Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic genes and epilepsy — emerging mechanisms and clinical applications

Subjects

Abstract

An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone–DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.

Key points

  • The term epigenetics refers to potentially heritable changes in gene expression that do not involve alterations in the DNA sequence; the key epigenetic processes include DNA methylation, histone modifications and the actions of certain non-coding RNAs.

  • Various monogenic forms of epilepsy have been attributed to pathogenic variants in genes encoding factors that regulate chromatin access and the deposition, reading and removal of epigenetic marks.

  • Epigenetics-related epilepsies are often accompanied by a range of comorbidities, including intellectual disability.

  • Insights from experimental studies in cell and animal models are helping us to understand how epigenetic alterations give rise to neuronal hyperexcitability.

  • The findings of this research might yield diagnostic or prognostic biomarkers or treatment strategies, including precision medicine-based treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functions of epigenetic factors implicated in epilepsy.

Similar content being viewed by others

References

  1. Fiest, K. M. et al. Prevalence and incidence of epilepsy. Neurology 88, 296–303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thakran, S. et al. Genetic landscape of common epilepsies: advancing towards precision in treatment. Int. J. Mol. Sci. 21, 7784 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  3. Wang, J. et al. Epilepsy-associated genes. Seizure 44, 11–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Oyrer, J. et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol. Rev. 70, 142–173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kobow, K. et al. Epigenetics explained: a topic “primer” for the epilepsy community by the ILAE genetics/epigenetics task force. Epileptic Disord. 22, 127–141 (2020).

    Article  PubMed  Google Scholar 

  6. Steinlein, O. K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Reid, C. A., Berkovic, S. F. & Petrou, S. Mechanisms of human inherited epilepsies. Prog. Neurobiol. 87, 41–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Allen, A. S. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Epi4K consortium & Epilepsy Phenome/Genome Project. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 16, 135–143 (2017).

  11. Dibbens, L. M. et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18, 3626–3631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Helbig, I. et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 41, 160–162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leu, C. et al. Polygenic burden in focal and generalized epilepsies. Brain 142, 3473–3481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Waddington, C. H. The epigenotype. 1942. Int. J. Epidemiol. 41, 10–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Deichmann, U. Epigenetics: the origins and evolution of a fashionable topic. Dev. Biol. 416, 249–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Morrison, O. & Thakur, J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin. Int. J. Mol. Sci. 22, 6922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gräff, J., Kim, D., Dobbin, M. M. & Tsai, L.-H. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol. Rev. 91, 603–649 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Biswas, S. & Rao, C. M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 837, 8–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hotchkiss, R. D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175, 315–332 (1948).

    Article  CAS  PubMed  Google Scholar 

  22. Jabbari, K. & Bernardi, G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333, 143–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Cedar, H. DNA methylation and gene activity. Cell 53, 3–4 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ragione, F. D., Vacca, M., Fioriniello, S., Pepe, G. & D’Esposito, M. MECP2, a multi-talented modulator of chromatin architecture. Brief. Funct. Genomics 15, 420–431 (2016).

    PubMed  Google Scholar 

  28. Eden, S., Hashimshony, T., Keshet, I., Cedar, H. & Thorne, A. W. DNA methylation models histone acetylation. Nature 394, 842 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nat. Genet. 34, 187–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Almouzni, G. & Cedar, H. Maintenance of epigenetic information. Cold Spring Harb. Perspect. Biol. 8, a019372 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Day, J. J. & Sweatt, J. D. DNA methylation and memory formation. Nat. Neurosci. 13, 1319–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sega, A. G. et al. De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy. J. Med. Genet. 56, 113–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Mis, E. K. et al. Expansion of NEUROD2 phenotypes to include developmental delay without seizures. Am. J. Med. Genet. Part A 185, 1076–1080 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Olson, J. M. et al. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev. Biol. 234, 174–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Runge, K. et al. Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons. Mol. Psychiatry 26, 6125–6148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fong, A. P. et al. Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev. Cell 22, 721–735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hahn, M. A. et al. Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. Sci. Adv. 5, eaax0080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, F. et al. The transcription factor NeuroD2 coordinates synaptic innervation and cell intrinsic properties to control excitability of cortical pyramidal neurons. J. Physiol. 594, 3729–3744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konishi, Y., Matsu-Ura, T., Mikoshiba, K. & Tamura, T. A. Stimulation of gene expression of NeuroD-related factor in the mouse brain following pentylenetetrazol-induced seizures. Mol. Brain Res. 97, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Marafi, D. et al. Spectrum and time course of epilepsy and the associated cognitive decline in MECP2 duplication syndrome. Neurology 92, E108–E114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sandweiss, A. J., Brandt, V. L. & Zoghbi, H. Y. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol. 19, 689–698 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Castells, A. A. et al. Unraveling molecular pathways altered in MeCP2-related syndromes, in the search for new potential avenues for therapy. Biomedicines 9, 148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smirnov, K., Stroganova, T., Molholm, S. & Sysoeva, O. Reviewing evidence for the relationship of EEG abnormalities and RTT phenotype paralleled by insights from animal studies. Int. J. Mol. Sci. 22, 5308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tarquinio, D. C. et al. Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain 140, 306–318 (2017).

    Article  PubMed  Google Scholar 

  47. Henriksen, M. W. et al. Epilepsy in classic Rett syndrome: course and characteristics in adult age. Epilepsy Res. 145, 134–139 (2018).

    Article  PubMed  Google Scholar 

  48. Marballi, K. & MacDonald, J. L. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem. Int. 148, 105076 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Marano, D., Fioriniello, S., D’Esposito, M. & Della Ragione, F. Transcriptomic and epigenomic landscape in Rett syndrome. Biomolecules 11, 967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ehrhart, F. et al. Rett syndrome–biological pathways leading from MECP2 to disorder phenotypes. Orphanet J. Rare Dis. 11, 158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus. Cell Res. 26, 728–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adebayo, O. L. et al. Intensified mitochondrial hydrogen peroxide release occurs in all brain regions, affects male as well as female Rett mice, and constitutes a life-long burden. Arch. Biochem. Biophys. 696, 108666 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berson, A., Nativio, R., Berger, S. L. & Bonini, N. M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 41, 587–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kleefstra, T. et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79, 370–377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kleefstra, T. & de Leeuw, N. Kleefstra Syndrome (GeneReviews, 2019).

  60. Tachibana, M., Matsumura, Y., Fukuda, M., Kimura, H. & Shinkai, Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J. 27, 2681–2690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bian, C., Chen, Q. & Yu, X. The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression. eLife 4, e05606 (2015).

    Article  PubMed Central  Google Scholar 

  63. Meng, T.-G. et al. PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome. Nat. Commun. 11, 6354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu, X. et al. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Nucleic Acids Res. 47, 10977–10993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, B. A. et al. Impairments in sensory-motor gating and information processing in a mouse model of Ehmt1 haploinsufficiency. Brain Neurosci. Adv. 4, 239821282092864 (2020).

    Article  Google Scholar 

  66. Negwer, M. et al. EHMT1 regulates parvalbumin-positive interneuron development and GABAergic input in sensory cortical areas. Brain Struct. Funct. 225, 2701–2716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frega, M. et al. Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat. Commun. 10, 4928 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Frega, M. et al. Distinct pathogenic genes causing intellectual disability and autism exhibit a common neuronal network hyperactivity phenotype. Cell Rep. 30, 173–186.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. O’Donnell-Luria, A. H. et al. Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy. Am. J. Hum. Genet. 104, 1210–1222 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Conforti, R. et al. ODLURO syndrome: personal experience and review of the literature. Radiol. Med. 126, 316–322 (2021).

    Article  PubMed  Google Scholar 

  71. Li, Y. et al. Case report: de novo variants of KMT2E cause O’Donnell-Luria-Rodan syndrome: additional cases and literature review. Front. Pediatr. 9, 641841 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sharawat, I. K., Panda, P. K. & Dawman, L. Clinical characteristics and genotype-phenotype correlation in children with KMT2E gene-related neurodevelopmental disorders: report of two new cases and review of published literature. Neuropediatrics 52, 98–104 (2021).

    Article  PubMed  Google Scholar 

  73. Zhang, X., Novera, W., Zhang, Y. & Deng, L.-W. MLL5 (KMT2E): structure, function, and clinical relevance. Cell. Mol. Life Sci. 74, 2333–2344 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Emerling, B. M. et al. MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene 21, 4849–4854 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Sebastian, S. et al. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc. Natl Acad. Sci. USA 106, 4719–4724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jensen, L. R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Tzschach, A. et al. Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum. Mutat. 27, 389 (2006).

    Article  PubMed  Google Scholar 

  78. Carmignac, V. et al. Further delineation of the female phenotype with KDM5C disease causing variants: 19 new individuals and review of the literature. Clin. Genet. 98, 43–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Grafodatskaya, D. et al. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 lysine 4 demethylase KDM5C. BMC Med. Genomics 6, 1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brookes, E. et al. Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity. Hum. Mol. Genet. 24, 2861–2872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Iwase, S. et al. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep. 14, 1000–1009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hiraide, T. et al. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum. Genet. 137, 95–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Den, K. et al. A novel de novo frameshift variant in SETD1B causes epilepsy. J. Hum. Genet. 64, 821–827 (2019).

    Article  PubMed  CAS  Google Scholar 

  86. Roston, A. et al. SETD1B-associated neurodevelopmental disorder. J. Med. Genet. 58, 196–204 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Hiraide, T. et al. De novo variants in SETD1B cause intellectual disability, autism spectrum disorder, and epilepsy with myoclonic absences. Epilepsia Open 4, 476–481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Weerts, M. J. A. et al. Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genet. Med. 23, 2122–2137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lee, J. H., Tate, C. M., You, J. S. & Skalnik, D. G. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J. Biol. Chem. 282, 13419–13428 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Bledau, A. S. et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141, 1022–1035 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Krzyzewska, I. M. et al. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin. Epigenetics 11, 156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Costa, F. F. Non-coding RNAs, epigenetics and complexity. Gene 410, 9–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wei, J. W., Huang, K., Yang, C. & Kang, C. S. Non-coding RNAs as regulators in epigenetics (review). Oncol. Rep. 37, 3–9 (2017).

    Article  PubMed  Google Scholar 

  94. Gomes, A., Nolasco, S. & Soares, H. Non-coding RNAs: multi-tasking molecules in the cell. Int. J. Mol. Sci. 14, 16010–16039 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kim, D. H., Sætrom, P., Snøve, O. & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alles, J. et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 47, 3353–3364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzalez, S., Pisano, D. G. & Serrano, M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7, 2601–2608 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Yuan, J. H. et al. The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology 54, 2025–2035 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol. 15, 268–279 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15, 259–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Henshall, D. C. et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 15, 1368–1376 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Kan, A. A. et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci. 69, 3127–3145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Raoof, R. et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine 38, 127–141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Peron, A. et al. Phenotypes in adult patients with Rett syndrome: results of a 13-year experience and insights into healthcare transition. J. Med. Genet. 59, 39–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Guerrini, R. & Parrini, E. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53, 2067–2078 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Wong, L.-C. et al. FOXG1-related syndrome: from clinical to molecular genetics and pathogenic mechanisms. Int. J. Mol. Sci. 20, 4176 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  109. Miyoshi, G. et al. FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nat. Commun. 12, 3773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Weise, S. C. et al. FOXG1 regulates PRKAR2B transcriptionally and posttranscriptionally via miR200 in the adult hippocampus. Mol. Neurobiol. 56, 5188–5201 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Testa, G. et al. A triheptanoin-supplemented diet rescues hippocampal hyperexcitability and seizure susceptibility in Foxg1+/− mice. Neuropharmacology 148, 305–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Testa, G. et al. Cortical seizures in Foxg1+/− mice are accompanied by Akt/S6 overactivation, excitation/inhibition imbalance and impaired synaptic transmission. Int. J. Mol. Sci. 20, 4127 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  113. Patriarchi, T. et al. Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/− patients and in Foxg1+/− mice. Eur. J. Hum. Genet. 24, 871–880 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Avansini, S. H. et al. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Ann. Neurol. 83, 623–635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Leventer, R. J., Guerrini, R. & Dobyns, W. B. Malformations of cortical development and epilepsy. Dialogues Clin. Neurosci. 10, 47–62 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Blümcke, I. et al. Toward a better definition of focal cortical dysplasia: an iterative histopathological and genetic agreement trial. Epilepsia 62, 1416–1428 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. Heng, J. I. T. et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455, 114–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Noack, F. et al. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat. Neurosci. 25, 154–167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schuurmans, C. et al. Sequential phases of cortical specification involve neurogenin-dependent and -independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Kessaris, N., Pringle, N. & Richardson, W. D. Ventral neurogenesis and the neuron-glial switch. Neuron 31, 677–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Lamparello, P. et al. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 130, 2267–2276 (2007).

    Article  PubMed  Google Scholar 

  123. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Mizuguchi, R. et al. Combinatorial roles of Olig2 and Neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Ge, W. et al. Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc. Natl Acad. Sci. USA 103, 1319–1324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cepeda, C. et al. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav. 9, 219–235 (2006).

    Article  PubMed  Google Scholar 

  127. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Hand, R. et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48, 45–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Timpano, S. & Picketts, D. J. Neurodevelopmental disorders caused by defective chromatin remodeling: phenotypic complexity is highlighted by a review of ATRX function. Front. Genet. 11, 885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Weatherall, D. J. et al. Hemoglobin H disease and mental retardation. N. Engl. J. Med. 305, 607–612 (1981).

    Article  CAS  PubMed  Google Scholar 

  133. Gibbons, R. Alpha thalassaemia-mental retardation, X linked. Orphanet J. Rare Dis. 1, 15 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Villard, L. et al. Splicing mutation in the ATR-X gene can lead to a dysmorphic mental retardation phenotype without α-thalassemia. Am. J. Hum. Genet. 58, 499–505 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat. Genet. 24, 368–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Schenkel, L. C. et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin 10, 10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Udugama, M. et al. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 43, 10227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Voon, H. P. J. et al. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep. 11, 405–418 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl Acad. Sci. USA 104, 2709–2714 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kernohan, K. D. et al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev. Cell 18, 191–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Bérubé, N. G. et al. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Invest. 115, 258–267 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Seah, C. et al. Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53. J. Neurosci. 28, 12570–12580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Watson, L. A. et al. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J. Clin. Invest. 123, 2049–2063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shioda, N. et al. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J. Neurosci. 31, 346–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nogami, T. et al. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice. Hippocampus 21, 678–687 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Gugustea, R., Tamming, R. J., Martin-Kenny, N., Bérubé, N. G. & Leung, L. S. Inactivation of ATRX in forebrain excitatory neurons affects hippocampal synaptic plasticity. Hippocampus 30, 565–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Tamming, R. J. et al. Mosaic expression of Atrx in the mouse central nervous system causes memory deficits. Dis. Model. Mech. 10, 119–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gibbons, R. J. et al. Mutations in the chromatin-associated protein ATRX. Hum. Mutat. 29, 796–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Cardoso, C. et al. ATR-X mutations cause impaired nuclear location and altered DNA binding properties of the XNP/ATR-X protein. J. Med. Genet. 37, 746–751 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McDowell, T. L. et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl Acad. Sci. USA 96, 13983–13988 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Howard, M. T. et al. Attenuation of an amino-terminal premature stop codon mutation in the ATRX gene by an alternative mode of translational initiation. J. Med. Genet. 41, 951–956 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bérubé, N. G. et al. Patient mutations alter ATRX targeting to PML nuclear bodies. Eur. J. Hum. Genet. 16, 192–201 (2008).

    Article  PubMed  CAS  Google Scholar 

  154. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Carvill, G. L. et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet. 45, 825–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Suls, A. et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am. J. Hum. Genet. 93, 967–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thomas, R. H. et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology 84, 951–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Carvill, G. L. & Mefford, H. C. CHD2-Related Neurodevelopmental Disorders (GeneReviews, 1993).

  159. Woodage, T., Basrai, M. A., Baxevanis, A. D., Hieter, P. & Collins, F. S. Characterization of the CHD family of proteins. Proc. Natl Acad. Sci. USA 94, 11472–11477 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wilson, M. M., Henshall, D. C., Byrne, S. M. & Brennan, G. P. Chd2-related CNS pathologies. Int. J. Mol. Sci. 22, 588 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  161. Lamar, K.-M. J. & Carvill, G. L. Chromatin remodeling proteins in epilepsy: lessons from CHD2-associated epilepsy. Front. Mol. Neurosci. 11, 208 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Luijsterburg, M. S. et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell 61, 547–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, Y. J. et al. Chd2 is necessary for neural circuit development and long-term memory. Neuron 100, 1180–1193.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 108, 1161–1163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Balestrini, S. et al. Real-life survey of pitfalls and successes of precision medicine in genetic epilepsies. J. Neurol. Neurosurg. Psychiatry 92, 1044–1052 (2021).

    Article  PubMed  Google Scholar 

  167. Beltrán-Corbellini, Á. et al. Epilepsy genetics and precision medicine in adults: a new landscape for developmental and epileptic encephalopathies. Front. Neurol. 13, 777115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Younus, I. & Reddy, D. S. Epigenetic interventions for epileptogenesis: a new frontier for curing epilepsy. Pharmacol. Ther. 177, 108–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Deutsch, S. I. et al. Sodium butyrate, an epigenetic interventional strategy, attenuates a stress-induced alteration of MK-801’s pharmacologic action. Eur. Neuropsychopharmacol. 18, 565–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Deutsch, S. I., Mastropaolo, J., Burket, J. A. & Rosse, R. B. An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam’s antiseizure efficacy in the mouse. Eur. Neuropsychopharmacol. 19, 398–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Reschke, C. R. et al. Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Mol. Ther. 29, 2041–2052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Campbell, A. et al. Antagomir-mediated suppression of microRNA-134 reduces kainic acid-induced seizures in immature mice. Sci. Rep. 11, 340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mueller, C. et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N. Engl. J. Med. 383, 151–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. International, T., Against, L., Consortium, E. & Epilepsies, C. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 5269 (2018).

    Article  CAS  Google Scholar 

  178. Enright, N., Simonato, M. & Henshall, D. C. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy: ways to close current knowledge gaps. Epilepsia Open. 3, 427–436 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kaur, S. & Christodoulou, J. MECP2 Disorders (GeneReviews, 1993).

  180. Van Esch, H. MECP2 Duplication Syndrome (GeneReviews, 1993).

  181. Mullegama, S. V, Mendoza-Londono, R. & Elsea, S. H. MBD5 Haploinsufficiency (GeneReviews, 1993).

  182. Myers, K. A. et al. Phenotypic spectrum of seizure disorders in MBD5-associated neurodevelopmental disorder. Neurol. Genet. 7, e579 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ichino, L. et al. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science 372, 1434–1439 (2021).

    Article  CAS  Google Scholar 

  184. Velmans, C. et al. O’Donnell-Luria-Rodan syndrome: description of a second multinational cohort and refinement of the phenotypic spectrum. J. Med. Genet. 59, 697–705 (2022).

    Article  PubMed  Google Scholar 

  185. Koolen, D. A., Morgan, A. & de Vries, B. B. Koolen-de Vries Syndrome (GeneReviews, 1993).

  186. Fichera, M. et al. Mutations in ACTL6B, coding for a subunit of the neuron-specific chromatin remodeling complex nBAF, cause early onset severe developmental and epileptic encephalopathy with brain hypomyelination and cerebellar atrophy. Hum. Genet. 138, 187–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Bell, S. et al. Mutations in ACTL6B cause neurodevelopmental deficits and epilepsy and lead to loss of dendrites in human neurons. Am. J. Hum. Genet. 104, 815–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Stevenson, R. E. Alpha-Thalassemia X-Linked Intellectual Disability Syndrome (GeneReviews, 1993).

  189. Cossée, M. et al. ARX polyalanine expansions are highly implicated in familial cases of mental retardation with infantile epilepsy and/or hand dystonia. Am. J. Med. Genet. A 155A, 98–105 (2011).

    Article  PubMed  Google Scholar 

  190. Chatron, N. et al. The epilepsy phenotypic spectrum associated with a recurrent CUX2 variant. Ann. Neurol. 83, 926–934 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zarate, Y. A., Kaylor, J. & Fish, J. SATB2-Associated Syndrome (GeneReviews, 1993).

  192. Sweetser, D. A. et al. Pitt-Hopkins Syndrome (GeneReviews, 1993).

  193. Reijnders, M. R. et al. PURA-Related Neurodevelopmental Disorders (GeneReviews, 1993).

  194. Symonds, J. D. et al. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: detailed phenotyping of 10 new cases. Epilepsia 58, 565–575 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Cooley Coleman, J. A. et al. Comprehensive investigation of the phenotype of MEF2C-related disorders in human patients: a systematic review. Am. J. Med. Genet. A 185, 3884–3894 (2021).

    Article  PubMed  Google Scholar 

  196. Schoch, K. et al. A recurrent de novo variant in NACC1 causes a syndrome characterized by infantile epilepsy, cataracts, and profound developmental delay. Am. J. Hum. Genet. 100, 343–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G. Cavalleri for helpful advice on genome-wide association studies. The authors thank colleagues and members of the Neurobiology Commission of the International League Against Epilepsy. The authors gratefully acknowledge the following funders: Deutsche Forschungsgemeinschaft (grant no. FOR 2715), a research grant from Science Foundation Ireland (grant no. 16/RC/3948) co-funded under the European Regional Development Fund and by FutureNeuro industry partners, and EPICLUSTER, which is supported by the European Brain Research Area (EBRA) project. EBRA has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825348.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. K.M.J.V.L., G.L.C., A.J.B., A.M.G., K.K., I.L.-C., C.A.R., E.A.v.V. and D.C.H. wrote the article.

Corresponding author

Correspondence to David C. Henshall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks S. Balestrini, F. Lubin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Genes were selected on the basis of PubMed searches using the terms “epilepsy” AND “epigenetic”, and the searches were combined with the terms “mutation” or “variant”. The genes and their pathogenic variants were prioritized according to relevance. Epigenetic genes that have been implicated in the severe, early-onset paediatric epilepsies, in which gene discovery has been the most robust and effective in establishing bona fide causative genetic variants for these conditions, were included. An example of how epigenetic processes might be perturbed more broadly in epilepsy, including in the more common focal epilepsies, was also included, using the example of the miR-34a–NEUROG2 cascade that has been implicated in focal cortical dysplasia.

Glossary

Polygenic risk scores

The cumulative risk assessment for an individual to develop a particular medical condition, based on the collective influence of multiple genetic variants.

X chromosome inactivation

(XCI). The X chromosome is gene-rich and, as females have two X chromosomes and males have only one, potential discrepancies in gene dosage between the sexes are addressed through inactivation of one of the X chromosomes. This process occurs randomly, and all daughter cells will have the same X chromosome inactivated.

Histone variant exchange

Histone variants confer different structural properties to the nucleosome. Exchange of these histone variants can promote or weaken nucleosome stability and/or permit more or less DNA to be wrapped around the nucleosome.

Chromodomain

A functional protein domain commonly found in chromatin remodellers and other proteins that associate with chromatin.

Telomeric

Towards the telomeres — the very ends of the linear chromosome.

Pericentromeric

The centromere is the region of the chromosome to which the microtubules of the mitotic spindle are attached during cell division. Pericentromeric regions lie either side of the centromere.

Chromocentres

Large heterochromatic regions of densely packed DNA, mostly satellite DNA and other repetitive regions, as well as histone proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Loo, K.M.J., Carvill, G.L., Becker, A.J. et al. Epigenetic genes and epilepsy — emerging mechanisms and clinical applications. Nat Rev Neurol 18, 530–543 (2022). https://doi.org/10.1038/s41582-022-00693-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00693-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing