Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear and quantum photonics using integrated optical materials

Abstract

Integrated nonlinear photonics provides transformative capabilities for controlling, enhancing and manipulating material nonlinearities in miniaturized on-chip platforms. The extreme reduction of optical mode areas within subwavelength waveguides allows for large enhancements of light–matter interactions resulting in nonlinear phenomena at significantly lower optical powers than their fibre and free-space counterparts. The integration of nonlinear materials into nanophotonics has been instrumental in the practical implementation of emerging applications such as quantum information processing, high-speed optical communications, ultraprecise frequency metrology and spectroscopy. Since the early 2000s, the development of new fabrication methods combined with nanoscale design has led to tremendous improvements in the quality and integration capability of both traditional and new nonlinear material platforms. In this Review, we outline design principles to harness the potential of nonlinear materials on integrated platforms through improvements in waveguide loss, resonator design and dispersion engineering principles. We discuss how these tools have been used towards realizing several of the major goals of integrated nonlinear photonics such as broadband frequency conversion, frequency-comb generation, quantum light sources and nonlinear optical quantum logic gates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of integrated nonlinear photonic material platforms and applications.
Fig. 2: Integrated nonlinear photonics platform.
Fig. 3: Basic dispersion engineering using waveguide geometry and/or higher-order modes.
Fig. 4: Advanced dispersion engineering techniques for high-efficiency nonlinear photonics.
Fig. 5: Notable first demonstrations and milestones in chip-scale integrated platforms.

Similar content being viewed by others

References

  1. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006). This work reports broadband phase-matched four-wave mixing optical amplification and frequency conversion in a silicon photonic chip through waveguide dispersion engineering.

    Article  CAS  PubMed  Google Scholar 

  2. Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bell, B. A., He, J., Xiong, C. & Eggleton, B. J. Frequency conversion in silicon in the single photon regime. Opt. Express 24, 5235–5242 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Yamada, H. et al. Nonlinear-optic silicon-nanowire waveguides. Jpn. J. Appl. Phys. 44, 6541–6545 (2005).

    Article  CAS  Google Scholar 

  5. Sederberg, S., Firby, C. J. & Elezzabi, A. Y. Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation. Opt. Express 27, 4990–5004 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    Article  CAS  Google Scholar 

  7. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36 (2019).

    Article  CAS  Google Scholar 

  9. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  PubMed  Google Scholar 

  10. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    Article  CAS  Google Scholar 

  12. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  CAS  Google Scholar 

  13. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  CAS  Google Scholar 

  14. Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

    Article  CAS  Google Scholar 

  15. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article  CAS  Google Scholar 

  16. Cai, L., Li, J., Wang, R. & Li, Q. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform. Photon. Res. 10, 870–876 (2022).

    Article  CAS  Google Scholar 

  17. Cardenas, J. et al. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett. 40, 4138 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554–559 (2012).

    Article  CAS  Google Scholar 

  20. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Joshi, C., Farsi, A., Clemmen, S., Ramelow, S. & Gaeta, A. L. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun. 9, 847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lu, H.-H. et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016). This work extends Kerr frequency comb platforms to the discrete-variable quantum regime to demonstrate complex quantum optical states showing multiphoton entanglement.

    Article  CAS  PubMed  Google Scholar 

  24. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

    Article  CAS  Google Scholar 

  26. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401 (2018). This paper presents the first demonstration of an external-power-source-free Kerr frequency comb powered by a battery, including low-noise soliton states.

    Article  CAS  PubMed  Google Scholar 

  27. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018). This work presents a microresonator frequency comb used to parallelize a LiDAR measurement of distance and velocity.

    Article  CAS  PubMed  Google Scholar 

  29. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016). This paper presents precise higher-order dispersion control in wedge resonators with quality factors above 100 million, which is important for low-power nonlinear optics.

    Article  CAS  Google Scholar 

  31. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619 (2017). In this work, high-quality factors of up to 67 million in high-confinement silicon nitride resonators are achieved by substantially reducing the surface roughness of the waveguide.

    Article  Google Scholar 

  32. Spencer, D. T., Bauters, J. F., Heck, M. J. R. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    Article  CAS  Google Scholar 

  33. Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

    Article  CAS  Google Scholar 

  34. Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

    Article  PubMed  Google Scholar 

  35. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    Article  CAS  Google Scholar 

  36. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    Article  CAS  Google Scholar 

  37. Xie, W. et al. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 28, 32894 (2020). A low threshold of <120 µW for frequency-comb generation is achieved in AlGaAs microresonators with quality factor greater than 106.

    Article  CAS  PubMed  Google Scholar 

  38. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  39. Sipe, J. E., Moss, D. J. & van Driel, H. M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B 35, 1129–1141 (1987).

    Article  CAS  Google Scholar 

  40. Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258 (2022). This paper holds the current record for the highest nonlinearity-to-loss ratio in solid-state parametric nonlinear optical platforms.

    Article  CAS  Google Scholar 

  41. Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 12, 5428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, J.-Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244–1245 (2019).

    Article  CAS  Google Scholar 

  44. Eggleton, B. J., Poulton, C. G., Rakich, P. T., Steel, M. J. & Bahl, G. Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019).

    Article  CAS  Google Scholar 

  45. Raza, A. et al. High index contrast photonic platforms for on-chip Raman spectroscopy. Opt. Express 27, 23067–23079 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Mizrahi, V., DeLong, K. W., Stegeman, G. I., Saifi, M. A. & Andrejco, M. J. Two-photon absorption as a limitation to all-optical switching. Opt. Lett. 14, 1140–1142 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Miller, S. A. et al. Low-loss silicon platform for broadband mid-infrared photonics. Optica 4, 707–712 (2017).

    Article  CAS  Google Scholar 

  48. Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21, 27826–27834 (2013).

    Article  PubMed  Google Scholar 

  49. Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Article  CAS  Google Scholar 

  50. Xie, S., Zhang, Y., Hu, Y., Veilleux, S. & Dagenais, M. On-chip Fabry–Perot Bragg grating cavity enhanced four-wave mixing. ACS Photon. 7, 1009–1015 (2020).

    Article  CAS  Google Scholar 

  51. El Dirani, H. et al. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics. Appl. Phys. Lett. 113, 081102 (2018).

    Article  Google Scholar 

  52. Luke, K., Dutt, A., Poitras, C. B. & Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013). In this work, thick (>700 nm), crack-free films of silicon nitride are deposited, enabling anomalous dispersion for high-confinement nonlinear applications.

    Article  PubMed  Google Scholar 

  53. Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016). This paper reports the first usage of the Damascene process for silicon nitride waveguides, enabling the fabrication of thicker waveguides by overcoming film stress challenges.

    Article  CAS  Google Scholar 

  54. Ye, Z., Fülöp, A., Helgason, Ó. B., Andrekson, P. A. & Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 44, 3326–3329 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators. J. Lightwave Technol. 41, 3115–3130 (2023).

    Article  CAS  Google Scholar 

  56. Li, K., Sun, H. & Foster, A. C. Four-wave mixing Bragg scattering in hydrogenated amorphous silicon waveguides. Opt. Lett. 42, 1488–1491 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Dave, U. D. et al. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a thulium doped fiber laser pump source. Opt. Express 21, 32032–32039 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Safioui, J. et al. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt. Express 22, 3089–3097 (2014).

    Article  PubMed  Google Scholar 

  59. Wang, K.-Y. & Foster, A. C. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Grillet, C. et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express 20, 22609–22615 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Xiao, T.-H. et al. Mid-infrared high-Q germanium microring resonator. Opt. Lett. 43, 2885–2888 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Carletti, L. et al. Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. Opt. Express 23, 8261–8271 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sinobad, M. et al. Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon–germanium waveguides. Optica 5, 360–366 (2018).

    Article  CAS  Google Scholar 

  64. Wu, X., Fan, T., Eftekhar, A. A. & Adibi, A. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt. Lett. 44, 4941–4944 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Lu, X., Lee, J. Y., Feng, P. X.-L. & Lin, Q. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 104, 181103 (2014).

    Article  Google Scholar 

  66. Hausmann, B. J. M. et al. Integrated high-quality factor optical resonators in diamond. Nano Lett. 13, 1898–1902 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, C. et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl. 10, 139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139–1142 (2020).

    Article  CAS  Google Scholar 

  69. Li, J., Wang, R., Cai, L. & Li, Q. Measurement of the Kerr nonlinear refractive index and its variation among 4H-SiC wafers. Phys. Rev. Appl. 19, 034083 (2023).

    Article  CAS  Google Scholar 

  70. Liang, D. & Bowers, J. E. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manuf. 2, 59–83 (2021).

    Article  Google Scholar 

  71. Duan, G.-H. et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).

    Article  Google Scholar 

  72. Kultavewuti, P., Pusino, V., Sorel, M. & Aitchison, J. S. Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators. Opt. Lett. 40, 3029–3032 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Sarrafi, P. et al. Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip. Appl. Phys. Lett. 103, 251115 (2013).

    Article  Google Scholar 

  74. Aitchison, J. S., Hutchings, D. C., Kang, J. U., Stegeman, G. I. & Villeneuve, A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997).

    Article  CAS  Google Scholar 

  75. Pu, M. et al. Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photon. Rev. 12, 1800111 (2018).

    Article  Google Scholar 

  76. Liu, X. et al. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 5, 1279–1282 (2018).

    Article  CAS  Google Scholar 

  77. Troha, T. et al. UV second harmonic generation in AlN waveguides with modal phase matching. Opt. Mater. Express 6, 2014–2023 (2016).

    Article  Google Scholar 

  78. Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016).

    Article  PubMed  Google Scholar 

  80. Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103–108 (2018).

    Article  CAS  Google Scholar 

  81. Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

    Article  CAS  Google Scholar 

  82. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536 (2017). This work demonstrates a hundred times improvement in quality factors (reaching 10 million), in thin-film lithium niobate ring resonators through optimized etching processes that reduced surface roughness.

    Article  CAS  Google Scholar 

  83. Xu, Y. et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express 29, 5497–5504 (2021).

    Article  PubMed  Google Scholar 

  84. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article  CAS  Google Scholar 

  85. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    Article  CAS  Google Scholar 

  86. Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photon. 13, 519–524 (2019).

    Article  CAS  Google Scholar 

  88. Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Hong, S.-Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).

    Google Scholar 

  91. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406 (2013).

    Article  Google Scholar 

  93. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Wu, J., Lin, H., Moss, D. J., Loh, K. P. & Jia, B. Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 7, 162–183 (2023).

    Article  PubMed  Google Scholar 

  95. Fryett, T., Zhan, A. & Majumdar, A. Cavity nonlinear optics with layered materials. Nanophotonics 7, 355–370 (2018).

    Article  CAS  Google Scholar 

  96. Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018).

    Article  Google Scholar 

  97. Vermeulen, N. et al. Post-2000 nonlinear optical materials and measurements: data tables and best practices. J. Phys. Photon. 5, 035001 (2023).

    Article  Google Scholar 

  98. Wu, B., Chen, N., Chen, C., Deng, D. & Xu, Z. Highly efficient ultraviolet generation at 355 nm in LiB3O5. Opt. Lett. 14, 1080–1081 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, Y., Lombardo, D., Mathews, J. & Agha, I. All-optical switching via four-wave mixing Bragg scattering in a silicon platform. APL Photon. 2, 026102 (2017).

    Article  Google Scholar 

  100. Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70, 922–924 (1997).

    Article  CAS  Google Scholar 

  101. Lau, R. K. W. et al. Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. Opt. Lett. 36, 1263–1265 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).

    Article  CAS  Google Scholar 

  103. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81 (2018). This paper reports a key milestone in synthesizing arbitrary optical frequencies using self-referenced combs based on two disparate platforms — Si3N4 and SiO2.

    Article  CAS  PubMed  Google Scholar 

  104. Sutherland, R. L., McLean, D. G. & Kirkpatrick, S. Handbook of Nonlinear Optics (Marcel Dekker, 2003).

  105. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  CAS  Google Scholar 

  106. Corcoran, B. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photon. 3, 206–210 (2009).

    Article  CAS  Google Scholar 

  107. Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev. 12, 1800149 (2018).

    Article  Google Scholar 

  108. Sayem, A. A. et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett. 119, 231104 (2021).

    Article  CAS  Google Scholar 

  109. Luo, R., He, Y., Liang, H., Li, M. & Lin, Q. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation. Laser Photon. Rev. 13, 1800288 (2019).

    Article  Google Scholar 

  110. Luo, R., He, Y., Liang, H., Li, M. & Lin, Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5, 1006–1011 (2018).

    Article  CAS  Google Scholar 

  111. Zhao, J. et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express 28, 19669–19682 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, C. et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nitiss, E. et al. Formation rules and dynamics of photoinduced χ(2) gratings in silicon nitride waveguides. ACS Photon. 7, 147–153 (2020).

    Article  CAS  Google Scholar 

  116. Grassani, D., Pfeiffer, M. H. P., Kippenberg, T. J. & Brès, C.-S. Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide. Opt. Lett. 44, 106–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photon. 13, 494–499 (2019).

    Article  CAS  Google Scholar 

  118. Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photon. 16, 134–141 (2022). This work shows optically reconfigurable quasi-phase-matching in silicon nitride using the photogalvanic effect within a microresonator, enabling high second-harmonic generation conversion efficiency through an effective χ(2).

    Article  CAS  Google Scholar 

  119. Logan, A. D. et al. 400%/W second harmonic conversion efficiency in 14 µm-diameter gallium phosphide-on-oxide resonators. Opt. Express 26, 33687–33699 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Lake, D. P. et al. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108, 031109 (2016).

    Article  Google Scholar 

  121. Bruch, A. W. et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).

    Article  Google Scholar 

  122. Lin, J. et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 122, 173903 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. May, S., Kues, M., Clerici, M. & Sorel, M. Second-harmonic generation in AlGaAs-on-insulator waveguides. Opt. Lett. 44, 1339–1342 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, J., Li, M., Zou, C.-L., Sayem, A. A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020). This paper demonstrates a record high conversion efficiency of 5,000,000% W−1 from the telecom band to 752 nm in a periodically poled thin-film lithium niobate microresonator.

    Article  Google Scholar 

  125. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

    Article  CAS  Google Scholar 

  126. Mishra, J. et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica 8, 921–924 (2021).

    Article  Google Scholar 

  127. Roy, A. et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nat. Commun. 14, 6549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 4, 557–560 (2010).

    Article  CAS  Google Scholar 

  129. Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photon. 4, 561–564 (2010).

    Article  CAS  Google Scholar 

  130. Sahin, E. et al. Difference-frequency generation in optically poled silicon nitride waveguides. Nanophotonics 10, 1923–1930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, X. et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photon. 6, 667–671 (2012).

    Article  Google Scholar 

  132. Stievater, T. H. et al. Mid-infrared difference-frequency generation in suspended GaAs waveguides. Opt. Lett. 39, 945–948 (2014). This paper presents the generation of mid-infrared light up to 3,150 nm in suspended GaAs waveguides using difference frequency generation.

    Article  CAS  PubMed  Google Scholar 

  133. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Soltani, M. et al. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators. Phys. Rev. A 96, 043808 (2017).

    Article  Google Scholar 

  135. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016). This work provides among the first reports of on-chip nonlinear optical frequency conversion at the single-photon level, using four-wave mixing Bragg scattering in silicon nitride.

    Article  CAS  Google Scholar 

  136. Dautet, H. et al. Photon counting techniques with silicon avalanche photodiodes. Appl. Opt. 32, 3894–3900 (1993).

    Article  CAS  PubMed  Google Scholar 

  137. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    Article  CAS  PubMed  Google Scholar 

  138. McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. McKinstrie, C. J., Yu, M., Raymer, M. G. & Radic, S. Quantum noise properties of parametric processes. Opt. Express 13, 4986 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Agrawal, G. P. Nonlinear Fiber Optics (Elsevier/Academic Press, 2013).

  141. Albota, M. A. & Wong, F. N. C. Efficient single-photon counting at 1.55 µm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004).

    Article  PubMed  Google Scholar 

  142. Vandevender, A. P. & Kwiat, P. G. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

    Article  CAS  Google Scholar 

  143. Huang, J. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Ramelow, S., Fedrizzi, A., Poppe, A., Langford, N. K. & Zeilinger, A. Polarization-entanglement-conserving frequency conversion of photons. Phys. Rev. A 85, 013845 (2012).

    Article  Google Scholar 

  145. Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

    Article  PubMed  Google Scholar 

  146. Allgaier, M. et al. Highly efficient frequency conversion with bandwidth compression of quantum light. Nat. Commun. 8, 14288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rütz, H., Luo, K.-H., Suche, H. & Silberhorn, C. Quantum frequency conversion between infrared and ultraviolet. Phys. Rev. Appl. 7, 024021 (2017).

    Article  Google Scholar 

  148. Maring, N., Lago-Rivera, D., Lenhard, A., Heinze, G. & Riedmatten, Hde Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band. Optica 5, 507–513 (2018).

    Article  CAS  Google Scholar 

  149. Rakher, M. T., Ma, L., Slattery, O., Tang, X. & Srinivasan, K. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photon. 4, 786–791 (2010).

    Article  CAS  Google Scholar 

  150. Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    Article  PubMed  Google Scholar 

  151. Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Ikuta, R. et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 537 (2011).

    Article  Google Scholar 

  153. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  PubMed  Google Scholar 

  154. Manurkar, P. et al. Multidimensional mode-separable frequency conversion for high-speed quantum communication. Optica 3, 1300–1307 (2016).

    Article  Google Scholar 

  155. Albrecht, B., Farrera, P., Fernandez-Gonzalvo, X., Cristiani, M. & de Riedmatten, H. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nat. Commun. 5, 3376 (2014).

    Article  PubMed  Google Scholar 

  156. Kobayashi, T. et al. Frequency-domain Hong–Ou–Mandel interference. Nat. Photon. 10, 441–444 (2016).

    Article  CAS  Google Scholar 

  157. Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

    Article  CAS  Google Scholar 

  158. Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Clemmen, S., Farsi, A., Ramelow, S. & Gaeta, A. L. Ramsey interference with single photons. Phys. Rev. Lett. 117, 223601 (2016).

    Article  PubMed  Google Scholar 

  160. Clark, A. S., Shahnia, S., Collins, M. J., Xiong, C. & Eggleton, B. J. High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013).

    Article  PubMed  Google Scholar 

  161. Chen, J.-Y. et al. Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16, 064004 (2021).

    Article  CAS  Google Scholar 

  162. Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ramelow, S. et al. Strong nonlinear coupling in a Si3N4 ring resonator. Phys. Rev. Lett. 122, 153906 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Zhao, Y., Jang, J. K., Okawachi, Y. & Gaeta, A. L. Theory of χ(2)-microresonator-based frequency conversion. Opt. Lett. 46, 5393–5396 (2021).

    Article  PubMed  Google Scholar 

  165. Heuck, M. et al. Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources. N. J. Phys. 21, 033037 (2019).

    Article  CAS  Google Scholar 

  166. Ji, X. et al. On-chip tunable photonic delay line. APL Photon. 4, 090803 (2019).

    Article  Google Scholar 

  167. Bell, B. A., Xiong, C., Marpaung, D., McKinstrie, C. J. & Eggleton, B. J. Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps. Opt. Lett. 42, 1668 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Bahar, E., Ding, X., Dahan, A., Suchowski, H. & Moses, J. Adiabatic four-wave mixing frequency conversion. Opt. Express 26, 25582–25601 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Kalashnikov, D. A., Paterova, A. V., Kulik, S. P. & Krivitsky, L. A. Infrared spectroscopy with visible light. Nat. Photon. 10, 98–101 (2016).

    Article  CAS  Google Scholar 

  171. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020). This work presents a microresonator frequency comb used to parallelize a LiDAR measurement of distance and velocity.

    Article  CAS  PubMed  Google Scholar 

  172. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Rizzo, A. et al. Petabit-scale silicon photonic interconnects with integrated kerr frequency combs. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2022.3197375 (2022).

  176. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ji, X. et al. Chip-based frequency comb sources for optical coherence tomography. Opt. Express 27, 19896–19905 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Marchand, P. J. et al. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun. 12, 427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25 (2019).

    Article  CAS  Google Scholar 

  180. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31 (2019).

    Article  CAS  Google Scholar 

  181. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  PubMed  Google Scholar 

  182. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158 (2019).

    Article  CAS  Google Scholar 

  183. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Nagarjun, K. P., Jeyaselvan, V., Selvaraja, S. K. & Supradeepa, V. R. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt. Express 26, 10744–10753 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article  PubMed  Google Scholar 

  187. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013). This work provides a comprehensive explanation, combining both theory and experiments, of the generation of low-noise soliton mode-locked states that has eluded the community for several years.

    Article  Google Scholar 

  188. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078 (2015).

    Article  CAS  Google Scholar 

  189. Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  CAS  Google Scholar 

  191. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565 (2016). This work reports integrated fast tuning of microcombs to mode-locked single-soliton and multisoliton states using integrated platinum microheaters.

    Article  PubMed  Google Scholar 

  192. Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  CAS  Google Scholar 

  194. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  CAS  Google Scholar 

  195. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2020).

    Article  CAS  Google Scholar 

  197. Moille, G. et al. Dissipative Kerr solitons in a III–V microresonator. Laser Photon. Rev. 14, 2000022 (2020).

    Article  CAS  Google Scholar 

  198. Weng, H. et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9, 1351–1357 (2021).

    Article  Google Scholar 

  199. Jung, H., Fong, K. Y., Xiong, C. & Tang, H. X. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Stern, B., Ji, X., Dutt, A. & Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 42, 4541–4544 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790 (2013).

    Article  PubMed  Google Scholar 

  206. Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39, 3535 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Riemensberger, J. et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 27661 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Article  CAS  Google Scholar 

  210. Jang, J. K. et al. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion. Opt. Express 24, 28794–28803 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  Google Scholar 

  212. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    Article  PubMed  Google Scholar 

  213. Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46, 3657–3660 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  CAS  Google Scholar 

  216. Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616 (2019).

    Article  CAS  Google Scholar 

  217. Zhao, Y. et al. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica 7, 135–141 (2020).

    Article  CAS  Google Scholar 

  218. Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article  CAS  Google Scholar 

  221. Luke, K., Okawachi, Y., Lamont, M. R. E., Gaeta, A. L. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Gong, Z. et al. Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators. Opt. Lett. 44, 3182–3185 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Lau, R. K. W., Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett. 40, 2778–2781 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Hamerly, R., Gray, D., Rogers, C. & Jamshidi, K. Conditions for parametric and free-carrier oscillation in silicon ring cavities. J. Lightwave Technol. 36, 4671–4677 (2018).

    Article  CAS  Google Scholar 

  225. Kong, D. et al. Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. 13, 4139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Huang, S.-W. et al. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X 7, 041002 (2017).

    Google Scholar 

  227. Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

    Article  CAS  Google Scholar 

  228. Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

    Article  Google Scholar 

  229. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source. Opt. Lett. 44, 4259–4262 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Castro-Beltrán, R., Diep, V. M., Soltani, S., Gungor, E. & Armani, A. M. Plasmonically enhanced Kerr frequency combs. ACS Photon. 4, 2828–2834 (2017).

    Article  Google Scholar 

  231. Shen, X., Beltran, R. C., Diep, V. M., Soltani, S. & Armani, A. M. Low-threshold parametric oscillation in organically modified microcavities. Sci. Adv. 4, eaao4507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ulvila, V., Phillips, C. R., Halonen, L. & Vainio, M. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett. 38, 4281–4284 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Leo, F. et al. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett. 116, 033901 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Roy, A. et al. Temporal walk-off induced dissipative quadratic solitons. Nat. Photon. 16, 162–168 (2022).

    Article  CAS  Google Scholar 

  235. Liu, M. et al. High-power mid-IR few-cycle frequency comb from quadratic solitons in an optical parametric oscillator. Laser Photon. Rev. 16, 2200453 (2022).

    Article  Google Scholar 

  236. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  Google Scholar 

  237. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

    Article  PubMed  Google Scholar 

  238. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  CAS  Google Scholar 

  239. Yoshikawa, J. et al. Invited article: generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).

    Article  Google Scholar 

  240. Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R. & Pfister, O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011).

    Article  PubMed  Google Scholar 

  241. Takeda, S. & Furusawa, A. Toward large-scale fault-tolerant universal photonic quantum computing. APL Photon. 4, 060902 (2019).

    Article  Google Scholar 

  242. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). In this paper, multidimensional quantum entanglement is realized by integrating up to 16 silicon spontaneous four-wave mixing sources with reconfigurable beam splitters and waveguide crossings on a single chip.

    Article  CAS  PubMed  Google Scholar 

  243. Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 4, 90–96 (2017).

    Article  Google Scholar 

  245. Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015). This paper reports the first nanophotonic quantum-squeezed light source, that is, all-optical squeezed light generation using a high-confinement platform.

    Article  Google Scholar 

  246. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  Google Scholar 

  247. Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).

    Article  Google Scholar 

  248. Mohanty, A. et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 8, 14010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Taballione, C. et al. 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  251. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  252. Azzini, S. et al. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100–23107 (2012).

    Article  CAS  PubMed  Google Scholar 

  253. Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Alibart, O. et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt. 18, 104001 (2016).

    Article  Google Scholar 

  255. Sanaka, K., Kawahara, K. & Kuga, T. New high-efficiency source of photon pairs for engineering quantum entanglement. Phys. Rev. Lett. 86, 5620–5623 (2001).

    Article  CAS  PubMed  Google Scholar 

  256. Tanzilli, S. et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001).

    Article  CAS  Google Scholar 

  257. Förtsch, M. et al. A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013).

    Article  PubMed  Google Scholar 

  258. Lanco, L. et al. Semiconductor waveguide source of counterpropagating twin photons. Phys. Rev. Lett. 97, 173901 (2006).

    Article  CAS  PubMed  Google Scholar 

  259. Autebert, C. et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica 3, 143–146 (2016).

    Article  CAS  Google Scholar 

  260. Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    Article  CAS  PubMed  Google Scholar 

  261. Luo, R. et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25, 24531 (2017).

    Article  CAS  PubMed  Google Scholar 

  262. Xin, C. J. et al. Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate. Opt. Lett. 47, 2830–2833 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Dalidet, R. et al. Near perfect two-photon interference out of a down-converter on a silicon photonic chip. Opt. Express 30, 11298–11305 (2022).

    Article  CAS  PubMed  Google Scholar 

  264. Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 (2009).

    Article  CAS  PubMed  Google Scholar 

  265. Sharping, J. E. et al. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14, 12388 (2006).

    Article  PubMed  Google Scholar 

  266. Takesue, H. et al. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express 16, 5721–5727 (2008).

    Article  PubMed  Google Scholar 

  267. Gentry, C. M. et al. Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip. Optica 2, 1065–1071 (2015).

    Article  CAS  Google Scholar 

  268. Spring, J. B. et al. On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013).

    Article  PubMed  Google Scholar 

  269. Yan, Z. et al. Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide. Appl. Phys. Lett. 107, 231106 (2015).

    Article  Google Scholar 

  270. Imany, P. et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express 26, 1825–1840 (2018).

    Article  CAS  PubMed  Google Scholar 

  271. Ramelow, S. et al. Silicon-nitride platform for narrowband entangled photon generation. Preprint at https://arxiv.org/abs/1508.04358 (2015).

  272. Samara, F. et al. High-rate photon pairs and sequential time-bin entanglement with Si3N4 microring resonators. Opt. Express 27, 19309–19318 (2019).

    Article  CAS  PubMed  Google Scholar 

  273. Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  CAS  Google Scholar 

  274. Collins, M. J. et al. Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. Opt. Lett. 37, 3393–3395 (2012).

    Article  CAS  PubMed  Google Scholar 

  275. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  Google Scholar 

  276. Vanselow, A., Kaufmann, P., Chrzanowski, H. M. & Ramelow, S. Ultra-broadband SPDC for spectrally far separated photon pairs. Opt. Lett. 44, 4638 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Harris, N. C. et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047 (2014).

    CAS  Google Scholar 

  278. Davanço, M. et al. Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett. 100, 261104 (2012).

    Article  Google Scholar 

  279. Xiong, C. et al. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 36, 3413–3415 (2011).

    Article  CAS  PubMed  Google Scholar 

  280. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

    Article  CAS  Google Scholar 

  281. Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator source. Phys. Rev. Appl. 4, 021001 (2015).

    Article  Google Scholar 

  283. Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    Article  CAS  Google Scholar 

  284. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article  CAS  Google Scholar 

  285. Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148 (2019).

    Article  CAS  Google Scholar 

  286. Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).

    Article  CAS  Google Scholar 

  287. Javid, U. A. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023).

    Article  CAS  Google Scholar 

  288. Jiang, W. C., Lu, X., Zhang, J., Painter, O. & Lin, Q. Silicon-chip source of bright photon pairs. Opt. Express 23, 20884–20904 (2015).

    Article  CAS  PubMed  Google Scholar 

  289. Joshi, C. et al. Frequency-domain quantum interference with correlated photons from an integrated microresonator. Phys. Rev. Lett. 124, 143601 (2020).

    Article  CAS  PubMed  Google Scholar 

  290. Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    Article  CAS  PubMed  Google Scholar 

  291. Feng, L.-T. et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf. 5, 1–7 (2019).

    Article  CAS  Google Scholar 

  292. Christ, A. & Silberhorn, C. Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A 85, 023829 (2012).

    Article  Google Scholar 

  293. Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Article  Google Scholar 

  294. Mower, J. & Englund, D. Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011).

    Article  Google Scholar 

  295. Ma, X., Zotter, S., Kofler, J., Jennewein, T. & Zeilinger, A. Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).

    Article  Google Scholar 

  296. Xiong, C. et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Menicucci, N. C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014).

    Article  PubMed  Google Scholar 

  298. Fukui, K., Tomita, A., Okamoto, A. & Fujii, K. High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054 (2018).

    CAS  Google Scholar 

  299. Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article  CAS  Google Scholar 

  300. Lvovsky, A. I. in Photonics Ch. 5 (ed. Andrews, D. L.) 121–163 (John Wiley & Sons, Ltd, 2015).

  301. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  CAS  PubMed  Google Scholar 

  302. Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).

    Article  CAS  Google Scholar 

  303. Taylor, M. A. et al. Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013).

    Article  CAS  Google Scholar 

  304. Fürst, J. U. et al. Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett. 106, 113901 (2011).

    Article  PubMed  Google Scholar 

  305. Otterpohl, A. et al. Squeezed vacuum states from a whispering gallery mode resonator. Optica 6, 1375 (2019).

    Article  CAS  Google Scholar 

  306. Bergman, K., Haus, H. A., Ippen, E. P. & Shirasaki, M. Squeezing in a fiber interferometer with a gigahertz pump. Opt. Lett. 19, 290–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  307. Cernansky, R. & Politi, A. Nanophotonic source of broadband quadrature squeezing. APL Photonics 5, 101303 (2020).

    Article  CAS  Google Scholar 

  308. Ast, S. et al. Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett. 37, 2367–2369 (2012).

    Article  PubMed  Google Scholar 

  309. Silberhorn, C., Korolkova, N. & Leuchs, G. Quantum key distribution with bright entangled beams. Phys. Rev. Lett. 88, 167902 (2002).

    Article  PubMed  Google Scholar 

  310. Lenzini, F. et al. Integrated photonic platform for quantum information with continuous variables. Sci. Adv. 4, eaat9331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Khorasani, S. Third-order optical nonlinearity in two-dimensional transition metal dichalcogenides. Commun. Theor. Phys. 70, 344 (2018).

    Article  CAS  Google Scholar 

  312. Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

    Article  PubMed  Google Scholar 

  313. Yoshino, K., Aoki, T. & Furusawa, A. Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett. 90, 041111 (2007).

    Article  Google Scholar 

  314. Kanter, G. et al. Squeezing in a LiNbO3 integrated optical waveguide circuit. Opt. Express 10, 177 (2002).

    Article  CAS  PubMed  Google Scholar 

  315. Stefszky, M. et al. Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl. 7, 044026 (2017).

    Article  Google Scholar 

  316. Pysher, M. et al. Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide. Opt. Lett. 34, 256–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  317. Eto, Y. et al. Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique. Opt. Lett. 36, 4653–4655 (2011).

    Article  CAS  PubMed  Google Scholar 

  318. Dutt, A. et al. Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett. 41, 223 (2016).

    Article  CAS  PubMed  Google Scholar 

  319. Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Hoff, U. B., Nielsen, B. M. & Andersen, U. L. Integrated source of broadband quadrature squeezed light. Opt. Express 23, 12013–12036 (2015).

    Article  CAS  PubMed  Google Scholar 

  321. Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    Article  CAS  PubMed  Google Scholar 

  322. Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. https://doi.org/10.1038/s41467-021-22540-2 (2021).

  323. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Gottesman, D. & Preskill, J. in Quantum Information with Continuous Variables (eds Braunstein, S. L. & Pati, A. K.) 317–356 (Springer Netherlands, 2003).

  325. Roslund, J., de Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).

    Article  CAS  Google Scholar 

  326. Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article  PubMed  Google Scholar 

  327. Yang, Z. et al. A squeezed quantum microcomb on a chip. Nat. Commun. 12, 4781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Chen, P.-K., Chen, P.-K., Briggs, I., Hou, S. & Fan, L. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt. Lett. 47, 1506–1509 (2022).

    Article  CAS  PubMed  Google Scholar 

  329. Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, eabo6213 (2022). This paper reports the first squeezing in thin-film lithium niobate, measured over a broad wavelength range using phase-sensitive optical parametric amplification.

    Article  Google Scholar 

  330. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001).

    Article  CAS  PubMed  Google Scholar 

  331. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  CAS  PubMed  Google Scholar 

  332. Bartolucci, S. et al. Fusion-based quantum computation. Nat. Commun. 14, 912 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Pant, M., Towsley, D., Englund, D. & Guha, S. Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Li, Y., Humphreys, P. C., Mendoza, G. J. & Benjamin, S. C. Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015).

    Google Scholar 

  335. Langford, N. K. et al. Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  336. Yanagimoto, R., Ng, E., Jankowski, M., Mabuchi, H. & Hamerly, R. Temporal trapping: a route to strong coupling and deterministic optical quantum computation. Optica 9, 1289 (2022).

    Article  Google Scholar 

  337. Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).

    Article  Google Scholar 

  338. Krastanov, S. et al. Room-temperature photonic logical qubits via second-order nonlinearities. Nat. Commun. 12, 191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Heuck, M., Jacobs, K. & Englund, D. R. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020).

    Article  CAS  PubMed  Google Scholar 

  340. Li, M. et al. Photon–photon quantum phase gate in a photonic molecule with χ(2) nonlinearity. Phys. Rev. Appl. 13, 044013 (2020).

    Article  CAS  Google Scholar 

  341. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  CAS  Google Scholar 

  342. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photon. 7, 138–141 (2013).

    Article  CAS  Google Scholar 

  343. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  344. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article  CAS  Google Scholar 

  345. Chang, T.-H., Fields, B. M., Kim, M. E. & Hung, C.-L. Microring resonators on a suspended membrane circuit for atom–light interactions. Optica 6, 1203–1210 (2019).

    Article  CAS  Google Scholar 

  346. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    Article  CAS  Google Scholar 

  347. Hughes, T. W., Minkov, M., Williamson, I. A. D. & Fan, S. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon. 5, 4781–4787 (2018).

    Article  CAS  Google Scholar 

  348. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  CAS  Google Scholar 

  349. Carletti, L., Koshelev, K., De Angelis, C. & Kivshar, Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 121, 033903 (2018).

    Article  CAS  PubMed  Google Scholar 

  350. Wang, J. et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 7, 1126–1132 (2020).

    Article  CAS  Google Scholar 

  351. Okawachi, Y. et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun. 11, 4119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Ji, X. et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs. Laser Photon. Rev. 15, 2000353 (2021).

    Article  CAS  Google Scholar 

  353. Cardenas, J. et al. High Q SiC microresonators. Opt. Express 21, 16882–16887 (2013).

    Article  PubMed  Google Scholar 

  354. Yu, M., Desiatov, B., Okawachi, Y., Gaeta, A. L. & Lončar, M. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 44, 1222–1225 (2019).

    Article  CAS  PubMed  Google Scholar 

  355. Liu, X. et al. Integrated continuous-wave aluminum nitride Raman laser. Optica 4, 893–896 (2017).

    Article  CAS  Google Scholar 

  356. He, Y., Liang, H., Luo, R., Li, M. & Lin, Q. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express 26, 16315–16322 (2018).

    Article  CAS  PubMed  Google Scholar 

  357. Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527 (2015).

    Article  CAS  PubMed  Google Scholar 

  358. Soltani, M., Matsko, A. & Maleki, L. Enabling arbitrary wavelength frequency combs on chip. Laser Photon. Rev. 10, 158–162 (2016).

    Article  CAS  Google Scholar 

  359. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica 6, 1455–1460 (2019).

    Article  CAS  Google Scholar 

  360. Xiong, C. et al. Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. Opt. Express 18, 16206–16216 (2010).

    Article  CAS  PubMed  Google Scholar 

  361. Mendoza, G. J. et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

    Article  CAS  Google Scholar 

  362. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  PubMed  Google Scholar 

  363. Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  CAS  Google Scholar 

  364. Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12, 2880–2887 (2004).

    Article  CAS  PubMed  Google Scholar 

  365. Koos, C., Jacome, L., Poulton, C., Leuthold, J. & Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007).

    Article  CAS  PubMed  Google Scholar 

  366. Lacava, C., Pusino, V., Minzioni, P., Sorel, M. & Cristiani, I. Nonlinear properties of AlGaAs waveguides in continuous wave operation regime. Opt. Express 22, 5291–5298 (2014).

    Article  CAS  PubMed  Google Scholar 

  367. Kuyken, B. et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express 19, B146–B153 (2011).

    Article  CAS  PubMed  Google Scholar 

  368. Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  PubMed  Google Scholar 

  369. Domeneguetti, R. R. et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. Optica 8, 316–322 (2021).

    Article  Google Scholar 

  370. Ramelow, S. et al. Strong polarization mode coupling in microresonators. Opt. Lett. 39, 5134 (2014).

    Article  PubMed  Google Scholar 

  371. Mia, M. B., Jaidye, N. & Kim, S. Extremely high dispersions in heterogeneously coupled waveguides. Opt. Express 27, 10426–10437 (2019).

    Article  CAS  PubMed  Google Scholar 

  372. Alexander, K., Savostianova, N. A., Mikhailov, S. A., Kuyken, B. & Van Thourhout, D. Electrically tunable optical nonlinearity of graphene-covered SiN waveguides. ACS Photonics 4, 3039–3044 (2017).

    Article  CAS  Google Scholar 

  373. Yuan, Z. et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photon. 17, 977–983 (2023).

    Article  CAS  Google Scholar 

  374. Lu, X., Rao, A., Moille, G., Westly, D. A. & Srinivasan, K. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photon. Res. 8, 1676–1686 (2020).

    Article  CAS  Google Scholar 

  375. McGarvey-Lechable, K. & Bianucci, P. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators. Opt. Express 22, 26032–26041 (2014).

    Article  PubMed  Google Scholar 

  376. Yu, S.-P., Lucas, E., Zang, J. & Papp, S. B. A continuum of bright and dark-pulse states in a photonic-crystal resonator. Nat. Commun. 13, 3134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Marty, G., Combrié, S., Raineri, F. & De Rossi, A. Photonic crystal optical parametric oscillator. Nat. Photon. 15, 53–58 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Joshi for fruitful discussions. A.D. was supported by seed grants from Northrop Grumman and NAWCAD (Grant no. N004212310002). A.M. is supported by the Henry Luce Foundation through the Clare Boothe Luce Program.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and A.M. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Avik Dutt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks David Moss for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, A., Mohanty, A., Gaeta, A.L. et al. Nonlinear and quantum photonics using integrated optical materials. Nat Rev Mater 9, 321–346 (2024). https://doi.org/10.1038/s41578-024-00668-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00668-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing