Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Striking a balance: new perspectives on homeostatic dendritic cell maturation

Abstract

Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional and spatiotemporal development of homeostatically and immunogenically matured cDC1.
Fig. 2: Interception of homeostatically matured cDC1 by Treg cells increases the threshold for the presentation of self-antigens.
Fig. 3: Common and distinct regulatory networks coordinate homeostatic and pattern recognition receptor -induced (immunogenic) cDC1 maturation.

Similar content being viewed by others

References

  1. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis e Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021). This recent review nicely summarizes the latest insights on DC nomenclature, ontogeny and function.

    Article  CAS  PubMed  Google Scholar 

  2. Durai, V. & Murphy, K. M. Functions of murine dendritic cells. Immunity 45, 719–736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mildner, A. & Jung, S. Development and function of dendritic cell subsets. Immunity 40, 642–656 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ziegler-Heitbrock, L., Ohteki, T., Ginhoux, F., Shortman, K. & Spits, H. Reclassifying plasmacytoid dendritic cells as innate lymphocytes. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00806-0 (2023).

  6. Reizis, B. et al. Reclassification of plasmacytoid dendritic cells as innate lymphocytes is premature. Nat. Rev. Immunol. 23, 336–337 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler-Heitbrock, L., Ohteki, T., Ginhoux, F., Shortman, K. & Spits, H. Reply to ‘Reclassification of plasmacytoid dendritic cells as innate lymphocytes is premature’. Nat. Rev. Immunol. 23, 338–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, J. et al. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 55, 405–422.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Förster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8, 362–371 (2008).

    Article  PubMed  Google Scholar 

  17. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bosteels, C. et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52, 1039–1056.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Desch, A. N. et al. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 5, 4674 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wilson, N. S. et al. Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Toll-like receptor signaling. Immunol. Cell Biol. 86, 200–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016). This study shows that homeostatically matured cDC1 are not just in a semi-mature state but share a common and distinct gene signature with immunogenically matured cDC1.

    Article  CAS  PubMed  Google Scholar 

  24. Bosteels, V. et al. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 8, eadd3955 (2023). This study causally links the engulfment of apoptotic cells to the influx of cholesterol, the onset of homeostatic cDC1 maturation and the activation of LXR.

    Article  CAS  PubMed  Google Scholar 

  25. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belz, G. T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry, J. S. A. et al. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41, 414–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perry, J. S. A. et al. Transfer of cell-surface antigens by scavenger receptor CD36 promotes thymic regulatory T cell receptor repertoire development and allo-tolerance. Immunity 48, 923–936.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourque, J. & Hawiger, D. Life and death of tolerogenic dendritic cells. Trends Immunol. 44, 110–118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Cabeza-Cabrerizo, M. et al. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci. Immunol. 4, eaaw1941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ugur, M. et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity 56, 1778–1793.e10 (2023). This recent study introduces the term ‘conveyor belt’ as a model to describe the stepwise differentiation of resident cDC1s in the lymph node.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Calabro, S. et al. Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity. Cell Rep. 16, 2472–2485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lambrecht, B. N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Luciani, C., Hager, F. T., Cerovic, V. & Lelouard, H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol. 15, 40–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020). This study determines that DCs in the tumour microenvironment undergo a maturation programme enriched in immunoregulatory genes (called mregDCs), which corresponds to the homeostatic DC maturation programme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silva-Sanchez, A. et al. Activation of regulatory dendritic cells by Mertk coincides with a temporal wave of apoptosis in neonatal lungs. Sci. Immunol. 8, eadc9081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016). This study shows that the engulfment of apoptotic cells in cDC1s leads to the transcriptional upregulation of immunoregulatory molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gil-Torregrosa, B. C. et al. Control of cross-presentation during dendritic cell maturation. Eur. J. Immunol. 34, 398–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Alloatti, A., Kotsias, F., Magalhaes, J. G. & Amigorena, S. Dendritic cell maturation and cross-presentation: timing matters! Immunol. Rev. 272, 97–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Mingo Pulido, Á. et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54, 1154–1167.e7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu, Y.-Y. et al. SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30, 3682–3693 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Ovcinnikovs, V. et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 4, eaaw0902 (2019). This research article describes that interception of homeostatically matured cDC1s by CTLA4+ Treg cells leads to the downregulation of CD80 on homeostatically matured cDC1s in a process called transendocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomura, M. et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep. 4, 6030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311, 1160–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pereira da Costa, M. et al. Interplay between CXCR4 and CCR2 regulates bone marrow exit of dendritic cell progenitors. Cell Rep. 42, 112881 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baba, N., Samson, S., Bourdet-Sicard, R., Rubio, M. & Sarfati, M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J. Leukoc. Biol. 84, 468–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Smits, H. H. et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Baratin, M. et al. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015). This study shows that, unexpectedly, the pro-inflammatory transcription factor NF-kB also regulates the expression of common maturation genes in homeostatically matured DCs.

    Article  CAS  PubMed  Google Scholar 

  55. Schuler, G. & Steinman, R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, X. et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J. Exp. Med. 213, 2553–2565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaplan, D. H. Ontogeny and function of murine epidermal Langerhans cells. Nat. Immunol. 18, 1068–1075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kel, J. M., Girard-Madoux, M. J. H., Reizis, B. & Clausen, B. E. TGF-β is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185, 3248–3255 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Cros, A. et al. Homeostatic activation of aryl hydrocarbon receptor by dietary ligands dampens cutaneous allergic responses by controlling Langerhans cells migration. eLife 12, e86413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27, 610–624 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao, F. et al. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity 48, 147–160.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Alraies, Z. et al. Cell shape sensing licenses dendritic cells for homeostatic migration to lymph nodes. Nat. Immunol. 25, 1193–1206 (2024). This recent study describes how confinement of bone marrow-derived DCs leads to nuclear deformation, the activation of NF-κB and the upregulation of maturation genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Jang, M. H. et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Idoyaga, J. et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123, 844–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Desch, A. N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiu, C.-H. et al. Novel subset of CD8α+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182, 4127–4136 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Henri, S. et al. CD207+CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  Google Scholar 

  76. Verbovetski, I. et al. Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and up-regulates CC chemokine receptor 7. J. Exp. Med. 196, 1553–1561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kushwah, R. et al. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. Eur. J. Immunol. 40, 1022–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Valente, M. et al. Apoptotic cell capture by DCs induces unexpectedly robust autologous CD4+ T-cell responses. Eur. J. Immunol. 44, 2274–2286 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42, 1197–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Helft, J. et al. Alive but confused: heterogeneity of CD11c+ MHC class II+ cells in GM-CSF mouse bone marrow cultures. Immunity 44, 3–4 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Guilliams, M. & Malissen, B. A death notice for in-vitro-generated GM-CSF dendritic cells? Immunity 42, 988–990 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Steinman, R. M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002). This seminal paper explains the rationale of why immature DCs were believed to induce tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yi, T. et al. Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses. Immunity 43, 764–775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, J., Wu, H., An, J., Ballantyne, C. M. & Cyster, J. G. Critical role of integrin CD11c in splenic dendritic cell capture of missing-self CD47 cells to induce adaptive immunity. Proc. Natl Acad. Sci. USA 115, 6786–6791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Calabro, S. et al. Bridging channel dendritic cells induce immunity to transfused red blood cells. J. Exp. Med. 213, 887–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Hogquist, K. A., Baldwin, T. A. & Jameson, S. C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Gallegos, A. M. & Bevan, M. J. Central tolerance: good but imperfect. Immunol. Rev. 209, 290–296 (2006).

    Article  PubMed  Google Scholar 

  92. ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 21, 257–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Wing, J. B., Tanaka, A. & Sakaguchi, S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50, 302–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Hsieh, C.-S., Lee, H.-M. & Lio, C.-W. J. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Hsieh, C.-S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Tanoue, T., Atarashi, K. & Honda, K. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 16, 295–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Liston, A. & Gray, D. H. D. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lewis, K. L. & Reizis, B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb. Perspect. Biol. 4, a007401 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Iberg, C. A., Jones, A. & Hawiger, D. Dendritic cells as inducers of peripheral tolerance. Trends Immunol. 38, 793–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Proietto, A. I. et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl Acad. Sci. USA 105, 19869–19874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Joeris, T. et al. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs. Sci. Immunol. 6, eabd3774 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Yamazaki, S. et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181, 6923–6933 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Jones, A. et al. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45, 1066–1077 (2016). This study shows how expression of BTLA on DCs drives induction of regulatory T cells, with specific impact in the EAE model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kurts, C., Heath, W. R., Kosaka, H., Miller, J. F. & Carbone, F. R. The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1). J. Exp. Med. 188, 415–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Muth, S., Schütze, K., Schild, H. & Probst, H. C. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc. Natl Acad. Sci. USA 109, 9059–9064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & Van Den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Probst, H. C., Lagnel, J., Kollias, G. & Van Den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Schildknecht, A. et al. Antigens expressed by myelinating glia cells induce peripheral cross-tolerance of endogenous CD8+ T cells. Eur. J. Immunol. 39, 1505–1515 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Schildknecht, A. et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc. Natl Acad. Sci. USA 107, 199–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Bar-On, L., Birnberg, T., Kim, K. & Jung, S. Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur. J. Immunol. 41, 291–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Darrasse-Jèze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206, 1853–1862 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Luckashenak, N. et al. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity 28, 521–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Birnberg, T. et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29, 986–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Hochweller, K. et al. Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood 114, 4411–4421 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rapp, M. et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216, 1170–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wohn, C. et al. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci. Immunol. 5, eaba1896 (2020). Together with Muth et al. (2012), this study shows that CD4 T cell communication via MHCII on cDC1s is crucial for maintaining cross-tolerance.

    Article  CAS  PubMed  Google Scholar 

  133. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3 + natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105, 10113–10118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Muth, S. et al. A CD40/CD40L feedback loop drives the breakdown of CD8+ T‐cell tolerance following depletion of suppressive CD4+ T cells. Eur. J. Immunol. 44, 1099–1107 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Brown, C. C. & Rudensky, A. Y. Spatiotemporal regulation of peripheral T cell tolerance. Science 380, 472–478 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Kool, M. et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 35, 82–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Hammer, G. E. et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12, 1184–1193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol. 2, 1010–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Henderson, J. G., Opejin, A., Jones, A., Gross, C. & Hawiger, D. CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42, 471–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Iberg, C. A., Bourque, J., Fallahee, I., Son, S. & Hawiger, D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep. 39, 110657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Grohmann, U. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24, 242–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Pallotta, M. T. et al. Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J. 289, 6099–6118 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Gargaro, M. et al. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 55, 1032–1050.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Erlebacher, A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13, 23–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, J. et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci. Immunol. 6, eabl5053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dalod, M., Chelbi, R., Malissen, B. & Lawrence, T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 33, 1104–1116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamakita, Y. et al. Fascin1 promotes cell migration of mature dendritic cells. J. Immunol. 186, 2850–2859 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Rawat, K. et al. CCL5-producing migratory dendritic cells guide CCR5+ monocytes into the draining lymph nodes. J. Exp. Med. 220, e20222129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Sun, S.-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Ghislat, G. et al. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol. 6, eabg3570 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Kobayashi, T. et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 19, 353–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Rescigno, M., Martino, M., Sutherland, C. L., Gold, M. R. & Ricciardi-Castagnoli, P. Dendritic cell survival and maturation are regulated by different signaling pathways. J. Exp. Med. 188, 2175–2180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. O’Keeffe, M. et al. Distinct roles for the NF-κB1 and c-Rel transcription factors in the differentiation and survival of plasmacytoid and conventional dendritic cells activated by TLR-9 signals. Blood 106, 3457–3464 (2005).

    Article  PubMed  Google Scholar 

  166. Grumont, R. et al. c-Rel regulates interleukin 12 P70 expression in Cd8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021–1032 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Boffa, D. J. et al. Selective loss of c-Rel compromises dendritic cell activation of T lymphocytes. Cell. Immunol. 222, 105–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Visekruna, A. et al. Transcription factor c-Rel plays a crucial role in driving anti-CD40-mediated innate colitis. Mucosal Immunol. 8, 307–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Mason, N., Aliberti, J., Caamano, J. C., Liou, H.-C. & Hunter, C. A. Cutting edge: identification of c-Rel-dependent and -independent pathways of IL-12 production during infectious and inflammatory stimuli. J. Immunol. 168, 2590–2594 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Döhler, A. et al. RelB+ steady-state migratory dendritic cells control the peripheral pool of the natural Foxp3+ regulatory T cells. Front. Immunol. 8, 726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dissanayake, D. et al. Nuclear factor-κB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat. Med. 17, 1663–1667 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Cheng, C. S. et al. The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50. Sci. Signal. 4, ra11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shi, Y. & Ruan, H. Toward a membrane-centric biology. Front. Immunol. 11, 1909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fang, F. et al. Transcription factor E2F1 suppresses dendritic cell maturation. J. Immunol. 184, 6084–6091 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Guo, Z. et al. The transcription factor Foxp1 regulates the differentiation and function of dendritic cells. Mech. Dev. 158, 103554 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Anderson, D. A., Murphy, T. L., Eisenman, R. N. & Murphy, K. M. The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells. Proc. Natl Acad. Sci. USA 117, 4885–4893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Scholz, F. et al. The transcription factor C/EBPβ orchestrates dendritic cell maturation and functionality under homeostatic and malignant conditions. Proc. Natl Acad. Sci. USA 117, 26328–26339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vander Lugt, B. et al. Transcriptional determinants of tolerogenic and immunogenic states during dendritic cell maturation. J. Cell Biol. 216, 779–792 (2017).

    Article  Google Scholar 

  180. Gainullina, A. et al. Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Rep. 42, 112046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Plebanek, M. P. et al. A lactate-SREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression. Sci. Immunol. 9, eadi4191 (2024).

    Article  CAS  PubMed  Google Scholar 

  182. Tarling, E. J. & Edwards, P. A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl Acad. Sci. USA 108, 19719–19724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Belabed, M. et al. AXL limits the mobilization of cholesterol to regulate dendritic cell maturation and the immunogenic response to cancer. Preprint at bioRxiv https://doi.org/10.1101/2023.12.25.573303 (2023).

  184. Ghisletti, S. et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol. Cell 25, 57–70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee, J. H. et al. Differential SUMOylation of LXRα and LXRβ mediates transrepression of STAT1 inflammatory signaling in IFN-γ-stimulated brain astrocytes. Mol. Cell 35, 806–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Hou, Y. et al. SMPDL3A is a cGAMP-degrading enzyme induced by LXR-mediated lipid metabolism to restrict cGAS-STING DNA sensing. Immunity 56, 2492–2507.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Castrillo, A. et al. Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell 12, 805–816 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Blanc, M. et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 9, e1000598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ito, A. et al. Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity 45, 1311–1326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Saka, H. A. & Valdivia, R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 28, 411–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bougnères, L. et al. A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells. Immunity 31, 232–244 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Taylor, G. A. et al. Pathogen-specific loss of host resistance in mice lacking the IFN-γ-inducible gene IGTP. Proc. Natl Acad. Sci. USA 97, 751–755 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Anderson, H. A. & Roche, P. A. MHC class II association with lipid rafts on the antigen presenting cell surface. Biochim. Biophys. Acta 1853, 775–780 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Cabukusta, B. & Neefjes, J. Mechanisms of lysosomal positioning and movement. Traffic 19, 761–769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Johansson, M. et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J. Cell Biol. 176, 459–471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Alloatti, A. et al. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43, 1087–1100 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Park, K. & Scott, A. L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88, 1081–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu, S.-Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA 109, 4239–4244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Liu, S.-Y. et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38, 92–105 (2013).

    Article  PubMed  Google Scholar 

  205. Gold, E. S. et al. 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc. Natl Acad. Sci. USA 111, 10666–10671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cyster, J. G., Dang, E. V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14, 446–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Yi, T. & Cyster, J. G. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife 2, e00757 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lu, E., Dang, E. V., McDonald, J. G. & Cyster, J. G. Distinct oxysterol requirements for positioning naïve and activated dendritic cells in the spleen. Sci. Immunol. 2, eaal5237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gonzales, G. A. et al. The pore-forming apolipoprotein APOL7C drives phagosomal rupture and antigen cross-presentation by dendritic cells. Preprint at bioRxiv https://doi.org/10.1101/2023.08.11.553042 (2023). This study describes a novel role for APOL7C, a gene that is highly upregulated during homeostatic cDC1 maturation, in the release of phagosomal antigens.

  213. Vasquez Ayala, A. et al. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J. Exp. Med. 221, e20230063 (2024).

    Article  PubMed  Google Scholar 

  214. Spörri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    Article  PubMed  Google Scholar 

  215. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Minutti, C. M. et al. Distinct ontogenetic lineages dictate cDC2 heterogeneity. Nat. Immunol. 25, 448–461 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863.e24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nutt, S. L. & Chopin, M. Transcriptional networks driving dendritic cell differentiation and function. Immunity 52, 942–956 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Bosteels, C. & Scott, C. L. Transcriptional regulation of DC fate specification. Mol. Immunol. 121, 38–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Caton, M. L., Smith-Raska, M. R. & Reizis, B. Notch–RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Tussiwand, R. et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916–928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nakamizo, S. et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J. Exp. Med. 218, e20202345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Liu, Z. et al. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity 56, 1761–1777.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Leal, J. M. et al. Innate cell microenvironments in lymph nodes shape the generation of T cell responses during type I inflammation. Sci. Immunol. 6, eabb9435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cerovic, V. et al. Intestinal CD103 dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6, 104–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gerhard, G. M., Bill, R., Messemaker, M., Klein, A. M. & Pittet, M. J. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 218, e20200264 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Reis e Sousa (The Francis Crick Institute; UK), B. Lambrecht (VIB-UGent Center for Inflammation Research; Belgium), C. Scott (VIB-UGent Center for Inflammation Research; Belgium), H. Hammad (VIB-UGent Center for Inflammation Research; Belgium), C. Maueröder (VIB-UGent Center for Inflammation Research; Belgium), F. Osorio (Institute of Biomedical Sciences; Chile) and W. Le Goff (Foundation for Innovation in Cardiometabolism and Nutrition; France) for critically reading the manuscript and providing comments. The authors also thank all members of the Janssens Laboratory for the many discussions over the past years. This work was supported by a European Research Council (ERC) Consolidator Grant (DCRIDDLE-819314), Research Foundation – Flanders (FWO) Program Grants (G063218 and G050622N), FWO EOS Grant (G0G7318N) and FWO PhD Grant to V.B. (1134321N).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sophie Janssens.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bone marrow-derived DCs

These cells are typically generated by differentiating bone marrow-derived cells in the presence of granulocyte–macrophage colony-stimulating factor (GM-CSF), leading to a heterogenous culture containing DC2-like cells (so-called GM-CSF DCs). Differentiation of bone marrow-derived cells in the presence of FMS-like tyrosine kinase 3 ligand (FLT3L) yields cDC1, cDC2 and pDCs that better resemble the in vivo counterparts (so-called Flt3 DCs), especially when co-cultured with fibroblasts expressing the Notch ligand Delta-like protein 1 (DLL1) (so-called Flt3 Notch DCs).

Bridging channel

Specialized interfollicular regions in the spleen that connect the T zone with the red pulp.

Cross-presenting

A process by which certain antigen-presenting cells can take up, process and present extracellular antigens on MHC class I molecules to CD8+ T cells. Normally, presentation on MHC class I molecules is associated with intracellular antigens.

Cross-tolerance

A process whereby antigens are presented by dendritic cells (DCs) to CD8+ T cells in an immunosilent way, thereby inducing tolerance rather than priming of the T cell against the antigen.

‘Don’t eat me’ signal

Engagement of the signal regulatory protein a (SIRPα) on macrophages by binding to CD47 expressed on any target cell transmits a ‘don’t eat me’ signal, thereby preventing the engulfment of the CD47-expressing target cell by macrophages.

Dynein–dynactin complex

Molecular motor complex consisting of cytoplasmic dynein that connects with its cofactor dynactin to move cargo (for example, late endosomes and lysosomes) on microtubules.

Efferocytosis

The phagocytic removal of apoptotic cells.

Kynurenine pathway

A metabolic process that has a crucial role in generating cellular energy in the form of nicotinamide adenine dinucleotide (NAD+) by consuming tryptophan and that produces immunoregulatory molecules, known as kynurenines.

mTOR pathway

Central regulator of cell metabolism, thereby influencing cell growth and proliferation.

OT-I cells

T cells derived from a transgenic mouse strain in which all T cells bear a transgenic TCR that recognizes ovalbumin residues 257–264 in the context of H2Kb and which are used to study the response of CD8+ T cells to antigen.

Poly(I:C)

A synthetic analogue of double-stranded RNA that activates TLR3.

Sumoylation

A post-translational modification whereby the small ubiquitin-like protein SUMO is coupled to a lysine on a target protein, thereby modulating several processes such as nuclear-cytosolic transport, transcriptional regulation or progression through the cell cycle.

Tolerance

The mechanism by which the immune system prevents pathologic auto-reactivity against self and, thus, prevents autoimmune diseases. In extension, tolerance can be established against (innocuous) foreign antigens such as food-derived antigens (oral tolerance). An antigen is tolerated when immune cells such as antigen-specific T cells have been rendered inactive by either deletion (deletional tolerance), anergy or conversion to regulatory T cells after challenge. Memory is established and, therefore, true induction of tolerance can be defined as the absence of an immune reaction upon rechallenge with the same antigen, even when presented in infectious conditions.

Unfolded protein response

(UPR). A highly conserved cellular stress response that is activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosteels, V., Janssens, S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01079-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01079-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing