Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural biology and molecular pharmacology of voltage-gated ion channels

Abstract

Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture and classification of voltage-gated ion channels.
Fig. 2: Structural basis for ion selectivity.
Fig. 3: Electromechanical coupling in voltage-gated ion channels.
Fig. 4: Multiple inactivation mechanisms for voltage-gated ion channels.
Fig. 5: Structural mapping of drug binding sites on Nav, Cav and Kv channels.

Similar content being viewed by others

References

  1. Galvani, L. De viribus electricitatis in motu musculari commentarius. Bon Sci. Art. Inst. Acad. Comm. 7, 363–418 (1791).

    Google Scholar 

  2. Cole, K. S. & Curtis, H. J. Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).

    Article  Google Scholar 

  4. Hodgkin, A. L. & Huxley, A. F. Resting and action potentials in single nerve fibres. J. Physiol. 104, 176–195 (1945).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodgkin, A. L. & Huxley, A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflug. Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  9. Verkhratsky, A., Krishtal, O. A. & Petersen, O. H. From Galvani to patch clamp: the development of electrophysiology. Pflug. Arch. 453, 233–247 (2006). This review article summarizes the study history of biological electricity.

    Article  CAS  Google Scholar 

  10. Strazzullo, P. & Leclercq, C. Sodium. Adv. Nutr. 5, 188–190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zacchia, M., Abategiovanni, M. L., Stratigis, S. & Capasso, G. Potassium: from physiology to clinical implications. Kidney Dis. 2, 72–79 (2016).

    Article  Google Scholar 

  12. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4, 29–42.23 (1883).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reuter, H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J. Physiol. 192, 479–492 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127, 131–139 (1939).

    Article  Google Scholar 

  17. Waxman, S. G. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3, 141–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, 2001).

  19. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Bagal, S. K. et al. Ion channels as therapeutic targets: a drug discovery perspective. J. Med. Chem. 56, 593–624 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Frazao, B., Vasconcelos, V. & Antunes, A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar. Drugs 10, 1812–1851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Llewellyn, L. E. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep. 23, 200–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Dolphin, A. C. A short history of voltage-gated calcium channels. Br. J. Pharmacol. 147, S56–S62 (2006). This brief review elegantly summarizes the research history and general knowledge of voltage-gated calcium channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jan, L. Y. & Jan, Y. N. Voltage-gated potassium channels and the diversity of electrical signalling. J. Physiol. 590, 2591–2599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, X. & Jan, L. Y. Targeting potassium channels in cancer. J. Cell Biol. 206, 151–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015). This is a comprehensive and updated review on voltage-gated calcium channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahern, C. A., Payandeh, J., Bosmans, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147, 1–24 (2016). This comprehensive review affords an updated overview of voltage-gated sodium channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alsaloum, M., Higerd, G. P., Effraim, P. R. & Waxman, S. G. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat. Rev. Neurol. 16, 689–705 (2020). This is a timely review that summarizes efforts on drug discovery targeting peripheral voltage-gated sodium channels for pain relief.

    Article  CAS  PubMed  Google Scholar 

  30. Meisler, M. H., Hill, S. F. & Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat. Rev. Neurosci. 22, 152–166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunklaus, A. et al. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 145, 4275–4286 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  33. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X. et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486, 130–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao, S. et al. Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na+ channels in nanodisc. Proc. Natl Acad. Sci. USA 117, 14187–14193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, Y. et al. Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat. Commun. 13, 5682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, J. et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 196–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Kintzer, A. F. & Stroud, R. M. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 258–262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Martinac, B., Saimi, Y. & Kung, C. Ion channels in microbes. Physiol. Rev. 88, 1449–1490 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. de Lera Ruiz, M. & Kraus, R. L. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J. Med. Chem. 58, 7093–7118 (2015).

    Article  PubMed  Google Scholar 

  42. Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005). This research article reports the high-resolution crystal structure of a prototypical Kv channel.

    Article  CAS  PubMed  Google Scholar 

  43. Shen, H. et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355, eaal4326 (2017). This research article reports the first structure of a eukaryotic voltage-gated sodium channel.

    Article  PubMed  Google Scholar 

  44. Wu, J. P. et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350, eaad2395 (2015). This research article reports the first structure of a eukaryotic Cav channel complex.

    Article  Google Scholar 

  45. Whicher, J. R. & MacKinnon, R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353, 664–669 (2016). This research article reports the first structure of a domain-non-swapped VGIC, expanding our understanding of the VGIC fold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, C. H. & MacKinnon, R. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168, 111–120.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao, X., Hite, R. K. & MacKinnon, R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541, 46–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hite, R. K., Tao, X. & MacKinnon, R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature 541, 52–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Tao, X., Lee, A., Limapichat, W., Dougherty, D. A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998). This landmark research article reports the Nobel-winning crystal structure o KcsA.

    Article  CAS  PubMed  Google Scholar 

  58. Aryal, P., Sansom, M. S. P. & Tucker, S. J. Hydrophobic gating in ion channels. J. Mol. Biol. 427, 121–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013). This reseach article exemplifes the resolution revolution of cryo-EM, which marks the beginning of a new era of structral biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Zalk, R. et al. Structure of a mammalian ryanodine receptor. Nature 517, 44–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Peng, W. et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354, aah5324 (2016).

    Article  PubMed  Google Scholar 

  63. Ren, D. et al. A sperm ion channel required for sperm motility and male fertility. Nature 413, 603–609 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, S., Ke, M., Zhang, Y., Yan, Z. & Wu, J. Structure of a mammalian sperm cation channel complex. Nature 595, 746–750 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Jentsch, T. J. & Pusch, M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol. Rev. 98, 1493–1590 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. DeCoursey, T. E. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol. Rev. 93, 599–652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Mosher, H. S., Fuhrman, F. A., Buchwald, H. D. & Fischer, H. G. Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science 144, 1100–1110 (1964).

    Article  CAS  PubMed  Google Scholar 

  72. Reed, J. K. & Raftery, M. A. Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 15, 944–953 (1976).

    Article  CAS  PubMed  Google Scholar 

  73. Satin, J. et al. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 1202–1205 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Tate, S. et al. Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nat. Neurosci. 1, 653–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Goldin, A. L. Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871–894 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Watanabe, E. et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 20, 7743–7751 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noland, C. L. et al. Structure-guided unlocking of NaX reveals a non-selective tetrodotoxin-sensitive cation channel. Nat. Commun. 13, 1416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pan, X. et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1. Science 362, eaau2486 (2018). This research article reports the first structure of a human Nav channel, allowing precise mapping of many pathogenic mutations.

    Article  PubMed  Google Scholar 

  80. Yan, Z. et al. Structure of the Nav1.4-β1 complex from electric eel. Cell 170, 470–482.e11 (2017). This article reports the structure of a Nav channel isolated from electric eel, which exhibits a different conformation from that of NavPaS. An allosteric blocking mechanism was proposed to account for fast inactivation of Nav channels based on structural comparison of EeNav1.4 and NavPaS.

    Article  CAS  PubMed  Google Scholar 

  81. Pan, X. et al. Comparative structural analysis of human Nav1.1 and Nav1.5 reveals mutational hotspots for sodium channelopathies. Proc. Natl Acad. Sci. USA 118, e2100066118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Z., Wu, Q. & Yan, N. A structural atlas of druggable sites on Nav channels. Channels 18, 2287832 (2024).

    Article  PubMed  Google Scholar 

  84. Pan, X. et al. Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA. Science 363, 1309–1313 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. O’Malley, H. A. & Isom, L. L. Sodium channel beta subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504 (2015). This is a comprehensive review on the auxiliary subunits of Nav channels.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Sather, W. A. et al. Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron 11, 291–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Randall, A. & Tsien, R. W. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci. 15, 2995–3012 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Williams, M. E. et al. Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science 257, 389–395 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Ellinor, P. T. et al. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363, 455–458 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Yao, X., Gao, S. & Yan, N. Structural biology of voltage-gated calcium channels. Channels 18, 2290807 (2024).

    Article  PubMed  Google Scholar 

  94. Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution. Nature 537, 191–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, Y. et al. Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature 576, 492–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Gao, S., Yao, X. & Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 596, 143–147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yao, X. et al. Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments. Nat. Commun. 13, 7358 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yao, X., Gao, S. & Yan, N. Structural basis for pore blockade of human voltage-gated calcium channel Cav1.3 by motion sickness drug cinnarizine. Cell Res. 32, 946–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He, L. et al. Structure, gating, and pharmacology of human CaV3.3 channel. Nat. Commun. 13, 2084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao, S. et al. Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine. Cell 186, 5363–5374.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, Z. et al. EMC chaperone-CaV structure reveals an ion channel assembly intermediate. Nature 619, 410–419 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, J. et al. Structural basis for human Cav3.2 inhibition by selective antagonists. Cell Res. 34, 440–450 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dolphin, A. C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J. Physiol. 594, 5369–5390 (2016). This is a comprehensive review on the auxiliary subunits of Cav channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gutman, G. A. et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).

    Article  CAS  PubMed  Google Scholar 

  106. Brown, B. S. & Yu, S. P. Modulation and genetic identification of the M channel. Prog. Biophys. Mol. Biol. 73, 135–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Bocksteins, E. & Snyders, D. J. Electrically silent Kv subunits: their molecular and functional characteristics. Physiology 27, 73–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Pongs, O. & Schwarz, J. R. Ancillary subunits associated with voltage-dependent K+ channels. Physiol. Rev. 90, 755–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Yamanouchi, D., Kasuya, G., Nakajo, K., Kise, Y. & Nureki, O. Dual allosteric modulation of voltage and calcium sensitivities of the Slo1-LRRC channel complex. Mol. Cell 83, 4555–4569.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Isom, L. L., De Jongh, K. S. & Catterall, W. A. Auxiliary subunits of voltage-gated ion channels. Neuron 12, 1183–1194 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Bucher, D., Guidoni, L., Carloni, P. & Rothlisberger, U. Coordination numbers of K+ and Na+ ions inside the selectivity filter of the KcsA potassium channel: insights from first principles molecular dynamics. Biophys. J. 98, L47–L49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou, Y. F., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, M. & MacKinnon, R. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. J. Mol. Biol. 338, 839–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Cordero-Morales, J. F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Flavell, R. R. & Muir, T. W. Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc. Chem. Res. 42, 107–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, D. M. & Nimigean, C. M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb. Perspect. Biol. 8, a029231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Choe, S. Potassium channel structures. Nat. Rev. Neurosci. 3, 115–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 43, 4265–4277 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Baker, L. A. & Rubinstein, J. L. Radiation damage in electron cryomicroscopy. Methods Enzymol. 481, 371–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Marques, M. A., Purdy, M. D. & Yeager, M. CryoEM maps are full of potential. Curr. Opin. Struct. Biol. 58, 214–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yu, H. et al. Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field. J. Chem. Theory Comput. 6, 774–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gonzalez, C. et al. K+ channels: function-structural overview. Compr. Physiol. 2, 2087–2149 (2012).

    Article  PubMed  Google Scholar 

  124. Hille, B. & Schwarz, W. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72, 409–442 (1978).

    Article  CAS  PubMed  Google Scholar 

  125. Kopfer, D. A. et al. Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science 346, 352–355 (2014).

    Article  PubMed  Google Scholar 

  126. Noskov, S. Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Hess, P., Lansman, J. B. & Tsien, R. W. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88, 293–319 (1986).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F. & Tsien, R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Hess, P. & Tsien, R. W. Mechanism of ion permeation through calcium channels. Nature 309, 453–456 (1984).

    Article  CAS  PubMed  Google Scholar 

  132. Almers, W. & McCleskey, E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol. 353, 585–608 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsien, R. W., Hess, P., McCleskey, E. W. & Rosenberg, R. L. Calcium channels: mechanisms of selectivity, permeation, and block. Annu. Rev. Biophys. Biophys. Chem. 16, 265–290 (1987).

    Article  CAS  PubMed  Google Scholar 

  134. Zhao, Y. Y. et al. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177, 1495–1506.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, Z., Mondal, A. & Minor, D. L. Jr. Structural basis for CaVα2δ:gabapentin binding. Nat. Struct. Mol. Biol. 30, 735–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, Z. et al. Structural basis for different ω-agatoxin IVA sensitivities of the P-type and Q-type Cav2.1 channels. Cell Res. 34, 455–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Cibulsky, S. M. & Sather, W. A. The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel: block by Ca2+ entering from the intracellular pore entrance. J. Gen. Physiol. 116, 349–362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Talavera, K. et al. Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+ channel alpha(1G). J. Biol. Chem. 276, 45628–45635 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Favre, I., Moczydlowski, E. & Schild, L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys. J. 71, 3110–3125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, J. R. et al. Simulating the ion permeation and ion selection for a eukaryotic voltage-gated sodium channel NavPaS. Protein Cell 9, 580–585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaau2596 (2018).

    Article  PubMed  Google Scholar 

  142. Alberini, G. et al. Molecular dynamics simulations of ion permeation in human voltage-gated sodium channels. J. Chem. Theory Comput. 19, 2953–2972 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhorov, B. S. Possible mechanism of ion selectivity in eukaryotic voltage-gated sodium channels. J. Phys. Chem. B 125, 2074–2088 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, A., Yu, H., Liu, C. & Song, C. The Ca2+ permeation mechanism of the ryanodine receptor revealed by a multi-site ion model. Nat. Commun. 11, 922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, C., Zhang, A., Yan, N. & Song, C. Atomistic details of charge/space competition in the Ca2+ selectivity of ryanodine receptors. J. Phys. Chem. Lett. 12, 4286–4291 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Ives, C. M., Thomson, N. J. & Zachariae, U. A cooperative knock-on mechanism underpins Ca2+-selective cation permeation in TRPV channels. J. Gen. Physiol. 155, e202213226 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Long, S. B., Campbell, E. B. & MacKinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005). This research article for the first time reports a classic structure of the voltage-sensing domain, setting the foundation for understanding electromechanical coupling mechanism in VGICs.

    Article  CAS  PubMed  Google Scholar 

  149. Benarroch, E. E. HCN channels: function and clinical implications. Neurology 80, 304–310 (2013).

    Article  PubMed  Google Scholar 

  150. Ye, W. et al. Activation and closed-state inactivation mechanisms of the human voltage-gated KV4 channel complexes. Mol. Cell 82, 2427–2442.e24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang, G. et al. Unwinding and spiral sliding of S4 and domain rotation of VSD during the electromechanical coupling in Nav1.7. Proc. Natl Acad. Sci. USA 119, e2209164119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ye, F. et al. Voltage-gating and cytosolic Ca2+ activation mechanisms of Arabidopsis two-pore channel AtTPC1. Proc. Natl Acad. Sci. USA 118, e2113946118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, C. H. & MacKinnon, R. Voltage sensor movements during hyperpolarization in the HCN channel. Cell 179, 1582–1589.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mandala, V. S. & MacKinnon, R. The membrane electric field regulates the PIP2-binding site to gate the KCNQ1 channel. Proc. Natl Acad. Sci. USA 120, e2301985120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, G. et al. High-resolution structures of human Nav1.7 reveal gating modulation through α-π helical transition of S6IV. Cell Rep. 39, 110735 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Zubcevic, L. & Lee, S. Y. The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58, 314–323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee, S. Y., Banerjee, A. & MacKinnon, R. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K channels. PLoS Biol. 7, 676–686 (2009).

    Article  Google Scholar 

  158. Huang, W., Liu, M., Yan, S. F. & Yan, N. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 8, 401–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zheng, Y. et al. Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel. Neuron 110, 237–247.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Demo, S. D. & Yellen, G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753 (1991).

    Article  CAS  PubMed  Google Scholar 

  162. Fan, C. et al. Ball-and-chain inactivation in a calcium-gated potassium channel. Nature 580, 288–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang, J. et al. N-Type fast inactivation of a eukaryotic voltage-gated sodium channel. Nat. Commun. 13, 2713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. Cuello, L. G., Jogini, V., Cortes, D. M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Reddi, R., Matulef, K., Riederer, E. A., Whorton, M. R. & Valiyaveetil, F. I. Structural basis for C-type inactivation in a Shaker family voltage-gated K+ channel. Sci. Adv. 8, eabm8804 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Armstrong, C. M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590 (1977).

    Article  CAS  PubMed  Google Scholar 

  168. Chen, L. Q., Santarelli, V., Horn, R. & Kallen, R. G. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Vassilev, P. M., Scheuer, T. & Catterall, W. A. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241, 1658–1661 (1988).

    Article  CAS  PubMed  Google Scholar 

  170. West, J. W. et al. A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. Natl Acad. Sci. USA 89, 10910–10914 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Budde, T., Meuth, S. & Pape, H. C. Calcium-dependent inactivation of neuronal calcium channels. Nat. Rev. Neurosci. 3, 873–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Eckert, R. & Chad, J. E. Inactivation of Ca channels. Prog. Biophys. Mol. Biol. 44, 215–267 (1984).

    Article  CAS  PubMed  Google Scholar 

  173. Lee, K. S., Marban, E. & Tsien, R. W. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J. Physiol. 364, 395–411 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Zuhlke, R. D. & Reuter, H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc. Natl Acad. Sci. USA 95, 3287–3294 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chien, A. J., Carr, K. M., Shirokov, R. E., Rios, E. & Hosey, M. M. Identification of palmitoylation sites within the L-type calcium channel β2a subunit and effects on channel function. J. Biol. Chem. 271, 26465–26468 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Abderemane-Ali, F., Findeisen, F., Rossen, N. D. & Minor, D. L. Jr. A selectivity filter gate controls voltage-gated calcium channel calcium-dependent inactivation. Neuron 101, 1134–1149.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Patil, P. G., Brody, D. L. & Yue, D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron 20, 1027–1038 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Dong, Y. et al. Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Rep. 37, 109931 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Hutchings, C. J., Colussi, P. & Clark, T. G. Ion channels as therapeutic antibody targets. MAbs 11, 265–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Banerjee, A., Lee, A., Campbell, E. & Mackinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. eLife 2, e00594 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Selvakumar, P. et al. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat. Commun. 13, 3854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tyagi, A. et al. Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug. Proc. Natl Acad. Sci. USA 119, e2113536119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yao, X. et al. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels. Cell 185, 4801–4810.e13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Asai, T. et al. Cryo-EM structure of K+-bound hERG channel complexed with the blocker astemizole. Structure 29, 203–212.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Lenaeus, M. J., Burdette, D., Wagner, T., Focia, P. J. & Gross, A. Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Biochemistry 53, 5365–5373 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Wu, Q. et al. Structural mapping of Nav1.7 antagonists. Nat. Commun. 14, 3224 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gao, S. & Yan, N. Structural basis of the modulation of the voltage-gated calcium ion channel Cav 1.1 by dihydropyridine compounds. Angew. Chem. Int. Ed. Engl. 60, 3131–3137 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Li, X. et al. Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist. Nat. Commun. 13, 1286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang, J. et al. Structural basis for NaV1.7 inhibition by pore blockers. Nat. Struct. Mol. Biol. 29, 1208–1216 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Li, T. et al. Structural basis for the modulation of human KCNQ4 by small-molecule drugs. Mol. Cell 81, 25–37.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Li, X. et al. Molecular basis for ligand activation of the human KCNQ2 channel. Cell Res. 31, 52–61 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Huang, J., Fan, X., Jin, X., Teng, L. & Yan, N. Dual-pocket inhibition of Nav channels by the antiepileptic drug lamotrigine. Proc. Natl Acad. Sci. USA 120, e2309773120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 (2020).

    Article  PubMed  Google Scholar 

  195. Huang, J. et al. Cannabidiol inhibits Nav channels through two distinct binding sites. Nat. Commun. 14, 3613 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Catterall, W. A. et al. Voltage-gated ion channels and gating modifier toxins. Toxicon 49, 124–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Clairfeuille, T. et al. Structural basis of α-scorpion toxin action on Nav channels. Science 363, eaav8573 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Jiang, D. et al. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat. Commun. 12, 128 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Ahuja, S. et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350, aac5464 (2015).

    Article  PubMed  Google Scholar 

  200. Li, Y. et al. Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nat. Commun. 14, 1030 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ma, D. et al. Ligand activation mechanisms of human KCNQ2 channel. Nat. Commun. 14, 6632 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pan, Y. P. et al. Cortisone dissociates the family K channels from their β subunits. Nat. Chem. Biol. 4, 708–714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vega-Vela, N. E. et al. L-Type calcium channels modulation by estradiol. Mol. Neurobiol. 54, 4996–5007 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Lansky, S. et al. A pentameric TRPV3 channel with a dilated pore. Nature 621, 206–214 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  CAS  PubMed  Google Scholar 

  208. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li, Z. Q. et al. Structure of human Nav1.5 reveals the fast inactivation-related segments as a mutational hotspot for the long QT syndrome. Proc. Natl Acad. Sci. USA 118, e2100069118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Li, Z. Q. et al. Structural basis for pore blockade of the human cardiac sodium channel Nav1.5 by the antiarrhythmic drug quinidine. Angew. Chem. Int. Ed. Engl. 60, 11474–11480 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Jiang, D. et al. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 184, 5151–5162.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Jiang, D. et al. Structure of the cardiac sodium channel. Cell 180, 122–134.e10 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Lenaeus, M., Gamal El-Din, T. M., Tonggu, L., Zheng, N. & Catterall, W. A. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. Nat. Cardiovasc. Res. 2, 587–594 (2023).

    Article  Google Scholar 

  214. Fan, X., Huang, J., Jin, X. & Yan, N. Cryo-EM structure of human voltage-gated sodium channel Nav1.6. Proc. Natl Acad. Sci. USA 120, e2220578120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kschonsak, M. et al. Cryo-EM reveals an unprecedented binding site for NaV1.7 inhibitors enabling rational design of potent hybrid inhibitors. eLife 12, e84151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu, H. et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176, 702–715.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Wisedchaisri, G. et al. Structural basis for high-affinity trapping of the NaV1.7 channel in its resting state by tarantula toxin. Mol. Cell 81, 38–48.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Huang, X. et al. Structural basis for high-voltage activation and subtype-specific inhibition of human Nav1.8. Proc. Natl Acad. Sci. USA 119, e2208211119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wei, Y. et al. Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors. Nat. Commun. 15, 2772 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gao, Y. et al. Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3. Nat. Commun. 14, 516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Botte, M. et al. Apo and ligand-bound high resolution Cryo-EM structures of the human Kv3.1 channel reveal a novel binding site for positive modulators. PNAS Nexus 1, pgac083 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Willegems, K. et al. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat. Commun. 13, 3760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ma, D. et al. Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers. Proc. Natl Acad. Sci. USA 119, e2207067119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang, S. Y. et al. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01515-y (2024).

  225. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  226. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tan, X. F. et al. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. Sci. Adv. 8, eabm7814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mandala, V. S. & MacKinnon, R. Voltage-sensor movements in the Eag Kv channel under an applied electric field. Proc. Natl Acad. Sci. USA 119, e2214151119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Li, Z. et al. Dissection of the structure-function relationship of Nav channels. Proc. Natl Acad. Sci. USA 121, e2322899121 (2024).

    Article  CAS  PubMed  Google Scholar 

  230. Wisedchaisri, G. et al. Resting-state structure and gating mechanism of a voltage-gated sodium channel. Cell 178, 993–1003.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wu, X., Howe, E. N. W. & Gale, P. A. Supramolecular transmembrane anion transport: new assays and insights. Acc. Chem. Res. 51, 1870–1879 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Wang, L. & Sigworth, F. J. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461, 292–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tonggu, L. & Wang, L. Structure of the human BK ion channel in lipid environment. Membranes 12, 758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yao, X., Fan, X. & Yan, N. Cryo-EM analysis of a membrane protein embedded in the liposome. Proc. Natl Acad. Sci. USA 117, 18497–18503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Song, Z. Li, G. Yang, S. Gao, X. Yao and H. Shen for their critical reading and input. We apologize to those whose remarkable contributions are not cited, constrained by page limitations. This work was funded by the National Natural Science Foundation of China (32330052, 32322039 and 32271252). N.Y. has been supported by the start-up funds of the University Professorship from Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Xiaojing Pan or Nieng Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Ï€ helix

A secondary protein structure, characterized by hydrogen bonding between the amide group of a residue with the carbonyl oxygen five residues earlier (i + 5 → i) in a helix, resulting in a bulge in a typical α helix.

310 helix

A secondary protein structure with three residues and ten backbone atoms in each helical turn, characterized by hydrogen bonding between residues i + 3 → i.

Cation–π interaction

A type of noncovalent electrostatic interaction between a positive charge (cation) and the electron-rich aromatic π system.

Chirality

The geometric property of a molecule or object that cannot be superposed onto its mirror image.

Current–voltage (I–V) curve

A curve that depicts the relationship between the electric current, corresponding to ion flow, through the channels and the applied voltages.

Dihydropyridine

(DHP). A class of chemical compounds that can act as chirality-specific antagonists or agonists on the L-type calcium channels. Many DHP compounds are in clinical use as calcium channel blockers.

Hydration shell

A ‘hydration shell’ or ‘water shell’ refers to a continuous cluster of water molecules surrounding and, to a degree, attached to certain chemicals or biomolecules when they are dissolved in an aqueous solution.

Membrane depolarization

Shift in membrane potential reducing negative intracellular charges, mainly caused by cation influx or anion efflux.

Membrane potentials

The difference in electric charge, or voltage, between the interior and exterior of a cell or an organelle.

Molecular dynamic simulation (MDS) analysis

A computer simulation method that predicts the movements of atoms over time based on physical models for interatomic interactions.

Protein internal packing

The arrangement and interactions of amino acid residues within the three-dimensional structure of a protein, which are crucial for the stability, function and overall shape of the protein.

Resting state

The relatively stable state with regard to the membrane potential of an excitable cell, such as a neuron or a muscle cell.

Saxitoxin

(STX). The best-known paralytic shellfish toxin. It acts as a potent neurotoxin by blocking Nav channels.

Tetrodotoxin

(TTX). A potent guanidinium neurotoxin found in some fish and other species, exemplified by pufferfish. It specifically blocks Nav channels with different potencies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Pan, X. & Yan, N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00763-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00763-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research