Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Olfactory immunology: the missing piece in airway and CNS defence

Abstract

The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity of the upper respiratory tract: the olfaction fraction.
Fig. 2: Cell types and effector mechanisms in the olfactory mucosa.

Similar content being viewed by others

References

  1. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. (2021).

  2. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Bergwerk, M. et al. Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 385, 1629–1630 (2021).

    Article  Google Scholar 

  4. Terreri, S. et al. Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections. Cell Host Microbe 30, 400–408.e404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall, V. et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 386, 1207–1220 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Giacomelli, A. et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin. Infect. Dis. 71, 889–890 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, Y., Min, P., Lee, S. & Kim, S.-W. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J. Korean Med. Sci. https://doi.org/10.3346/jkms.2020.35.e174 (2020).

  8. Premraj, L. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J. Neurol. Sci. 434, 120162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crook, H., Raza, S., Nowell, J., Young, M. & Edison, P. Long covid — mechanisms, risk factors, and management. BMJ 374, n1648 (2021).

    Article  PubMed  Google Scholar 

  10. Eyre, D. W. et al. Effect of Covid-19 vaccination on transmission of alpha and delta variants. N. Engl. J. Med. 386, 744–756 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Horiuchi, S. et al. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abm3131 (2021). Demonstrated that SARS-CoV-2 could be transmitted between hamsters even in the presence of systemic immune memory.

  12. Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184, 1188–1200.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Routhu, N. K. et al. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 54, 542–556.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bricker, T. L. et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep. 36, 109400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Case, J. B. et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe 28, 465–474.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pino, M. et al. A yeast expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abh3634 (2021).

  18. van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou, D. et al. Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. Cell Host Microbe 29, 551–563.e5 (2021). Shows that the nasal turbinates could still be infected with SARS-CoV-2 despite prior neutralizing antibody administration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gagne, M. et al. Protection from SARS-CoV-2 delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 185, 113–130.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Hansen, F. et al. SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract. Cell Rep. https://doi.org/10.1016/j.celrep.2022.110515 (2022).

  22. Tang, J. et al. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Sci. Immunol. 0, eadd4853 (2022).

    Article  CAS  Google Scholar 

  23. Liu, J. et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Sci. Immunol. 7, eabq7647 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Ramphal, R., Cogliano, R. C., Shands, J. W. & Small, P. A. Serum antibody prevents lethal murine influenza pneumonitis but not tracheitis. Infect. Immun. 25 (1979).

  25. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glauser, D. L., Milho, R., Lawler, C. & Stevenson, P. G. Antibody arrests γ-herpesvirus olfactory super-infection independently of neutralization. J. Gen. Virol. 100, 246–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Williamson, L. E. et al. Human antibodies protect against aerosolized Eastern equine encephalitis virus infection. Cell 183, 1884–1900.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kafai, N. M. et al. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J. Exp. Med. 219, e20212532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fukuiwa, T. et al. A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26, 4849–4859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sealy, R., Webby, R. J., Crumpton, J. C. & Hurwitz, J. L. Differential localization and function of antibody forming cells responsive to inactivated or live attenuated influenza virus vaccines. Int. Immunol. 25, 183–195 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Martini, V. et al. Simultaneous aerosol and intramuscular immunization with influenza vaccine induces powerful protective local T cell and systemic antibody immune responses in pigs. J. Immunol. 206, ji2001086 (2020).

    Google Scholar 

  32. Arunachalam, P. S. et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature 594, 253–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ochsner, S. P. et al. FcRn-targeted mucosal vaccination against influenza virus infection. J. Immunol. 207, 1310–1321 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol., 1-15, (2021).

  35. Lund, F. E. & Randall, T. D. Scent of a vaccine. Science (2021).

  36. Smith, N. et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat. Immunol. 22, 1428–1439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fröberg, J. et al. SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nat. Commun. 12, 5621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mettelman, R. C., Allen, E. K. & Thomas, P. G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55, 749–780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Renegar, K. B., Small, P. A., Boykins, L. G. & Wright, P. F. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173, 1978–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Horton, R. E. & Vidarsson, G. Antibodies and their receptors: different potential roles in mucosal defense. Front. Immunol. https://doi.org/10.3389/fimmu.2013.00200 (2013).

  41. Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017). Describes resident memory T cells in the olfactory mucosa and shows their importance in combating influenza viral spread to the lung.

    Article  PubMed  Google Scholar 

  42. Sheikh-Mohamed, S. et al. A mucosal antibody response is induced by intra-muscular SARS-CoV-2 mRNA vaccination. 2021.2008.2001.21261297 (2021).

  43. Wagner, D. K. et al. Analysis of immunoglobulin G antibody responses after administration of live and inactivated influenza A vaccine indicates that nasal wash immunoglobulin G is a transudate from serum. J. Clin. Microbiol. 25, 559–562 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mazanec, M. B., Nedrud, J. G., Liang, X. P. & Lamm, M. E. Transport of serum IgA into murine respiratory secretions and its implications for immunization strategies. J. Immunol. 142, 4275–4281 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Pakkanen, S. H. et al. Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin. Vaccin. Immunol. 17, 393–401 (2010).

    Article  CAS  Google Scholar 

  46. Mades, A. et al. Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination. Sci. Rep. 11, 24448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ladel, S. et al. Impact of glycosylation and species origin on the uptake and permeation of IgGs through the nasal airway mucosa. Pharmaceutics 12, 1014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity https://doi.org/10.1016/j.immuni.2022.08.017 (2022). Has discovered the blood–olfactory barrier and demonstrates the requirement for local antibody production by mucosal plasma cells in olfactory mucosa protection.

  49. Rajini, B., Zeng, J., Suvas, P. K., Dech, H. M. & Onami, T. M. Both systemic and mucosal LCMV immunization generate robust viral-specific IgG in mucosal secretions, but elicit poor LCMV-specific IgA. Viral Immunol. 23, 377–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dando, S. J. et al. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin. Microbiol. Rev. 27, 691–726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ampie, L. & McGavern, D. B. Immunological defense of CNS barriers against infections. Immunity 55, 781–799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Paiva, C. S., Leger, A. J. S. & Caspi, R. R. Mucosal immunology of the ocular surface. Mucosal Immunol. 15, 1143–1157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eiting, T. P., Smith, T. D., Perot, J. B. & Dumont, E. R. The role of the olfactory recess in olfactory airflow. J. Exp. Biol. 217, 1799–1803 (2014).

    PubMed  Google Scholar 

  56. Lee, S. H., Kim, J. E., Lee, H. M., Lim, H. H. & Choi, J. O. Antimicrobial defensin peptides of the human nasal mucosa. Ann. Otol. Rhinol. Laryngol. 111, 135–141 (2002).

    Article  PubMed  Google Scholar 

  57. Thienhaus, M. L. et al. Antimicrobial peptides in nasal secretion and mucosa with respect to Staphylococcus aureus colonization in chronic rhinosinusitis with nasal polyps. Rhinology 49, 554–561 (2011).

    Article  PubMed  Google Scholar 

  58. Podlesnaja, M., Pilmane, M. & Sumeraga, G. Cytokines, proliferation markers, antimicrobial factors and neuropeptide-containing innervation in human nasal mucosa after rhinoseptoplasty procedure. Med. Sci. 9, 25 (2021).

    CAS  Google Scholar 

  59. Kennel, C. et al. Differential expression of mucins in murine olfactory versus respiratory epithelium. Chem. Senses 44, 511–521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bryche, B., Baly, C. & Meunier, N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res. 384, 589–605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bianchi, F. et al. Vertebrate odorant binding proteins as antimicrobial humoral components of innate immunity for pathogenic microorganisms. PLoS One 14, e0213545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shirai, T. et al. Functions of human olfactory mucus and age-dependent changes. Sci. Rep. 13, 971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, C. R., Kachramanoglou, C., Li, D., Andrews, P. & Choi, D. Anatomy and cellular constituents of the human olfactory mucosa: a review. J. Neurol. Surg. B Skull Base 75, 293–300 (2014).

    Google Scholar 

  64. Barrios, A. W., Nunez, G., Sanchez Quinteiro, P. & Salazar, I. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front. Neuroanat. 8, 63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ualiyeva, S. et al. Olfactory microvillar tuft cells direct neurogenesis during allergic inflammation. Preprint at bioRxiv https://doi.org/10.1101/2022.09.26.509561 (2022).

  66. Schwob, J. E. et al. Stem and progenitor cells of the mammalian olfactory epithelium: taking poietic license. J. Comp. Neurol. 525, 1034–1054 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Morrison, E. E. & Costanzo, R. M. Scanning electron microscopic study of degeneration and regeneration in the olfactory epithelium after axotomy. J. Neurocytol. 18, 393–405 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Perera, S. N. et al. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. GLIA https://doi.org/10.1002/glia.23870 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hong, S. P. et al. Three-dimensional morphologic and molecular atlases of nasal vasculature. Nat. Cardiovasc. Res., 1-18 (2023).

  70. Jacob, L. et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med. 219 (2022).

  71. Norwood, J. N. et al. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. eLife https://doi.org/10.7554/eLife.44278 (2019). Illustrates lymphatic drainage from the CNS through the olfactory portal.

  72. Goldmann, J. et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80, 797–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Hsu, M. et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun. https://doi.org/10.1038/s41467-018-08163-0 (2019). Shows the role of olfactory-specific lymphangiogenesis in CNS drainage.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Walter, B. A., Valera, V. A., Takahashi, S. & Ushiki, T. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol. Appl. Neurobiol. 32, 388–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Zakharov, A., Papaiconomou, C. & Johnston, M. Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat. Res. Biol. 2, 139–146 (2004).

    Article  PubMed  Google Scholar 

  76. Jackson, R. T., Tigges, J. & Arnold, W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch. Otolaryngol. 105, 180–184 (1979).

    Article  CAS  PubMed  Google Scholar 

  77. Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. eBioMedicine 91 (2023).

  78. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Papadopoulos, Z., Herz, J. & Kipnis, J. Meningeal lymphatics: from anatomy to central nervous system immune surveillance. J. Immunol. 204, 286–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Johnston, M., Zakharov, A., Papaiconomou, C., Salmasi, G. & Armstrong, D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 1, 1–13 (2004).

    Article  Google Scholar 

  82. Mehta, N. H. et al. The brain-nose interface: a potential cerebrospinal fluid clearance site in humans. Front. Physiol. 12, 769948 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhou, Y. et al. Impaired peri-olfactory cerebrospinal fluid clearance is associated with ageing, cognitive decline and dyssomnia. eBioMedicine 86, 104381 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Melin, E., Eide, P. K. & Ringstad, G. In vivo assessment of cerebrospinal fluid efflux to nasal mucosa in humans. Sci. Rep. 10, 14974–14974 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mori, I. Highlighting the ‘blood-nerve barrier’ in virology research. Acta Virol. 62, 28–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Wolburg, H. et al. Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat. Histochem. Cell Biol. 130, 127–140 (2008).

    Article  CAS  Google Scholar 

  87. Crowe, T. P. & Hsu, W. H. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics 14, 629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lochhead, J. J. & Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 64, 614–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is Detected in specific cell subsets across tissues. Cell 181, 1016–1035.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Verma, A. K., Zheng, J., Meyerholz, D. K. & Perlman, S. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight e160277 (2022). Shows that SARS-CoV-2 infection of sustentacular cells contributes to loss of smell.

  91. Khan, M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 184, 5932–5949.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, 5801–5832 (2020).

    Article  Google Scholar 

  93. Richard, M. et al. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat. Commun. 11, 766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kolpe, A., Schepens, B., Ye, L., Staeheli, P. & Saelens, X. Passively transferred M2e-specific monoclonal antibody reduces influenza A virus transmission in mice. Antivir. Res. 158, 244–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Price, G. E., Lo, C.-Y., Misplon, J. A. & Epstein, S. L. Reduction of influenza A virus transmission in mice by a universal intranasal vaccine candidate is long-lasting and does not require antibodies. J. Virol. 96, e00320–e00322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mellert, T. K., Getchell, M. L., Sparks, L. & Getchell, T. V. Characterization of the immune barrier in human olfactory mucosa. (1991). Shows characterization of olfactory immune cells in human samples.

  97. Getchell, M. L. & Getchell, T. V. Immunohistochemical localization of components of the immune barrier in the olfactory mucosae of salamanders and rats. Anat. Rec. 231, 358–374 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu, Y.-Y. et al. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLoS Pathog. 14, e1007251 (2018). Has determined the importance of mucosal immunoglobulins in protecting the olfactory organ of fish.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dong, F. et al. IgT plays a predominant role in the antibacterial immunity of rainbow trout olfactory organs. Front. Immunol. 11 (2020).

  100. Nouailles, G. et al. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat. Microbiol. 8, 860–874 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Durante, M. A. et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 23, 323–326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kazer, S. W. et al. Primary nasal viral infection rewires the tissue-scale memory response. Preprint at bioRxiv https://doi.org/10.1101/2023.05.11.539887 (2023).

  103. Tan, C. S. E. & Stevenson, P. G. B cell response to herpesvirus infection of the olfactory neuroepithelium. J. Virol. 88, 14030–14039 (2014). Describes a role for B cells in olfactory herpesvirus infection.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tan, H.-X. et al. Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Sci. Immunol. 7, eabf5314 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Hiroi, T. et al. Nasal immune system: distinctive Th0 and Th1/Th2 type environments in murine nasal-associated lymphoid tissues and nasal passage, respectively. Eur. J. Immunol. 28, 3346–3353 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Lim, J. M. E. et al. SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity. J. Exp. Med. https://doi.org/10.1084/jem.20220780 (2022).

  107. Sepahi, A. et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc. Natl Acad. Sci. USA 201900083 (2019). Persistent inflammation following SARS-CoV-2 infection contributes to long-term olfactory deficits.

  108. Finlay, J. B. et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci. Transl. Med. 14, eadd0484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frere, J. J. et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci. Transl. Med. 0, eabq3059 (2022). Shows that in age-related olfactory loss, lymphocytic inflammation altered olfactory stem cell regenerative capacity.

    Article  CAS  Google Scholar 

  110. Oliva, A. D. et al. Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans. J. Clin. Investig. https://doi.org/10.1172/JCI155506 (2022). Shows that inflammation drives an olfactory stem cell switch from regeneration to immune defense and that NF-κB signalling drives alterations in olfactory function.

  111. Chen, M. & Reed, R. Chronic inflammation directs an olfactory stem cell functional switch from neuroregeneration to immune defense. Cell Stem Cell 1-13, (2019).

  112. Kagoya, R. et al. Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation. J. Neuroinflamm. 19, 13 (2022).

    Article  CAS  Google Scholar 

  113. Smithson, L. J. & Kawaja, M. D. Microglial/macrophage cells in mammalian olfactory nerve fascicles. J. Neurosci. Res. 88, 858–865 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Ruitenberg, M. J. et al. CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. J. Neuroimmunol. 205, 80–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Savage, J. C., Carrier, M. & Tremblay, M.-È. Morphology of microglia across contexts of health and disease. Microglia Meth. Protoc. 13-26 (2019).

  116. Borders, A. S. et al. Macrophage depletion in the murine olfactory epithelium leads to increased neuronal death and decreased neurogenesis. J. Comp. Neurol. 501, 206–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Borders, A. S. et al. Macrophage-mediated neuroprotection and neurogenesis in the olfactory epithelium. Physiol. Genom. 31, 531–543 (2007).

    CAS  Google Scholar 

  118. Nan, B., Getchell, M. L., Partin, J. V. & Getchell, T. V. Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J. Comp. Neurol. 435, 60–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Getchell, M. L. et al. Temporal gene expression profiles of target-ablated olfactory epithelium in mice with disrupted expression of scavenger receptor A: impact on macrophages. Physiol. Genom. 27, 245–263 (2006).

    CAS  Google Scholar 

  120. Getchell, T. V., Shah, D. S., Partin, J. V., Subhedar, N. K. & Getchell, M. L. Leukemia inhibitory factor mRNA expression is upregulated in macrophages and olfactory receptor neurons after target ablation. J. Neurosci. Res. 67, 246–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Getchell, T. V. et al. Chemokine regulation of macrophage recruitment into the olfactory epithelium following target ablation: involvement of macrophage inflammatory protein-1α and monocyte chemoattractant protein-1. J. Neurosci. Res. 70, 784–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Shi, J. et al. PHEV infection: a promising model of betacoronavirus-associated neurological and olfactory dysfunction. PLoS Pathog. 18, e1010667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yoshida, T. et al. Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J. Gen. Virol. 83, 2109–2116 (2002).

    Article  PubMed  Google Scholar 

  124. Herbert, R. P. et al. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J. Neuroinflamm. 9, 109 (2012).

    Article  CAS  Google Scholar 

  125. Yee, K. K. et al. Analysis of the olfactory mucosa in chronic rhinosinusitis. Ann. N. Y. Acad. Sci. 1170, 590–595 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kern, R. C. Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope 110, 1071–1077 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Kanaya, K. et al. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of poly(I:C). Cell Tissue Res. 357, 279–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, M., Reed, R. R. & Lane, A. P. Acute inflammation regulates neuroregeneration through the NF-κB pathway in olfactory epithelium. Proc. Natl Acad. Sci. USA 114, 8089–8094 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pägelow, D. et al. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat. Commun. 9, 4269 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rojas-Hernández, S., Jarillo-Luna, A., Rodríguez-Monroy, M., Moreno-Fierros, L. & Campos-Rodríguez, R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol. Res. 94, 31–36 (2004).

    Article  PubMed  Google Scholar 

  131. Yeh, C.-F., Huang, W.-H., Lan, M.-Y. & Hung, W. Lipopolysaccharide-initiated rhinosinusitis causes neuroinflammation and olfactory dysfunction in mice. Am. J. Rhinol. Allergy https://doi.org/10.1177/19458924221140965 (2022).

  132. Farrell, N. F. et al. Mucosal eosinophilia and neutrophilia are not associated with QOL or olfactory function in chronic rhinosinusitis. Am. J. Rhinol. Allergy 1945892420987439 (2021).

  133. Bourgon, C. et al. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell. Mol. Life Sci. 79, 616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cervantes-Sandoval, I., Serrano-Luna, Jd. J., García-Latorre, E., Tsutsumi, V. & Shibayama, M. Characterization of brain inflammation during primary amoebic meningoencephalitis. Parasitol. Int. 57, 307–313 (2008).

    Article  PubMed  Google Scholar 

  135. Yee, K. K. et al. Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am. J. Rhinol. Allergy 24, 110–120 (2010).

    Article  PubMed  Google Scholar 

  136. Jacobs, S., Zeippen, C., Wavreil, F., Gillet, L. & Michiels, T. IFN-λ decreases murid herpesvirus-4 infection of the olfactory epithelium but fails to prevent virus reactivation in the vaginal mucosa. Viruses 11, 757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Klinkhammer, J. et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 7, e33354 ().

  138. Trottier, M., Lyles, D. & Reiss, C. S. Peripheral, but not central nervous system, type I interferon expression in mice in response to intranasal vesicular stomatitis virus infection. J. Neurovirol. 13, 433–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lawler, C. & Stevenson, P. G. Type I interferon signaling to dendritic cells limits murid herpesvirus 4 spread from the olfactory epithelium. J. Virol. 91, e00951–00917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, G. et al. Prevention of lethal respiratory vaccinia infections in mice with interferon-α and interferon-γ. FEMS Immunol. Med. Microbiol. 40, 201–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Bessière, P. et al. Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathog. 17, e1009427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chong, Z. et al. Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Rep. 39, 110799 (2022). Shows that OSN-mediated clearance of influenza prevents viral trafficking to the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dumm, R. E., Wellford, S. A., Moseman, E. A. & Heaton, N. S. Heterogeneity of antiviral responses in the upper respiratory tract mediates differential non-lytic clearance of influenza viruses. Cell Rep. 32, 108103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Khan, M. et al. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron S0896-S6273 (2022).

  145. Ualiyeva, S. et al. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aax7224 (2020).

  146. Beiersdorfer, A. et al. Sublamina-specific organization of the blood brain barrier in the mouse olfactory nerve layer. Glia 68, 631–645 (2020).

    Article  PubMed  Google Scholar 

  147. Denaro, S. et al. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front. Immunol. 13 (2022).

  148. Lan, Y.-X. et al. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen. Res. 17, 440 (2022).

    Article  CAS  Google Scholar 

  149. Harris, J. A., West, A. K. & Chuah, M. I. Olfactory ensheathing cells: nitric oxide production and innate immunity. Glia 57, 1848–1857 (2009). Shows that olfactory ensheathing cells are able to monitor and phagocytose OSN axons.

    Article  PubMed  Google Scholar 

  150. Su, Z. et al. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 61, 490–503 (2013).

    Article  PubMed  Google Scholar 

  151. Wright, A. A., Todorovic, M., Murtaza, M., St John, J. A. & Ekberg, J. A. Macrophage migration inhibitory factor and its binding partner HTRA1 are expressed by olfactory ensheathing cells. Mol. Cell. Neurosci. 102, 103450 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. van Riel, D., Verdijk, R. & Kuiken, T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 235, 277–287 (2015).

    Article  PubMed  Google Scholar 

  153. Meng, X., Deng, Y., Dai, Z. & Meng, Z. COVID-19 and anosmia: a review based on up-to-date knowledge. Am. J. Otolaryngol. Head Neck Med. Surg. 41, 102581–102581 (2020).

    CAS  Google Scholar 

  154. Overdevest, J. B. et al. Chemosensory deficits are best predictor of serologic response among individuals infected with SARS-CoV-2. PLoS One 17, e0274611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hossain, M. E. et al. Prolonged viral shedding in patients with mild to moderate COVID-19 disease: a regional perspective. Infect. Dis. 14, 11786337211010428 (2021).

    Google Scholar 

  156. Long, H. et al. Prolonged viral shedding of SARS-CoV-2 and related factors in symptomatic COVID-19 patients: a prospective study. BMC Infect. Dis. 21, 1282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. de Melo, G. D. et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).

    Article  PubMed  Google Scholar 

  158. Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature https://doi.org/10.1038/s41586-020-2943-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kumari, P. et al. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses 13, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fumagalli, V. et al. Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abl9929 (2021).

    Article  PubMed Central  Google Scholar 

  161. Seehusen, F. et al. Neuroinvasion and neurotropism by SARS-CoV-2 variants in the K18-hACE2 mouse. Viruses 14, 1020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, M. et al. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. Preprint at bioRxiv https://doi.org/10.1101/2022.04.12.487379 (2022).

  164. Melo, G. D. D. et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Preprint at bioRxiv https://doi.org/10.1101/2022.08.31.505985 (2022).

  165. Siddiqui, R., Ali, I. K. M., Cope, J. R. & Khan, N. A. Biology and pathogenesis of Naegleria fowleri. Acta Tropica 164, 375–394 (2016).

    Article  PubMed  Google Scholar 

  166. Weik, R. R. & Adams, A. C. Immunization of mice against Naegleria fowleri. Infection 16, 817–820 (1977).

    Google Scholar 

  167. Ferrante, A. et al. Depression of immunity to Naegleria fowleri in mice by selective depletion of neutrophils with a monoclonal antibody. Infect. Immun. 56, 2286–2291 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jarolim, K. L., McCosh, J. K., Howard, M. J. & John, D. T. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J. Parasitol. 86, 50–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Dubray, B. L., Wilhelm, W. E. & Jennings, B. R. Serology of Naegleria fowleri and Naegleria lovaniensis in a hospital survey. J. Protozool. 34, 322–327 (1987).

    Article  CAS  PubMed  Google Scholar 

  170. Marciano-Cabral, F., Cline, M. L. & Bradley, S. G. Specificity of antibodies from human sera for Naegleria species. J. Clin. Microbiol. 25, 692–697 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rivera, V. et al. IgA and IgM anti-Naegleria fowleri antibodies in human serum and saliva. Can. J. Microbiol. 47, 464–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Flanagan, C. E., Wise, S. K., DelGaudio, J. M. & Patel, Z. M. Association of decreased rate of influenza vaccination with increased subjective olfactory dysfunction. JAMA Otolaryngol. Head Neck Surg. 141, 225–228 (2015).

    Article  PubMed  Google Scholar 

  173. Mizuguchi, M. Influenza encephalopathy and related neuropsychiatric syndromes. Influenza Other Respir. Viruses 7, 67–71 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Studahl, M. Influenza virus and CNS manifestations. J. Clin. Virol. 28, 225–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Lee, N. et al. Acute encephalopathy associated with influenza A infection in adults. Emerg. Infect. Dis. 16, 139–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Newland, J. G. et al. Encephalitis associated with influenza B virus infection in 2 children and a review of the literature. Clin. Infect. Dis. 36, e87–e95 (2003).

    Article  PubMed  Google Scholar 

  177. Britton, P. N. et al. The spectrum and burden of influenza-associated neurological disease in children: combined encephalitis and influenza sentinel site surveillance from Australia, 2013–2015. Clin. Infect. Dis. 65, 653–660 (2017).

    Article  PubMed  Google Scholar 

  178. Aronsson, F., Robertson, B., Ljunggren, H.-G. & Kristensson, K. Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol. 16, 415–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Plourde, J. R. et al. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions. PLoS One 7, e46605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jang, H. et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl Acad. Sci. USA 106, 14063–14068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. van den Brand, J. M. A. et al. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets. PLoS One 7, e42343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Schrauwen, E. J. A. et al. The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J. Virol. 86, 3975–3984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Riel, D. et al. Evidence for influenza virus CNS invasion along the olfactory route in an immunocompromised infant. J. Infect. Dis. 210, 419–423 (2014).

    Article  PubMed  Google Scholar 

  184. Kobasa, D. et al. Transmission of lethal H5N1 clade 2.3. 4.4 b avian influenza in ferrets. (2023).

  185. Bianchi, A. et al. In vivo magnetic resonance imaging evidence of olfactory bulbs changes in a newborn with congenital citomegalovirus: a case report. Ital. J. Pediatr. 47, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lazarini, F. et al. Olfactory function in congenital cytomegalovirus infection: a prospective study. Eur. J. Pediatr. 181, 1859–1869 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lazarini, F. et al. Congenital cytomegalovirus infection alters olfaction before hearing deterioration in mice. J. Neurosci. 38, 10424–10437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Xiaofei, E. et al. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc. Natl Acad. Sci. USA 116, 7043–7052 (2019).

    Article  CAS  Google Scholar 

  189. St. John, J. A. et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. mBio 5, e00025-14 (2014).

    Article  Google Scholar 

  190. Walkden, H. et al. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl. Tropical Dis. 14, e0008017 (2020).

    Article  Google Scholar 

  191. Chacko, A. et al. Streptococcus agalactiae infects glial cells and invades the central nervous system via the olfactory and trigeminal nerves. Front. Cell. Infect. Microbiol. 12, 793416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sugiura, M., Aiba, T., Mori, J. & Nakai, Y. An epidemiological study of postviral olfactory disorder. Acta Oto-Laryngol. 118, 191–196 (1998).

    Article  Google Scholar 

  193. Welge-Lüssen, A. & Wolfensberger, M. Olfactory disorders following upper respiratory tract infections. Adv. Oto-Rhino-Laryngol. 63, 125–132 (2006).

    Article  Google Scholar 

  194. Seiden, A. M. Postviral olfactory loss. Otolaryngol. Clin. North Am. 37, 1159–1166 (2004).

    Article  PubMed  Google Scholar 

  195. Hura, N. et al. in International Forum of Allergy & Rhinology 1065–1086 (Wiley).

  196. Othman, B. A. et al. Olfactory dysfunction as a post-infectious symptom of SARS-CoV-2 infection. Ann. Med. Surg. 75, 103352 (2022).

    Article  Google Scholar 

  197. Lechien, J. R., Vaira, L. A. & Saussez, S. Prevalence and 24-month recovery of olfactory dysfunction in COVID-19 patients: a multicentre prospective study. J. Intern. Med. 293, 82–90 (2023).

    Article  PubMed  Google Scholar 

  198. Tan, H. Q. M., Pendolino, A. L., Andrews, P. J. & Choi, D. Prevalence of olfactory dysfunction and quality of life in hospitalised patients 1 year after SARS-CoV-2 infection: a cohort study. BMJ Open 12, e054598 (2022).

    Article  PubMed  Google Scholar 

  199. Cardoso, C. C. et al. Olfactory dysfunction in patients with mild COVID-19 during gamma, delta, and omicron waves in Rio de Janeiro, Brazil. JAMA 328, 582–583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Narayanan, S. N. et al. The prevalence and pathophysiology of chemical sense disorder caused by the novel coronavirus. Front. Public Health 10 (2022).

  201. Kapoor, D., Verma, N., Gupta, N. & Goyal, A. Post viral olfactory dysfunction after SARS-CoV-2 infection: anticipated post-pandemic clinical challenge. Indian J. Otolaryngol. Head Neck Surg. 1-8 (2021).

  202. Imamura, F. & Hasegawa-Ishii, S. Environmental toxicants-induced immune responses in the olfactory mucosa. Front. Immunol. 7, 475 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Gomes, S. C. et al. Olfaction in nasal polyp patients after Reboot surgery: an endotype-based prospective study. Eur. Arch. Oto-Rhino-Laryngol. 1-10, (2022).

  204. Kim, J. et al. Microglial and astroglial reaction in the olfactory bulb of mice after Triton X-100 application. Acta Histochem. 121, 546–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Lakshmanan, H. G., Miller, E., White-Canale, A. & McCluskey, L. P. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem. Senses 47 (2022).

  206. Choi, R. & Goldstein, B. J. Olfactory epithelium: cells, clinical disorders, and insights from an adult stem cell niche. Laryngosc. Investig. Otolaryngol. 3, 35–42 (2018).

    Article  Google Scholar 

  207. Saraswathula, A., Liu, M. M., Kulaga, H. & Lane, A. P. Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int. Forum Allergy Rhinol. https://doi.org/10.1002/alr.23073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ozaki, S. et al. Impaired olfactory function in mice with allergic rhinitis. Auris Nasus Larynx 37, 575–583 (2010).

    Article  PubMed  Google Scholar 

  209. Lane, A. P., Turner, J., May, L. & Reed, R. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J. Neurosci. 30, 2324–2329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hasegawa, Y. et al. Causal impact of local inflammation in the nasal cavity on higher brain function and cognition. Neurosci. Res. https://doi.org/10.1016/j.neures.2021.04.009 (2021). Shows that olfactory mucosa inflammation can impact cognitive function.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bryche, B. et al. IL-17c is involved in olfactory mucosa responses to poly(I:C) mimicking virus presence. Brain Behav. Immun. 79, 274–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Palominos, M. F. et al. The olfactory organ is a unique site for neutrophils in the brain. Front. Immunol. 2110 (2022).

  213. LaFever, B. J. & Imamura, F. Effects of nasal inflammation on the olfactory bulb. J. Neuroinflamm. 19, 1–11 (2022). Shows that OM inflammation can directly affect inflammation in the brain.

    Article  Google Scholar 

  214. Cain, W. S., Goodspeed, R. B., Gent, J. F. & Leonard, G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope 98, 83–88 (1988).

    Article  CAS  PubMed  Google Scholar 

  215. Murphy, C. et al. Prevalence of olfactory impairment in older adults. JAMA 288, 2307–2312 (2002).

    Article  PubMed  Google Scholar 

  216. Mackay-Sim, A., Johnston, A. N., Owen, C. & Burne, T. H. Olfactory ability in the healthy population: reassessing presbyosmia. Chem. Senses 31, 763–771 (2006).

    Article  PubMed  Google Scholar 

  217. Lafreniere, D. & Mann, N. Anosmia: loss of smell in the elderly. Otolaryngol. Clin. North Am. 42, 123–131 (2009).

    Google Scholar 

  218. Paik, S. I., Lehman, M. N., Seiden, A. M., Duncan, H. J. & Smith, D. V. Human olfactory biopsy: the influence of age and receptor distribution. Arch. Otolaryngol. Head Neck Surg. 118, 731–738 (1992).

    Article  CAS  PubMed  Google Scholar 

  219. Fitzek, M. et al. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J. Comp. Neurol. 530, 2154–2175 (2022).

    Article  Google Scholar 

  220. Dintica, C. S. et al. Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 92, e700–e709 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 15, 11–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Alves, J., Petrosyan, A. & Magalhães, R. Olfactory dysfunction in dementia. World J. Clin. Cases WJCC 2, 661 (2014).

    Article  PubMed  Google Scholar 

  223. Doty, R. L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 8, 329–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Strous, R. D. & Shoenfeld, Y. To smell the immune system: olfaction, autoimmunity and brain involvement. Autoimmun. Rev. 6, 54–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Bubak, A. N. et al. Signatures for viral infection and inflammation in the proximal olfactory system in familial Alzheimer’s disease. Neurobiol. Aging 123, 75–82 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Itzhaki, R. F. Overwhelming evidence for a major role for herpes simplex virus type 1 (HSV1) in Alzheimer’s disease (AD); underwhelming evidence against. Vaccines 9, 679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chacko, A. et al. Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer’s disease risk. Sci. Rep. 12, 2759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Cope, J. R. et al. The epidemiology and clinical features of Balamuthia mandrillaris disease in the United States, 1974–2016. Clin. Infect. Dis. 68, 1815 (2019).

    Article  PubMed  Google Scholar 

  229. Kiderlen, A. F. & Laube, U. Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol. Res. 94, 49–52 (2004).

    Article  PubMed  Google Scholar 

  230. Hu, J. et al. Encephalomyelitis caused by Balamuthia mandrillaris in a woman with breast cancer: a case report and review of the literature. Front. Immunol. 12 (2022).

  231. Góralska, K., Blaszkowska, J. & Dzikowiec, M. Neuroinfections caused by fungi. Infection 46, 443–459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Rake, G. The rapid invasion of the body through the olfactory mucosa. J. Exp. Med. 65, 303–315 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. van Ginkel, F. W. et al. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc. Natl Acad. Sci. USA 100, 14363–14367 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Audshasai, T. et al. Streptococcus pneumoniae rapidly translocate from the nasopharynx through the cribriform plate to invade the outer meninges. mBio 13, e0102422 (2022).

    Article  PubMed  Google Scholar 

  235. Nazareth, L. et al. Chlamydia muridarum can invade the central nervous system via the olfactory and trigeminal nerves and infect peripheral nerve glial cells. Front. Cell. Infect. Microbiol. 10 (2021).

  236. Stratton, C. W. & Sriram, S. Association of Chlamydia pneumoniae with central nervous system disease. Microbes Infect. 5, 1249–1253 (2003).

    Article  PubMed  Google Scholar 

  237. Sjölinder, H. & Jonsson, A.-B. Olfactory nerve — a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 5, e14034 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Owen, S. J. et al. Nasal‐associated lymphoid tissue and olfactory epithelium as portals of entry for Burkholderia pseudomallei in murine melioidosis. J. Infect. Dis. 199, 1761–1770 (2009).

    Article  CAS  PubMed  Google Scholar 

  239. Netland, J., Meyerholz, D. K., Moore, S., Cassell, M. & Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82, 7264–7275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Gu, J. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202, 415–424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Dubé, M. et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J. Virol. 92, e00404–e00418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Jacomy, H. & Talbot, P. J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology 315, 20–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  243. Arbour, N., Day, R., Newcombe, J. & Talbot, P. J. Neuroinvasion by human respiratory coronaviruses. J. Virol. 74, 8913–8921 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Arabi, Y. M. et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 43, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Saad, M. et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int. J. Infect. Dis. 29, 301–306 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Li, K. et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis. 213, 712–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Zielinski, M. R., Souza, G., Taishi, P., Bohnet, S. G. & Krueger, J. M. Olfactory bulb and hypothalamic acute-phase responses to influenza virus: effects of immunization. Neuroimmunomodulation 20, 323–333 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Leyva-Grado, V. H. et al. Influenza virus- and cytokine-immunoreactive cells in the murine olfactory and central autonomic nervous systems before and after illness onset. J. Neuroimmunol. 211, 73–83 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Schlesinger, R. W. Incomplete growth cycle of influenza virus in mouse brain. Proc. Soc. Exp. Biol. Med. 74, 541–548 (1950).

    Article  CAS  PubMed  Google Scholar 

  250. Bouvier, N. M. & Lowen, A. C. Vol. 2 1530-1563 (2010).

  251. Whelan, S. P. J. in Encyclopedia of Virology 3rd edn (eds Mahy, B. W. J. & Van Regenmortel, M. H. V.) 291–299 (Academic, 2008).

  252. Reiss, C. S., Plakhov, I. V. & Komatsu, T. Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann. N. Y. Acad. Sci. 855, 751–761 (1998).

    Article  CAS  PubMed  Google Scholar 

  253. Moseman, E. A., Blanchard, A. C., Nayak, D. & McGavern, D. B. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci. Immunol. 5, eabb1817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kalinke, U. et al. The role of somatic mutation in the generation of the protective humoral immune response against vesicular stomatitis virus. Immunity 5, 639–652 (1996).

    Article  CAS  PubMed  Google Scholar 

  255. Conomy, J. P., Leibovitz, A., McCombs, W. & Stinson, J. Airborne rabies encephalitis: demonstration of rabies virus in the human central nervous system. Neurology 27, 67–67 (1977).

    Article  CAS  PubMed  Google Scholar 

  256. Lafay, F. et al. Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology 183, 320–330 (1991).

    Article  CAS  PubMed  Google Scholar 

  257. Turner, G. Respiratory infection of mice with vaccinia virus. J. Gen. Virol. 1, 399–402 (1967).

    Article  CAS  PubMed  Google Scholar 

  258. Martinez, M. J., Bray, M. P. & Huggins, J. W. A mouse model of aerosol-transmitted orthopoxviral disease: morphology of experimental aerosol-transmitted orthopoxviral disease in a cowpox virus-BALB/c mouse system. Arch. Pathol. Lab. Med. 124, 362–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  259. Luker, K. E., Hutchens, M., Schultz, T., Pekosz, A. & Luker, G. D. Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology 341, 284–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  260. Farrell, H. E. et al. Murine cytomegalovirus exploits olfaction to enter new hosts. mBio 7, e00251-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Jennische, E., Eriksson, C. E., Lange, S., Trybala, E. & Bergström, T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J. Neurovirol. 21, 129–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  262. Shivkumar, M. et al. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J. Virol. 87, 10477–10488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Mori, I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 59, 338–349 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Twomey, J. A., Barker, C. M., Robinson, G. & Howell, D. A. Olfactory mucosa in herpes simplex encephalitis. J. Neurol. Neurosurg. Psychiatry 42, 983–987 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Esiri, M. M. Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J. Neurol. Sci. 54, 209–226 (1982).

    CAS  Google Scholar 

  266. Landis, B. N., Vodicka, J. & Hummel, T. Olfactory dysfunction following herpetic meningoencephalitis. J. Neurol. 257, 439–443 (2010).

    Article  PubMed  Google Scholar 

  267. Harberts, E. et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc. Natl Acad. Sci. USA 108, 13734–13739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Milho, R., Frederico, B., Efstathiou, S. & Stevenson, P. G. A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog. 8, e1002986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Narita, M., Imada, T. & Haritani, M. Immunohistological demonstration of spread of Aujeszky’s disease virus via the olfactory pathway in HPCD pigs. J. Comp. Pathol. 105, 141–145 (1991).

    Article  CAS  PubMed  Google Scholar 

  270. Kritas, S. K., Pensaert, M. B. & Mettenleiter, T. C. Role of envelope glycoproteins gI, gp63 and gIII in the invasion and spread of Aujeszky’s disease virus in the olfactory nervous pathway of the pig. J. Gen. Virol. 75, 2319–2327 (1994).

    Article  CAS  PubMed  Google Scholar 

  271. Faber, H. K. & Gebhardt, L. P. Localizations of the virus of poliomyelitis in the central nervous system during the preparalytic period, after intranasal instillation. J. Exp. Med. 57, 933–954 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Schultz, E. W. & Gebhardt, L. P. Olfactory tract and poliomyelitis. Proc. Soc. Exp. Biol. Med. 31, 728–730 (1934).

    Article  Google Scholar 

  273. Sabin, A. B. & Olitsky, P. K. The olfactory bulbs in experimental poliomyelitis: their pathologic condition as an indicator of the portal of entry of the virus. J. Am. Med. Assoc. 108, 21–24 (1937).

    Article  Google Scholar 

  274. Faber, H. K., Silverberg, R. J. & Dong, L. Poliomyelitis in the cynomolgus monkey: III. Infection by inhalation of droplet nuclei and the nasopharyngeal portal of entry, with a note on this mode of infection in rhesus. J. Exp. Med. 80, 39–57 (1944).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sabin, A. B. The olfactory bulbs in human poliomyelitis. Am. J. Dis. Child. 60, 1313–1318 (1940).

    Google Scholar 

  276. Crotty, S., Hix, L., Sigal, L. J. & Andino, R. Poliovirus pathogenesis in a new poliovirus receptor transgenic mouse model: age-dependent paralysis and a mucosal route of infection. J. Gen. Virol. 83, 1707–1720 (2002).

    Article  CAS  PubMed  Google Scholar 

  277. Roy, C. J. et al. Pathogenesis of aerosolized Eastern equine encephalitis virus infection in guinea pigs. Virol. J. 6, 170 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Honnold, S. P. et al. Eastern equine encephalitis virus in mice II: pathogenesis is dependent on route of exposure. Virol. J. 12, 154 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Williams, J. A. et al. Eastern equine encephalitis virus rapidly infects and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol challenge. PLoS Negl. Tropical Dis. 16, e0010081 (2022).

    Article  CAS  Google Scholar 

  280. Charles, P. C., Walters, E., Margolis, F. & Johnston, R. E. Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology 208, 662–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  281. Ryzhikov, A. B., Ryabchikova, E. I., Sergeev, A. N. & Tkacheva, N. V. Spread of Venezuelan equine encephalitis virus in mice olfactory tract. Arch. Virol. 140, 2243–2254 (1995).

    Article  CAS  PubMed  Google Scholar 

  282. Danes, L., Kufner, J., Hrusková, J. & Rychterová, V. The role of the olfactory route on infection of the respiratory tract with Venezuelan equine encephalomyelitis virus in normal and operated Macaca rhesus monkeys. I. Results of virological examination. Acta Virol. 17, 50–56 (1973).

    CAS  PubMed  Google Scholar 

  283. Gardner, J. et al. Infectious Chikungunya virus in the saliva of mice, monkeys and humans. PLoS One 10, e0139481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Zhou, J. et al. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. eBioMedicine 89 (2023).

  285. Nir, Y., Beemer, A. & Goldwasser, R. A. West Nile virus infection in mice following exposure to a viral aerosol. Br. J. Exp. Pathol. 46, 443–449 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Brown, A. N., Kent, K. A., Bennett, C. J. & Bernard, K. A. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 368, 422–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  287. Yamada, M., Nakamura, K., Yoshii, M., Kaku, Y. & Narita, M. Brain lesions induced by experimental intranasal infection of Japanese encephalitis virus in piglets. J. Comp. Pathol. 141, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  288. Han, W. et al. Precise localization and dynamic distribution of Japanese encephalitis virus in the rain nuclei of infected mice. PLoS Negl. Tropical Dis. 15, e0008442 (2021).

    Article  Google Scholar 

  289. McMinn, P. C., Dalgarno, L. & Weir, R. C. A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology 220, 414–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  290. Andrews, D. M., Matthews, V. B., Sammels, L. M., Carrello, A. C. & McMinn, P. C. The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J. Virol. 73, 8781–8790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Matthews, V. et al. Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice. Int. J. Exp. Pathol. 81, 31–40 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Webster, L. T. & Clow, A. D. The limited neurotropic character of the encephalitis virus (St. Louis type) in susceptible mice. J. Exp. Med. 63, 433–448 (1936).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Monath, T. P., Cropp, C. B. & Harrison, A. K. Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy. Lab. Investig. 48, 399–410 (1983).

    CAS  PubMed  Google Scholar 

  294. Wang, J. H., Kwon, H. J. & Jang, Y. J. Detection of parainfluenza virus 3 in turbinate epithelial cells of postviral olfactory dysfunction patients. Laryngoscope 117, 1445–1449 (2007).

    Article  PubMed  Google Scholar 

  295. Mori, I. et al. Parainfluenza virus type 1 infects olfactory neurons and establishes long-term persistence in the nerve tissue. J. Gen. Virol. 76, 1251–1254 (1995).

    Article  CAS  PubMed  Google Scholar 

  296. Tian, J. et al. Sendai virus induces persistent olfactory dysfunction in a murine model of PVOD via effects on apoptosis, cell proliferation, and response to odorants. PLoS One 11, e0159033 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Weingartl, H. et al. Invasion of the central nervous system in a porcine host by Nipah Virus. J. Virol. 79, 7528–7534 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Dups, J. et al. A new model for Hendra virus encephalitis in the mouse. PLoS One 7, e40308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Munster, V. J. et al. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci. Rep. 2, 736 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Baseler, L. et al. Identifying early target cells of Nipah virus infection in Syrian hamsters. PLoS Negl. Tropical Dis. 10, e0005120 (2016).

    Article  Google Scholar 

  301. Zlotnik, I. & Grant, D. P. Further observations on subacute sclerosing encephalitis in adult hamsters: the effects of intranasal infections with Langat virus, measles virus and SSPE-measles virus. Br. J. Exp. Pathol. 57, 49–66 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Carbone, K. M., Duchala, C. S., Griffin, J. W., Kincaid, A. L. & Narayan, O. Pathogenesis of Borna disease in rats: evidence that intra-axonal spread is the major route for virus dissemination and the determinant for disease incubation. J. Virol. 61, 3431–3440 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Morales, J. A., Herzog, S., Kompter, C., Frese, K. & Rott, R. Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med. Microbiol. Immunol. 177, 51–68 (1988).

    Article  CAS  PubMed  Google Scholar 

  304. Sauder, C. & Staeheli, P. Rat model of Borna disease virus transmission: epidemiological implications. J. Virol. 77, 12886–12890 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Barnett, E. M. & Perlman, S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology 194, 185–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  306. Barthold, S. Olfactory neural pathway in mouse hepatitis virus nasoencephalitis. Acta Neuropathol. 76, 502–506 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Barnett, E., Cassell, M. & Perlman, S. Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience 57, 1007–1025 (1993).

    Article  CAS  PubMed  Google Scholar 

  308. Schwob, J. E., Saha, S., Youngentob, S. L. & Jubelt, B. Intranasal inoculation with the olfactory bulb line variant of mouse hepatitis virus causes extensive destruction of the olfactory bulb and accelerated turnover of neurons in the olfactory epithelium of mice. Chem. Senses 26, 937–952 (2001).

    Article  CAS  PubMed  Google Scholar 

  309. Cupovic, J. et al. Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity 44, 622–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Ogra, P. L., Karzon, D. T., Righthand, F. & MacGillivray, M. Immunoglobulin response in serum and secretions after immunization with live and inactivated poliovaccine and natural infection. N. Engl. J. Med. 279, 893–900 (1968).

    Article  CAS  PubMed  Google Scholar 

  311. Furuyama, W. et al. Rapid protection from COVID-19 in nonhuman primates vaccinated intramuscularly but not intranasally with a single dose of a vesicular stomatitis virus-based vaccine. mBio, e0337921 (2022).

  312. Diallo, B. K. et al. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. npj Vaccines 8, 68 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Shin, H. & Iwasaki, A. A vaccine strategy protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Zhou, R. et al. Nasal prevention of SARS-CoV-2 infection by intranasal influenza-based boost vaccination in mouse models. eBioMedicine 75, 103762 (2022).

    Article  CAS  PubMed  Google Scholar 

  315. Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Saunders, K. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 1-9 (2021).

  317. Clements, J. D. & Norton, E. B. The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 3, e00215–e00218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Tizard, I. & Skow, L. The olfactory system: the remote-sensing arm of the immune system. Anim. Health Res. Rev. 22, 14–25 (2021).

    Article  PubMed  Google Scholar 

  319. Anja Juran, S. et al. Disgusting odors trigger the oral immune system. Evol. Med. Public Health 11, 8–17 (2023).

    Article  PubMed  Google Scholar 

  320. Angelucci, F. et al. Physiological effect of olfactory stimuli inhalation in humans: an overview. Int. J. Cosmet. Sci. 36, 117–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  321. Shibata, H., Fujiwara, R., Iwamoto, M., Matsuoka, H. & Yokoyama, M. M. Immunological and behavioral effects of fragrance in mice. Int. J. Neurosci. 57, 151–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  322. Song, C. & Leonard, B. The effect of olfactory bulbectomy in the rat, alone or in combination with antidepressants and endogenous factors, on immune function. Hum. Psychopharmacol. Clin. Exp. 10, 7–18 (1995).

    Article  CAS  Google Scholar 

  323. Madhwal, S. et al. Metabolic control of cellular immune-competency by odors in Drosophila. eLife 9, e60376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Leinders-Zufall, T. et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  325. Thompson, R. N., McMillon, R., Napier, A. & Wekesa, K. S. Pregnancy block by MHC class I peptides is mediated via the production of inositol 1,4,5-trisphosphate in the mouse vomeronasal organ. J. Exp. Biol. 210, 1406–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  326. Milinski, M. A review of suggested mechanisms of MHC odor signaling. Biology 11, 1187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Orecchioni, M., Matsunami, H. & Ley, K. Olfactory receptors in macrophages and inflammation. Front. Immunol. 13 (2022).

  328. Cai, X. T. et al. Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 596, 97–102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Jendrny, P. et al. Scent dog identification of samples from COVID-19 patients — a pilot study. BMC Infect. Dis. 20, 1–7 (2020).

    Article  Google Scholar 

  330. Pirrone, F. et al. Sniffer dogs performance is stable over time in detecting COVID-19 positive samples and agrees with the rapid antigen test in the field. Sci. Rep. 13, 3679 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Grandjean, D. et al. Diagnostic accuracy of non-invasive detection of SARS-CoV-2 infection by canine olfaction. PLoS One 17, e0268382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Kantele, A. et al. Scent dogs in detection of COVID-19: triple-blinded randomised trial and operational real-life screening in airport setting. BMJ Glob. Health 7, e008024 (2022).

    Article  PubMed  Google Scholar 

  333. Juge, A. E., Foster, M. F. & Daigle, C. L. Canine olfaction as a disease detection technology: a systematic review. Appl. Anim. Behav. Sci. 105664 (2022).

  334. Buljubasic, F. & Buchbauer, G. Scent of human diseases: a review on specific volatile organic compounds as diagnostic biomarkers. Flavour Fragr. J. (2015).

Download references

Acknowledgements

E.A.M. is supported by R01NS121067, R21DC021260 and R21AG074324, and by the Duke School of Medicine Whitehead Family Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

S.A.W. and E.A.M. conceived and wrote the manuscript.

Corresponding author

Correspondence to E. Ashley Moseman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anosmia

The complete loss of smell, typically defined clinically by the University of Pennsylvania Smell Identification Test scores <19.

Blood–olfactory barrier

(BOB). A blood–endothelial barrier that prevents the movement of large molecules from circulation into the olfactory mucosa.

Dysosmia

A general term for an altered sense of smell.

Hyposmia

A reduced sense of smell, typically defined clinically by the University of Pennsylvania Smell Identification Test scores in the 19–33 range, although scoring can be adjusted by age and sex.

Olfactory binding proteins

Soluble proteins in the nasal mucus that bind to odourants to facilitate recognition by olfactory receptors. They have also been shown to have antimicrobial effects.

Olfactotropic

A pathogen that is capable of infecting cells within the olfactory mucosa.

Presbyosmia

An age-associated loss of smell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellford, S.A., Moseman, E.A. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol (2023). https://doi.org/10.1038/s41577-023-00972-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-023-00972-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing