Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Application of spatial-omics to the classification of kidney biopsy samples in transplantation

Abstract

Improvement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies — including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) — can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current practice in post-transplant allograft monitoring.
Fig. 2: MSI data generation and visualization.
Fig. 3: Multiomics data integration strategies.
Fig. 4: Potential future practice in post-transplant allograft monitoring.

References

  1. Poggio, E. D., Augustine, J. J., Arrigain, S., Brennan, D. C. & Schold, J. D. Long-term kidney transplant graft survival-making progress when most needed. Am. J. Transpl. 21, 2824–2832 (2021).

    Article  Google Scholar 

  2. Van Loon, E. et al. Assessing the complex causes of kidney allograft loss. Transplantation 104, 2557–2566 (2020).

    Article  PubMed  Google Scholar 

  3. Mayrdorfer, M. et al. Exploring the complexity of death-censored kidney allograft failure. J. Am. Soc. Nephrol. 32, 1513–1526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    Article  PubMed  Google Scholar 

  5. D’Costa, M. R. et al. Chronic histologic changes are present regardless of HLA mismatches: evidence from HLA-identical living donor kidney transplants. Transplantation 105, e244–e256 (2021).

    Article  PubMed  Google Scholar 

  6. de Vries, A. P. J. et al. Insulin resistance as putative cause of chronic renal transplant dysfunction. Am. J. Kidney Dis. 41, 859–867 (2003).

    Article  PubMed  Google Scholar 

  7. Halloran, P. F., Madill-Thomsen, K. S. & Reeve, J. The molecular phenotype of kidney transplants: insights from the MMDx project. Transplantation 108, 45–71 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Madill-Thomsen, K. et al. Discrepancy analysis comparing molecular and histology diagnoses in kidney transplant biopsies. Am. J. Transplant. 20, 1341–1350 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Loupy, A., Mengel, M. & Haas, M. Thirty years of the International Banff Classification for Allograft Pathology: the past, present, and future of kidney transplant diagnostics. Kidney Int. 101, 678–691 (2022).

    Article  PubMed  Google Scholar 

  10. Callemeyn, J. et al. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 101, 692–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Harden, P. N. et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. Am. J. Transpl. 21, 1603–1611 (2021).

    Article  CAS  Google Scholar 

  12. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamarthée, B. et al. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat. Commun. 14, 4359 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loupy, A. et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ 366, 4923 (2019).

    Article  Google Scholar 

  15. Raynaud, M. et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Lancet Digital Health 3, e795–e805 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Zwart, T. C. et al. Volumetric microsampling for simultaneous remote immunosuppressant and kidney function monitoring in outpatient kidney transplant recipients. Br. J. Clin. Pharmacol. 88, 4854–4869 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, S. et al. Adequate tacrolimus exposure modulates the impact of HLA class II molecular mismatch: a validation study in an American cohort. Am. J. Transpl. 21, 322–328 (2021).

    Article  CAS  Google Scholar 

  18. Meziyerh, S. et al. Tacrolimus and mycophenolic acid exposure are associated with biopsy-proven acute rejection: a study to provide evidence for longer-term target ranges. Clin. Pharmacol. Ther. 114, 192–200 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Gold, A., Tönshoff, B., Döhler, B. & Süsal, C. Association of graft survival with tacrolimus exposure and late intra-patient tacrolimus variability in pediatric and young adult renal transplant recipients — an international CTS registry analysis. Transpl. Int. 33, 1681–1692 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. van den Broek, D. A. J. et al. The clinical utility of post-transplant monitoring of donor-specific antibodies in stable renal transplant recipients: a consensus report with guideline statements for clinical practice. Transpl. Int. 36, 11321 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doberer, K. et al. Torque teno virus load is associated with subclinical alloreactivity in kidney transplant recipients: a prospective observational trial. Transplantation 105, 2112–2118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, S. et al. European Society of Organ Transplantation consensus statement on testing for non-invasive diagnosis of kidney allograft rejection. Transpl. Int. 36, 12115 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Loon, E. et al. Automated urinary chemokine assays for noninvasive detection of kidney transplant rejection: a prospective cohort study. Am. J. Kidney Dis. 83, 467–476 (2023).

    Article  PubMed  Google Scholar 

  24. Nankivell, B. J. et al. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 349, 2326–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kataria, A., Kumar, D. & Gupta, G. Donor-derived cell-free DNA in solid-organ transplant diagnostics: indications, limitations, and future directions. Transplantation 105, 1203–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Eckardt, K.-U., Kasiske, B. L. & Zeier, M. G. Special issue: KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transpl. 9, s1–s155 (2009).

    Article  Google Scholar 

  27. Bloom, R. D. & Augustine, J. J. Beyond the biopsy: monitoring immune status in kidney recipients. Clin. J. Am. Soc. Nephrol. 16, 1413–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naesens, M. et al. The Banff 2022 Kidney Meeting report: reappraisal of microvascular inflammation and the role of biopsy-based transcript diagnostics. Am. J. Transpl. 24, 338–349 (2023).

    Article  Google Scholar 

  29. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roufosse, C. et al. The Banff 2022 Kidney Meeting work plan: data-driven refinement of the Banff Classification for renal allografts. Am. J. Transplant. 24, 350–361 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haas, M. et al. The Banff 2017 Kidney Meeting report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 18, 293–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoo, D. et al. An automated histological classification system for precision diagnostics of kidney allografts. Nat. Med. 29, 1211–1220 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Hermsen, M. et al. Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30, 1968–1979 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Farris, A. B. et al. Banff Digital Pathology working group: image bank, artificial intelligence algorithm, and challenge trial developments. Transpl. Int. 36, 11783 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kers, J. et al. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digital Health 4, e18–e26 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Cristoferi, I. et al. Multiomic profiling of transplant glomerulopathy reveals a novel T-cell dominant subclass. Kidney Int. 105, 812–823 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Sellarés, J. et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am. J. Transpl. 13, 971–983 (2013).

    Article  Google Scholar 

  38. Halloran, P. F. et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am. J. Transpl. 13, 2865–2874 (2013).

    Article  CAS  Google Scholar 

  39. Reeve, J. et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am. J. Transpl. 13, 645–655 (2013).

    Article  CAS  Google Scholar 

  40. Reeve, J. et al. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers. Am. J. Transpl. 19, 2719–2731 (2019).

    Article  CAS  Google Scholar 

  41. Jaksik, R., Iwanaszko, M., Rzeszowska-Wolny, J. & Kimmel, M. Microarray experiments and factors which affect their reliability. Biol. Direct 10, 46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Loupy, A. et al. The Banff 2019 Kidney Meeting Report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 20, 2318–2331 (2020).

    Article  CAS  Google Scholar 

  43. Hidalgo, L. G. et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am. J. Transpl. 10, 1812–1822 (2010).

    Article  CAS  Google Scholar 

  44. Yazdani, S. et al. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney Int. 95, 188–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Xinmin, L. & Cun-Yu, W. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral. Sci. 13, 36 (2021).

    Article  Google Scholar 

  46. Zhang, Y. et al. Single‐cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 40, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuppe, C., Perales-Patón, J., Saez-Rodriguez, J. & Kramann, R. Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrol. Dial. Transpl. 37, 628–637 (2022).

    Article  CAS  Google Scholar 

  48. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Subramanian, A. et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat. Commun. 10, 5462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stewart, B. J., Ferdinand, J. R. & Clatworthy, M. R. Using single-cell technologies to map the human immune system — implications for nephrology. Nat. Rev. Nephrol. 16, 112–128 (2020).

    Article  PubMed  Google Scholar 

  53. Liao, J. et al. Single-cell RNA sequencing of human kidney. Sci. Data 7, 4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Malone, A. F. & Humphreys, B. D. Single-cell transcriptomics and solid organ transplantation. Transplantation 103, 1776–1782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang, W. et al. DeepCCI: a deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data. Bioinformatics 39, btad596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leckie-Harre, A., Silverman, I., Wu, H., Humphreys, B. D. & Malone, A. F. Sequencing of physically interacting cells in human kidney allograft rejection to infer contact-dependent immune cell transcription. Transplantation 108, 421–429 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shakoori, A. R. in Chromosome Structure and Aberrations (eds Bhat, T., Wani, A.) 343–367 https://doi.org/10.1007/978-81-322-3673-3_16 (Springer, 2017).

  60. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Janesick, A. et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, Y. et al. Spatial transcriptomics: technologies, applications and experimental considerations. Genomics 115, 110671 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, L. et al. Clinical and translational values of spatial transcriptomics. Signal. Transduct. Target. Ther. 7, 111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, X. et al. Clinical challenges of tissue preparation for spatial transcriptome. Clin. Transl. Med. 12, e669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes — next generation tools for tissue exploration. BioEssays 42, e1900221 (2020).

    Article  PubMed  Google Scholar 

  68. Pour, M. & Yanai, I. New adventures in spatial transcriptomics. Dev. Cell 57, 1209–1210 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Slavov, N. Learning from natural variation across the proteomes of single cells. PLoS Biol. 20, e3001512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verma, S. K. & Molitoris, B. A. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin. Nephrol. 35, 96–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Colombo, S. et al. Phospholipidome of endothelial cells shows a different adaptation response upon oxidative, glycative and lipoxidative stress. Sci. Rep. 8, 12365 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dumas, S. J. et al. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marcu, R. et al. Human organ-specific endothelial cell heterogeneity. iScience 4, 20–35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Bancroft J., S. A. e., The Theory and Practice of Histological Techniques. 2nd ed. (Longman Group Limited, 1982).

  77. Sheng, W. et al. Multiplex immunofluorescence: a powerful tool. cancer immunotherapy. Int. J. Mol. Sci. 24, 3086 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40, 135–153 (2020).

    Article  Google Scholar 

  79. Bosisio, F. M. et al. Next-generation pathology using multiplexed immunohistochemistry: mapping tissue architecture at single-cell level. Front. Oncol. 12, 918900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Schapiro, D. et al. HistoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Le Rochais, M., Hemon, P., Pers, J.-O. & Uguen, A. Application of high-throughput imaging mass cytometry hyperion in cancer research. Front. Immunol. 13, 859414 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hickey, J. W., Tan, Y., Nolan, G. P. & Goltsev, Y. Strategies for accurate cell type identification in CODEX multiplexed imaging data. Front. Immunol. 12, 727626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, J.-R., Fallahi-Sichani, M., Chen, J.-Y. & Sorger, P. K. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kennedy-Darling, J. et al. Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction. Eur. J. Immunol. 51, 1262–1277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Calvani, J. et al. In situ multiplex immunofluorescence analysis of the inflammatory burden in kidney allograft rejection: a new tool to characterize the alloimmune response. Am. J. Transpl. 20, 942–953 (2020).

    Article  CAS  Google Scholar 

  88. Kim, M.-S. et al. Multiplex immunofluorescence assay of infiltrating mononuclear cell subsets in acute T-cell-mediated rejection and BK virus-associated nephropathy in the allograft kidney. Diagnostics 12, 268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Neumann, E. K. et al. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int. 101, 137–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Alexander, M. P. et al. Exploring the single-cell immune landscape of kidney allograft inflammation using imaging mass cytometry. Am. J. Transpl. 24, 549–563 (2023).

    Article  Google Scholar 

  91. Zhu, X., Xu, T., Peng, C. & We, S. Advances in MALDI mass spectrometry imaging single cell and tissues. Front. Chem. 9, 782432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Unsihuay, D., Mesa Sanchez, D. & Laskin, J. Quantitative mass spectrometry imaging of biological systems. Annu. Rev. Phys. Chem. 72, 307–329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baquer, G. et al. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. Mass. Spectrom. Rev. 42, 1927–1964 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Denti, V. et al. Antigen retrieval and its effect on the MALDI-MSI of lipids in formalin-fixed paraffin-embedded tissue. J. Am. Soc. Mass. Spectrom. 31, 1619–1624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, A., McDermaid, A., Xu, J., Chang, Y. & Ma, Q. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 38, 1007–1022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    Article  PubMed  Google Scholar 

  99. Efremova, M. & Teichmann, S. A. Computational methods for single-cell omics across modalities. Nat. Methods 17, 14–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Kleino, I., Frolovaitė, P., Suomi, T. & Elo, L. L. Computational solutions for spatial transcriptomics. Comput. Struct. Biotechnol. J. 20, 4870–4884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41, 757–770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 25, bbae052 (2024).

    Google Scholar 

  104. Suo, L., Murillo, M. C., Gallay, B. & Hod-Dvorai, R. Discrepancy analysis between histology and molecular diagnoses in kidney allograft biopsies: a single-center experience. Int. J. Mol. Sci. 24, 13817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kaya, I. et al. Histology-compatible MALDI mass spectrometry based imaging of neuronal lipids for subsequent immunofluorescent staining. Anal. Chem. 89, 4685–4694 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vicari, M. et al., Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01937-y (2023).

  108. Dunne, J. et al. Evaluation of antibody-based single cell type imaging techniques coupled to multiplexed imaging of N-glycans and collagen peptides by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Bioanal. Chem. 415, 7011–7024 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. El-Achkar, T. M. et al. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol. Genomics 53, 1–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Salem, F. et al. The spatially resolved transcriptional profile of acute T cell-mediated rejection in a kidney allograft. Kidney Int. 101, 131–136 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Rietjens, R. et al. FC 120: lipid changes as early indicator for diabetes induced renal pathology. Nephrol. Dial. Transpl. 37, gfac125.002 (2022).

    Article  Google Scholar 

  112. Moore, J. L., Patterson, N. H., Norris, J. L. & Caprioli, R. M. Prospective on imaging mass spectrometry in clinical diagnostics. Mol. Cell. Proteom. 22, 100576 (2023).

    Article  CAS  Google Scholar 

  113. Stella, M. et al. Histology-guided proteomic analysis to investigate the molecular profiles of clear cell renal cell carcinoma grades. J. Proteom. 191, 38–47 (2019).

    Article  CAS  Google Scholar 

  114. Kriegsmann, M. et al. Mass spectrometry imaging differentiates chromophobe renal cell carcinoma and renal oncocytoma with high accuracy. J. Cancer 11, 6081–6089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Möginger, U., Marcussen, N. & Jensen, O. N. Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections. Oncotarget 11, 3998–4015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nizioł, J. et al. Localization of metabolites of human kidney tissue with infrared laser-based selected reaction monitoring mass spectrometry imaging and silver-109 nanoparticle-based surface assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 92, 4251–4258 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhang, J., Li, S. Q., Lin, J. Q., Yu, W. & Eberlin, L. S. Mass spectrometry imaging enables discrimination of renal oncocytoma from renal cell cancer subtypes and normal kidney tissues. Cancer Res. 80, 689–698 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Erlmeier, F. et al. MALDI mass spectrometry imaging — prognostic pathways and metabolites for renal cell carcinomas. Cancers 14, 1763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oppenheimer, S. R., Mi, D., Sanders, M. E. & Caprioli, R. M. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J. Proteome Res. 9, 2182–2190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grove, K. J. et al. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J. Lipid Res. 55, 1375–1385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith, A. et al. Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry. Kidney Blood Press. Res. 45, 233–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Z. et al. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging. Acta Pharm. Sin. B 11, 3665–3677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rietjens, R. G. J. et al. Phosphatidylinositol metabolism of the renal proximal tubule S3 segment is disturbed in response to diabetes. Sci. Rep. 13, 6261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Smaalen, T. C. et al. Rapid identification of ischemic injury in renal tissue by mass-spectrometry imaging. Anal. Chem. 91, 3575–3581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rao, S. et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am. J. Physiol. Renal Physiol. 310, F1136–F1147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abdelmoula, W. M. et al. massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation. Bioinformatics 38, 2015–2021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ly, A. et al. Site‐to‐site reproducibility and spatial resolution in MALDI–MSI of peptides from formalin‐fixed paraffin‐embedded samples. Proteom. Clin. Appl. 13, e1800029 (2019).

    Article  Google Scholar 

  128. Boskamp, T. et al. Cross-normalization of MALDI mass spectrometry imaging data improves site-to-site reproducibility. Anal. Chem. 93, 10584–10592 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Denti, V. et al. Reproducible lipid alterations in patient-derived breast cancer xenograft FFPE tissue identified with MALDI MSI for pre-clinical and clinical application. Metabolites 11, 577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Alexandrov, T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu. Rev. Biomed. Data Sci. 3, 61–87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project is funded by the Dutch Kidney Foundation, projects 17OKG23 and 21OK + 015. The authors used ChatGPT from OpenAI for language editing of the initial draft manuscript; the tool was not used for creation of any original content or concepts, and the authors take full accountability for the work.

Author information

Authors and Affiliations

Authors

Contributions

A.P.J.dV., P.T., B.H. and J.K. researched data for the article. A.P.J.dV., P.T., B.M.vdB., B.H. and J.K. made substantial contributions to discussions of the content of the article. A.P.J.dV., P.T., B.H. and J.K. wrote the manuscript. All authors reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Aiko P. J. de Vries.

Ethics declarations

Competing interests

J.K. is a consultant for Aiosyn B.V. and Alentis Pharmaceuticals AG, coordinates a central biopsy review commission (SIRIUS-LN trial) for Novartis AG and receives speaker fees from Chiesi pharma. B.H. is employed by Bruker Daltonics GmbH & Co. KG, which is a vendor of analytical equipment and associated software. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Andrew F. Malone, Isabella Piga and Candice Roufosse for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasca, P., van den Berg, B.M., Rabelink, T.J. et al. Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00861-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00861-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research