen, K. et al. Molecular mechanism of a specific NLRP3 inhibitor to alleviate seizure severity induced by pentylenetetrazole. Curr. Mol. Pharmacol. 14, 579–586 (2021).

    Article  CAS  PubMed  Google Scholar 

  297. Zhao, X.-J. et al. Oridonin ameliorates traumatic brain injury-induced neurological damage by improving mitochondrial function and antioxidant capacity and suppressing neuroinflammation through the Nrf2 pathway. J. Neurotrauma 39, 530–543 (2022).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael T. Heneka.

Ethics declarations

Competing interests

M.T.H. is a member of advisory boards for Alector, IFM therapeutics and Tiaki. K.A.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks G. Pasinetti, who co-reviewed with E.-J. Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, K.A., Heneka, M.T. Inflammasomes in neurological disorders — mechanisms and therapeutic potential. Nat Rev Neurol 20, 67–83 (2024). https://doi.org/10.1038/s41582-023-00915-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00915-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing