Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prodromal Parkinson disease subtypes — key to understanding heterogeneity

Abstract

In Parkinson disease (PD), pathological processes and neurodegeneration begin long before the cardinal motor symptoms develop and enable clinical diagnosis. In this prodromal phase, risk and prodromal markers can be used to identify individuals who are likely to develop PD, as in the recently updated International Parkinson and Movement Disorders Society research criteria for prodromal PD. However, increasing evidence suggests that clinical and prodromal PD are heterogeneous, and can be classified into subtypes with different clinical manifestations, pathomechanisms and patterns of spatial and temporal progression in the CNS and PNS. Genetic, pathological and imaging markers, as well as motor and non-motor symptoms, might define prodromal subtypes of PD. Moreover, concomitant pathology or other factors, including amyloid-β and tau pathology, age and environmental factors, can cause variability in prodromal PD. Patients with REM sleep behaviour disorder (RBD) exhibit distinct patterns of α-synuclein pathology propagation and might indicate a body-first subtype rather than a brain-first subtype. Identification of prodromal PD subtypes and a full understanding of variability at this stage of the disease is crucial for early and accurate diagnosis and for targeting of neuroprotective interventions to ensure efficacy.

Key points

  • Heterogeneity of Parkinson disease (PD) starts in the prodromal phase.

  • Pathological spread, imaging markers and the onset and progression of motor and non-motor symptoms are variable in prodromal PD.

  • The variability in clinical phenotype suggests that subtypes of prodromal PD can be defined.

  • Possible subtypes of prodromal PD are REM sleep behaviour disorder subtypes, brain-first and body-first subtypes, genetic subtypes and biological subtypes.

  • Variability in prodromal PD must result from different pathophysiological mechanisms; defining prodromal subtypes is the first step to identifying the biological difference.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of prodromal PD subtypes.
Fig. 2: Characteristics of proposed body-first and brain-first subtypes of PD.
Fig. 3: Imaging markers of body-first and brain-first PD subtypes.

Similar content being viewed by others

References

  1. Mahlknecht, P., Seppi, K. & Poewe, W. The concept of prodromal Parkinson’s disease. J. Parkinson’s Dis. 5, 681–697 (2015).

    Article  Google Scholar 

  2. Ahmadi, S. A. et al. Analyzing the co-localization of substantia nigra hyper-echogenicities and iron accumulation in Parkinson’s disease: a multi-modal atlas study with transcranial ultrasound and MRI. NeuroImage Clin. 26, 102185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berg, D. et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov. Disord. 29, 454–462 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Savica, R. et al. Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology 73, 1752–1758 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schrag, A., Horsfall, L., Walters, K., Noyce, A. & Petersen, I. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 14, 57–64 (2015). Very large case–control study that showed higher incidence rates of several autonomic, neuropsychiatric and motor features in individuals 2, 5 and 10 years before diagnosis of PD compared with PD-free individuals using primary care data.

    Article  PubMed  Google Scholar 

  6. Gustafsson, H., Nordstrom, A. & Nordstrom, P. Depression and subsequent risk of Parkinson disease: a nationwide cohort study. Neurology 84, 2422–2429 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fereshtehnejad, S. M. et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain 142, 20151–22067 (2019). In this study, natural evolution of various motor and non-motor manifestations of parkinsonism is analysed using real-life longitudinal clinical data from an RBD cohort.

    Article  Google Scholar 

  8. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  PubMed  Google Scholar 

  9. Greenland, J. C., Williams-Gray, C. H. & Barker, R. A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci. 49, 328–338 (2019).

    Article  PubMed  Google Scholar 

  10. Iwaki, H. et al. Genetic risk of Parkinson disease and progression: an analysis of 13 longitudinal cohorts. Neurol. Genet. 5, e348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fereshtehnejad, S.-M. et al. New clinical subtypes of Parkinson disease and their longitudinal progression. JAMA Neurol. 72, 863–873 (2015).

    Article  PubMed  Google Scholar 

  12. De Pablo-Fernández, E., Lees, A. J., Holton, J. L. & Warner, T. T. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease. JAMA Neurol. 76, 470–479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bäckström, D. et al. Early predictors of mortality in parkinsonism and Parkinson disease: a population-based study. Neurology 91, e2045–e2056 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  PubMed  Google Scholar 

  15. Knudsen, K. et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet. Neurol. 17, 618–628 (2018). Multimodal neuroimaging study showing a caudorostral gradient of dysfunction in RBD patients suggesting that pathological spread in PD may initially involve peripheral autonomic nerves and subsequently the rostral brainstem.

    Article  PubMed  Google Scholar 

  16. Doppler, K. et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 133, 535–545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, M. E., Stecher, B., Labrie, V., Brundin, L. & Brundin, P. Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis. Trends Neurosci. 42, 4–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Titova, N., Padmakumar, C., Lewis, S. J. G. & Chaudhuri, K. R. Parkinson’s: a syndrome rather than a disease? J. Neural Transm. 124, 907–914 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Adler, C. H. et al. Unified staging system for Lewy body disorders: clinicopathologic correlations and comparison to Braak staging. J. Neuropathol. Exp. Neurol. 78, 891–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaufmann, H. et al. Natural history of pure autonomic failure: a United States prospective cohort. Ann. Neurol. 81, 287–297 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Walker, L., Stefanis, L. & Attems, J. Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies – current issues and future directions. J. Neurochem. 150, 467–474 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Postuma, R. B. et al. Abolishing the 1-year rule: How much evidence will be enough? Mov. Disord. 31, 1623–1627 (2016).

    Article  PubMed  Google Scholar 

  23. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18, 101–113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giguère, N., Nanni, S. B. & Trudeau, L. E. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol. 9, 455 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berg, D. et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 30, 1600–1611 (2015). Original MDS research criteria for prodromal PD proposing an evidence-based method considering risk/prodromal marker evidence from prospective studies and a Bayesian classifier approach that allows the calculation of prodromal PD probabilities based on age and individual marker profiles.

    Article  PubMed  Google Scholar 

  26. Heinzel, S. et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 34, 1464–1470 (2019). Most recent version of the MDS research criteria for prodromal PD with updated predictive values of markers, introduction of four new markers, new approaches to consider genetic risk markers for PD prediction, and a web-based calculator.

    Article  PubMed  Google Scholar 

  27. Schrag, A., Anastasiou, Z., Ambler, G., Noyce, A. & Walters, K. Predicting diagnosis of Parkinson’s disease: a risk algorithm based on primary care presentations. Mov. Disord. 34, 480–486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anheim, M. et al. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology 78, 417–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, A. J. et al. Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov. Disord. 32, 1432–1438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nerius, M., Doblhammer, G. & Tamgüney, G. GI infections are associated with an increased risk of Parkinson’s disease. Gut 69, 1154–1156 (2020).

    Article  PubMed  Google Scholar 

  32. Marras, C., Canning, C. G. & Goldman, S. M. Environment, lifestyle, and Parkinson’s disease: implications for prevention in the next decade. Mov. Disord. 34, 801–811 (2019).

    Article  PubMed  Google Scholar 

  33. Darweesh, S. K. L. et al. Trajectories of prediagnostic functioning in Parkinson’s disease. Brain 140, 429–441 (2017).

    Article  PubMed  Google Scholar 

  34. Jennings, D. et al. Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol. 74, 933–940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fereshtehnejad, S.-M. et al. Validation of the MDS research criteria for prodromal Parkinson’s disease: longitudinal assessment in a REM sleep behavior disorder (RBD) cohort. Mov. Disord. 32, 865–873 (2017).

    Article  PubMed  Google Scholar 

  36. Mahlknecht, P. et al. Performance of the Movement Disorders Society criteria for prodromal Parkinson’s disease: a population-based 10-year study. Mov. Disord. 33, 405–413 (2018).

    Article  PubMed  Google Scholar 

  37. Mirelman, A. et al. Application of the Movement Disorder Society prodromal criteria in healthy G2019SLRRK2 carriers. Mov. Disord. 33, 966–973 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pilotto, A. et al. Application of the Movement Disorder Society prodromal Parkinson’s disease research criteria in 2 independent prospective cohorts. Mov. Disord. 32, 1025–1034 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Tsukita, K., Sakamaki-Tsukita, H., Tanaka, K., Suenaga, T. & Takahashi, R. Value of in vivo α-synuclein deposits in Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 34, 1452–1463 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Leclair-Visonneau, L. et al. REM sleep behavior disorder is related to enteric neuropathology in Parkinson disease. Neurology 89, 1612–1618 (2017).

    Article  PubMed  Google Scholar 

  41. Barber, T. R., Klein, J. C., Mackay, C. E. & Hu, M. T. M. Neuroimaging in pre-motor Parkinson’s disease. Neuroimage. Clin. 15, 215–227 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Del Din, S. et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86, 357–367 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hobert, M. A. et al. Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Front. Aging Neurosci. 11, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Merola, A. et al. Technology-based assessment of motor and nonmotor phenomena in Parkinson disease. Expert. Rev. Neurother. 18, 825–845 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Alonso, A., Huang, X., Mosley, T. H., Heiss, G. & Chen, H. Heart rate variability and the risk of Parkinson disease: the Atherosclerosis Risk in Communities Study. Ann. Neurol. 77, 877–883 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heinzel, S. et al. Age- and sex-related heterogeneity in prodromal Parkinson’s disease. Mov. Disord. 33, 1025–1027 (2018).

    Article  PubMed  Google Scholar 

  47. Postuma, R. B. et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 142, 744–759 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alotaibi, F., Pelletier, A., Gagnon, J., Montplaisir, J. Y. & Postuma, R. B. Prodromal marker progression in idiopathic rapid eye movement sleep behavior disorder: sample size for clinical trials. Mov. Disord. 34, 1914–1919 (2019).

    Article  PubMed  Google Scholar 

  49. Schaeffer, E. et al. Patients’ views on the ethical challenges of early Parkinson disease detection. Neurology 94, e2037–e2044 (2020).

    Article  PubMed  Google Scholar 

  50. Anang, J. B. M. et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83, 1253–1260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dugger, B. N. et al. Concomitant pathologies among a spectrum of parkinsonian disorders. Park. Relat. Disord. 20, 525–529 (2014).

    Article  Google Scholar 

  52. Robinson, J. L. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141, 2181–2193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fereshtehnejad, S. M. & Postuma, R. B. Subtypes of Parkinson’s disease: what do they tell us about disease progression? Curr. Neurol. Neurosci. Rep. 17, 34 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Kalia, L. V. et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 72, 100–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. McKeith, I. G. et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 94, 743–755 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Lau, L. M. L., Verbaan, D., van Rooden, S. M., Marinus, J. & van Hilten, J. J. Relation of clinical subtypes in Parkinson’s disease with survival. Mov. Disord. 29, 150–151 (2014).

    Article  PubMed  Google Scholar 

  57. Simuni, T. et al. How stable are Parkinson’s disease subtypes in de novo patients: analysis of the PPMI cohort? Park. Relat. Disord. 28, 62–67 (2016).

    Article  Google Scholar 

  58. Eisinger, R. S. et al. Motor subtype changes in early Parkinson’s disease. Park. Relat. Disord. 43, 67–72 (2017).

    Article  Google Scholar 

  59. Alves, G., Larsen, J. P., Emre, M., Wentzel-Larsen, T. & Aarsland, D. Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov. Disord. 21, 1123–1130 (2006).

    Article  PubMed  Google Scholar 

  60. Zhang, X. et al. Data-driven subtyping of Parkinson’s disease using longitudinal clinical records: a cohort study. Sci. Rep. 9, 797 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fereshtehnejad, S. M., Zeighami, Y., Dagher, A. & Postuma, R. B. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain 140, 1959–1976 (2017). Using a comprehensive data-driven approach, a new multi-domain subtyping method is suggested in this article that has been shown to connect with underlying pathological stages as well as imaging and CSF biomarkers. The authors provide a user-friendly guideline and calculator to assign every patient to a probable subtype.

    Article  PubMed  Google Scholar 

  62. Zeighami, Y. et al. Assessment of a prognostic MRI biomarker in early de novo Parkinson’s disease. Neuroimage Clin. 24, 101986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abbasi, N. et al. Predicting severity and prognosis in Parkinson’s disease from brain microstructure and connectivity. Neuroimage Clin. 25, 102111 (2020).

    Article  PubMed  Google Scholar 

  64. Postuma, R. B. et al. REM sleep behavior disorder and neuropathology in Parkinson’s disease. Mov. Disord. 30, 1413–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Di Battista, M. E. et al. Intercepting Parkinson disease non-motor subtypes: a proof-of-principle study in a clinical setting. J. Neurol. Sci. 388, 186–191 (2018).

    Article  PubMed  Google Scholar 

  66. Marras, C. & Chaudhuri, K. R. Nonmotor features of Parkinson’s disease subtypes. Mov. Disord. 31, 1095–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Sauerbier, A., Jenner, P., Todorova, A. & Chaudhuri, K. R. Non motor subtypes and Parkinson’s disease. Park. Relat. Disord. 22, S41–S46 (2016).

    Article  Google Scholar 

  68. Kang, J. H. et al. CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol. 131, 935–949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang, J. H. et al. Association of cerebrospinal fluid β-amyloid 1-42, t-tau, p-tau 181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 70, 1277–1287 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. McMillan, C. T. & Wolk, D. A. Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87, 1112–1122 (2016).

    Article  PubMed  Google Scholar 

  71. Fairfoul, G. et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Antelmi, E., Donadio, V., Incensi, A., Plazzi, G. & Liguori, R. Skin nerve phosphorylated α-synuclein deposits in idiopathic REM sleep behavior disorder. Neurology 88, 2128–2131 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Vilas, D. et al. Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol. 15, 708–718 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Iranzo, A. et al. α-Synuclein aggregates in labial salivary glands of idiopathic rapid eye movement sleep behavior disorder. Sleep 41, zsy101 (2018).

    Google Scholar 

  76. Sprenger, F. S. et al. Enteric nervous system α-synuclein immunoreactivity in idiopathic REM sleep behavior disorder. Neurology 85, 1761–1768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim, E. W. et al. Amyloid-β and Parkinson’s disease. J. Neurol. 266, 2605–2619 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Lawton, M. et al. Blood biomarkers with Parkinson’s disease clusters and prognosis: the Oxford Discovery Cohort. Mov. Disord. 35, 279–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Cheng, H.-C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bauckneht, M. et al. Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: a systematic review and meta-analysis. Sleep. Med. Rev. 41, 266–274 (2018).

    Article  PubMed  Google Scholar 

  81. Borghammer, P. & Van Den Berge, N. Brain-first versus gut-first Parkinson’s disease: a hypothesis. J. Parkinson’s Dis. 9, S281–S295 (2019).

    Article  CAS  Google Scholar 

  82. Iranzo, A. et al. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann. Neurol. 82, 419–428 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Iranzo, A. et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study [corrected]. Lancet. Neurol. 9, 1070–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Simuni, T. et al. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurol. 19, 71–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Barber, T. R. et al. Nigrosome 1 imaging in REM sleep behavior disorder and its association with dopaminergic decline. Ann. Clin. Transl. Neurol. 7, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Heller, J. et al. Brain imaging findings in idiopathic REM sleep behavior disorder (RBD) – a systematic review on potential biomarkers for neurodegeneration. Sleep. Med. Rev. 34, 23–33 (2017).

    Article  PubMed  Google Scholar 

  87. Unger, M. M. et al. Assessment of idiopathic rapid-eye-movement sleep behavior disorder by transcranial sonography, olfactory function test, and FP-CIT-SPECT. Mov. Disord. 23, 596–599 (2008).

    Article  PubMed  Google Scholar 

  88. Ehrminger, M. et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain 139, 1180–1188 (2016).

    Article  PubMed  Google Scholar 

  89. Andersen, K. B. et al. Altered sensorimotor cortex noradrenergic function in idiopathic REM sleep behaviour disorder – a PET study. Park. Relat. Disord. 75, 63–69 (2020).

    Article  Google Scholar 

  90. Bedard, M. A. et al. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: a PET imaging study with 18F-FEOBV. Sleep. Med. 58, 35–41 (2019).

    Article  PubMed  Google Scholar 

  91. Liu, S. Y. et al. The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson’s disease: a cross-sectional PET study. Lancet Neurol. 17, 309–316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wile, D. J. et al. Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies. Lancet Neurol. 16, 351–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyamoto, T. et al. Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology 67, 2236–2238 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Kashihara, K., Imamura, T. & Shinya, T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Park. Relat. Disord. 16, 252–255 (2010).

    Article  Google Scholar 

  95. Nagayama, H., Hamamoto, M., Ueda, M., Nagashima, J. & Katayama, Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 76, 249–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Horsager, J. et al. Brain-first vs. body-first Parkinson’s disease – a multi-modal imaging case-control study. Brain 143, 3077–3088 (2020). Case–control multimodal imaging study in PD patients with and without RBD showing that patients with RBD are characterized by initial colonic and cardiac signal loss (‘body-first’), whereas patients without RBD show primary putaminal signal loss (‘brain-first’).

    Article  PubMed  Google Scholar 

  97. Iranzo, A. et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 12, 443–453 (2013).

    Article  PubMed  Google Scholar 

  98. Iranzo, A. et al. Characterization of patients with longstanding idiopathic REM sleep behavior disorder. Neurology 89, 242–248 (2017).

    Article  PubMed  Google Scholar 

  99. Yao, C. et al. Longstanding disease-free survival in idiopathic REM sleep behavior disorder: is neurodegeneration inevitable? Park. Relat. Disord. 54, 99–102 (2018).

    Article  Google Scholar 

  100. Dugger, B. N. et al. Rapid eye movement sleep behavior disorder and subtypes in autopsy-confirmed dementia with Lewy bodies. Mov. Disord. 27, 72–78 (2012).

    Article  PubMed  Google Scholar 

  101. Milber, J. M. et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology 79, 2307–2314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  103. Raunio, A. et al. Lewy-related pathology exhibits two anatomically and genetically distinct progression patterns: a population-based study of Finns aged 85+. Acta Neuropathol. 138, 771–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kosaka, K., Yoshimura, M., Ikeda, K. & Budka, H. Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree – a new disease? Clin. Neuropathol. 3, 185–192 (1984).

    CAS  PubMed  Google Scholar 

  106. Heinzel, S. et al. Gut microbiome signatures of risk and prodromal markers of Parkinson disease. Ann. Neurol. 88, 320–331 (2020).

    Article  PubMed  Google Scholar 

  107. Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 357, 1255–1261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Paul, K. C., Schulz, J., Bronstein, J. M., Lill, C. M. & Ritz, B. R. Association of polygenic risk score with cognitive decline and motor progression in Parkinson disease. JAMA Neurol. 75, 360–366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zimmermann, M. et al. Patient’s perception: shorter and more severe prodromal phase in GBA-associated PD. Eur. J. Neurol. 26, 694–698 (2018).

    Article  PubMed  Google Scholar 

  111. Krohn, L. et al. GBA variants in REM sleep behavior disorder: a multicenter study. Neurology 95, e1008–e1016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pont-Sunyer, C. et al. The prodromal phase of leucine-rich repeat kinase 2-associated Parkinson disease: clinical and imaging studies. Mov. Disord. 32, 726–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Tolosa, E., Vila, M., Klein, C. & Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020).

    Article  PubMed  Google Scholar 

  114. Antony, P. M. A., Diederich, N. J., Krüger, R. & Balling, R. The hallmarks of Parkinson’s disease. FEBS J. 280, 5981–5993 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Lin, K. J. et al. The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. Int. J. Mol. Sci. 20, 5312 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  116. Braak, H. et al. Amygdala pathology in Parkinson’s disease. Acta Neuropathol. 88, 493–500 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. Iwanaga, K. et al. Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 52, 1269–1271 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. den Hartog Jager, W. A. & Bethlem, J. The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. J. Neurol. Neurosurg. Psychiatry 23, 283–290 (1960).

    Article  Google Scholar 

  120. Halliday, G. M., Blumbergs, P. C., Cotton, R. G. H., Blessing, W. W. & Geffen, L. B. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res. 510, 104–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  121. Jellinger, K. Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease. Neurobiol. Aging 8, 556–561 (1987).

    Article  CAS  PubMed  Google Scholar 

  122. Wakabayashi, K. & Takahashi, H. Neuropathology of autonomic nervous system in Parkinson’s disease. Eur. Neurol. 38, 2–7 (1997).

    Article  PubMed  Google Scholar 

  123. Forno, L. S. Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Markesbery, W. R., Jicha, G. A., Liu, H. & Schmitt, F. A. Lewy body pathology in normal elderly subjects. J. Neuropathol. Exp. Neurol. 68, 816–822 (2009).

    Article  PubMed  Google Scholar 

  125. Braak, H., de Vos, R. A. I., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hansen, C. et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hawkes, C. H., Tredici, K. D. & Braak, H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33, 599–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 78, 522–529 (2015).

    Article  PubMed  Google Scholar 

  130. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Noorian, A. R. et al. Alpha-synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiol. Dis. 48, 9–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Lubomski, M. et al. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. 267, 2507–2523 (2019).

    Article  PubMed  Google Scholar 

  133. Burke, R. E., Dauer, W. T. & Vonsattel, J. P. G. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann. Neurol. 64, 485–491 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jellinger, K. A. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta Mol. Basis Dis. 1792, 730–740 (2009).

    Article  CAS  Google Scholar 

  135. Jellinger, K. A. Is Braak staging valid for all types of Parkinson’s disease? J. Neural Transm. 126, 423–431 (2019).

    Article  PubMed  Google Scholar 

  136. Halliday, G., Hely, M., Reid, W. & Morris, J. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol. 115, 409–415 (2008).

    Article  PubMed  Google Scholar 

  137. Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127 (2013).

    Article  PubMed  CAS  Google Scholar 

  138. Arotcarena, M.-L. et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 143, 1462–1475 (2020).

    Article  PubMed  Google Scholar 

  139. Ulusoy, A. et al. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol. 133, 381–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies. Neurology 89, 88–100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kosaka, K. Latest concept of Lewy body disease. Psychiatry Clin. Neurosci. 68, 391–394 (2014).

    Article  PubMed  Google Scholar 

  142. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Popescu, A., Lippa, C. F., Lee, V. M. Y. & Trojanowski, J. Q. Lewy bodies in the amygdala: increase of α-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch. Neurol. 61, 1915–1919 (2004).

    Article  PubMed  Google Scholar 

  144. Clinton, L. K., Blurton-Jones, M., Myczek, K., Trojanowski, J. Q. & LaFerla, F. M. Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci. 30, 7281–7289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Poulopoulos, M., Levy, O. A. & Alcalay, R. N. The neuropathology of genetic Parkinson’s disease. Mov. Disord. 27, 831–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Engelender, S. & Isacson, O. The threshold theory for Parkinson’s disease. Trends Neurosci. 40, 4–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Bassil, F. et al. Amyloid-Beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and tau in a mouse model of Lewy body disorders with Aβ pathology. Neuron 105, 260–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Hall, S. et al. Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinson’s disease. Mov. Disord. 31, 898–905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lehtonen, Š., Sonninen, T. M., Wojciechowski, S., Goldsteins, G. & Koistinaho, J. Dysfunction of cellular proteostasis in Parkinson’s disease. Front. Neurosci. 13, 457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Elbaz, A. et al. CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease. Ann. Neurol. 55, 430–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Miyake, Y. et al. LRRK2 Gly2385Arg polymorphism, cigarette smoking, and risk of sporadic Parkinson’s disease: a case-control study in Japan. J. Neurol. Sci. 297, 15–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Goldman, S. M. et al. Head injury, alpha-synuclein Rep1, and Parkinson’s disease. Ann. Neurol. 71, 40–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, P. C. et al. Examining the reserve hypothesis in Parkinson’s disease: a longitudinal study. Mov. Disord. 34, 1663–1671 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent cooperation with many experts in the design and update of the Movement Disorder Society criteria for prodromal PD, which are an essential basis of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched evidence for the article, made substantial contributions to discussion of the content, contributed to writing of the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Daniela Berg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks C. Caig, A. Espay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, D., Borghammer, P., Fereshtehnejad, SM. et al. Prodromal Parkinson disease subtypes — key to understanding heterogeneity. Nat Rev Neurol 17, 349–361 (2021). https://doi.org/10.1038/s41582-021-00486-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00486-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research