Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

MOF–ammonia working pairs in thermal energy conversion and storage

Sorption working pairs, which can convert low-grade heat into cold energy or seasonally store thermal energy, are potential future carbon-neutral materials for thermal management. This Comment highlights the superiorities of metal–organic framework (MOF)–ammonia working pairs for adaptable thermal management under extreme climates and discusses strategies to design MOFs with high stability and ammonia sorption capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential applications and performance design of MOF–ammonia working pairs.

References

  1. Wang, L., An, G., Gao, J. & Wang, R. Property and Energy Conversion Technology of Solid Composite Sorbents 15–93 (Springer, 2021).

  2. Liu, X., Wang, X. & Kapteijn, F. Water and metal–organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).

    Article  CAS  Google Scholar 

  3. McLinden, M. O., Seeton, C. J. & Pearson, A. New refrigerants and system configurations for vapor-compression refrigeration. Science 370, 791–796 (2020).

    Article  CAS  Google Scholar 

  4. An, G. et al. Metal–organic frameworks for ammonia-based thermal energy storage. Small 17, 2102689 (2021).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate. Nat. Commun. 13, 193 (2022).

    Article  CAS  Google Scholar 

  6. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  7. Wang, K., Li, Y., Xie, L.-H., Li, X. & Li, J.-R. Construction and application of base-stable MOFs: a critical review. Chem. Soc. Rev. 51, 6417–6441 (2022).

    Article  CAS  Google Scholar 

  8. Petit, C. & Bandosz, T. J. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal–organic framework (MIL(Fe))–graphite oxide composites: exploring the limits of materials fabrication. Adv. Funct. Mater. 21, 2108–2117 (2011).

    Article  CAS  Google Scholar 

  9. Shi, Y. et al. Anchoring LiCl in the nanopores of metal–organic frameworks for ultra-high uptake and selective separation of ammonia. Angew. Chem. Int. Ed. 61, e202212032 (2022).

    Article  CAS  Google Scholar 

  10. Dutta, A., Pan, Y., Liu, J.-Q. & Kumar, A. Multicomponent isoreticular metal-organic frameworks: principles, current status and challenges. Coordin. Chem. Rev. 445, 214074 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) for the Distinguished Young Scholars (grant no. 51825602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SF., Yuan, BZ. & Wang, LW. MOF–ammonia working pairs in thermal energy conversion and storage. Nat Rev Mater 8, 636–638 (2023). https://doi.org/10.1038/s41578-023-00593-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00593-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing